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Abstract 
Background:  The facial landmark annotation of 3D facial images is crucial in clinical orthodontics and orthognathic surgeries for accurate diag-
nosis and treatment planning. While manual landmarking has traditionally been the gold standard, it is labour-intensive and prone to variability.
Objective:  This study presents a framework for automated landmark detection in 3D facial images within a clinical context, using convolutional 
neural networks (CNNs), and it assesses its accuracy in comparison to that of ground-truth data.
Material and methods:  Initially, an in-house dataset of 408 3D facial images, each annotated with 37 landmarks by an expert, was constructed. 
Subsequently, a 2.5D patch-based CNN architecture was trained using this dataset to detect the same set of landmarks automatically.
Results:  The developed CNN model demonstrated high accuracy, with an overall mean localization error of 0.83 ± 0.49 mm. The majority of the 
landmarks had low localization errors, with 95% exhibiting a mean error of less than 1 mm across all axes. Moreover, the method achieved a 
high success detection rate, with 88% of detections having an error below 1.5 mm and 94% below 2 mm.
Conclusion:  The automated method used in this study demonstrated accuracy comparable to that achieved with manual annotations within 
clinical settings. In addition, the proposed framework for automatic landmark localization exhibited improved accuracy over existing models in 
the literature. Despite these advancements, it is important to acknowledge the limitations of this research, such as that it was based on a single-
centre study and a single annotator. Future work should address computational time challenges to achieve further enhancements. This approach 
has significant potential to improve the efficiency and accuracy of orthodontic and orthognathic procedures.
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Introduction
The landmark annotation of 3D facial images in clinical 
settings is of particular importance in orthodontics and 
orthognathic surgeries for the accurate analysis of facial 
morphology, including identifying linear and angular facial 
measurements. Furthermore, the utilization of dense cor-
respondence analyses—a surface-based method—facilitates 
comparisons between a patient’s facial surface and that of 
unaffected individuals, enabling the monitoring of facial 
changes before and after treatment [1–3]. This is crucial for 
diagnosing and evaluating the outcomes of surgical correc-
tion for patients with facial deformities, as well as for plan-
ning and assessing treatments [2, 4–6].

Landmark identification is mostly carried out manually, 
which is time-consuming and labour-intensive. It also requires 
a high level of expertise and training to minimize the poten-
tial landmarking errors and inconsistencies [7]. Furthermore, 
manual landmarking is susceptible to personal biases and is 
dependent on the clinician’s level of experience. This could 
lead to inter-observer variability and potential diagnostic in-
accuracies [8].

Automatic landmarking tools are valuable resources. 
However, their reliability relies on the accuracy of the algo-
rithm employed to detect facial landmarks within the cap-
tured digital images. In addition, these tools can also increase 
the efficiency of the diagnostic process, allowing clinicians to 
analyse big data, which would ultimately lead to improved 
patient care.

In recent years, convolutional neural networks (CNNs) 
have emerged as a promising tool for facial landmark detec-
tion in computer vision [9]. CNNs use a powerful mathem-
atical approach for deep learning that allows the analysis of 
complex patterns within 3D facial images. A CNN’s mech-
anism is based on convolving local receptive fields over the 
image and performing element-wise multiplication with learn-
able filters or kernels that allow the CNN to extract valuable 
features [10]. The interconnected layers of the CNN can then 
recognize patterns across different image regions. Therefore, a 
CNN is a suitable choice for facial landmark detection when 
a high level of accuracy is required.

Despite CNNs being extensively applied in computer vi-
sion, their application in clinical settings, particularly in 
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orthodontics and orthognathic surgeries, remains limited 
[11]. This may be due to the challenges associated with col-
lecting and annotating large amounts of high-quality clinical 
datasets for training and evaluating reliable deep-learning 
models [12, 13]. Given the scarcity of studies on the auto-
mated identification of soft-tissue landmarks in clinical 3D fa-
cial images, this study aims to develop and assess the accuracy 
of an automated method using the CNN approach for the 
automatic detection of landmarks in 3D facial images within 
clinical settings.

Materials and methods
Ethics statement
Ethical approval was obtained for this study (REC reference: 
21/ES/0042). All procedures, including the filing and storage 
of data, adhered to the guidelines and policies set forth by 
health authorities.

Method overview
Deep learning (DL) networks were employed for the task 
of facial landmark detection in 3D facial images. Each DL 
detection network was trained using databases containing 
manually annotated facial images. After training, these DL 
networks were utilized to automatically identify facial land-
marks in a new set of previously unseen 3D facial images. 
CNNs were chosen specifically for this purpose.

Figure 1 provides a visual representation of the entire 
workflow of this study, encompassing dataset creation and 
network utilization. The procedure of this research involved 
several key steps: preprocessing the image data; training 
and validating the CNN; and, finally, testing the CNN on a 
large-scale dataset.

Dataset collection
This study used a dataset of 408 consecutive 3D facial 
images from adult patients, originally collected for as-
sessing dentofacial deformities and planning orthognathic 
surgeries. These images were chosen irrespective of each 
patient’s sex, racial identity, type of malocclusion, or skel-
etal pattern but were based on specific research criteria: 
they had to be high-quality 3D facial images, without de-
fects, of patients over 17 years old that had no significant 
facial hair. Patient consent was obtained regarding the use 
of these images for research purposes. This diverse dataset 
covers a wide range of facial characteristics relevant to 
orthognathic surgery, making it suitable for training and 
testing deep learning networks.

The images consisted of 68% preoperative scans, and the 
subjects had a mean age of 26.18 ± 8.6 years. Among the pa-
tients, 67% were female and 88% were of white ethnicity.

All 3D facial images were captured under a controlled 
and strict facial acquisition protocol, using passive stereo-
photogrammetry of the Di3D imaging system (Dimensional 
Imaging, Hillington, Glasgow). The images were taken while 
the subjects had a neutral facial expression. The accuracy of 
this system has been evaluated previously, wherein an average 
system error of 0.21 mm was reported [14]. The captured 
facial images contained both texture and shape information 
and were saved in the ‘obj’ file format. All subjects’ identifying 
information was removed and an individual study code was 
assigned to each 3D facial image.

Manual annotation of the anatomical landmarks
Table 1 and Fig. 2 show the 37 landmarks that were manu-
ally digitized in this study [15–17]. A combination of both 
midline and peripheral points was included. The landmarks 
used in this study can be divided into two groups: primary 
and secondary landmarks. The primary landmarks are the 
key landmarks that are commonly used in clinical facial 
analysis studies and are more distinct, such as the corners 
of the lips and the tip of the nose. The secondary land-
marks, on the other hand, are less distinct and are typically 
located between the primary landmarks: for example, on 
the cheeks. They play a more prominent role in increasing 
coverage and comprehensiveness in facial analyses. By using 
both primary and secondary landmarks, this study is able 
to present a more comprehensive collection of landmarks 
that accurately represent the facial structure and features 
of each patient.

The landmarks were identified on each 3D image using 
the Di3DView software. This software enabled us to simul-
taneously observe each 3D image from three different per-
spectives, allowing the image to be rotated and magnified. To 
assess the errors of the manual landmarking, 30 3D images 
were randomly selected and landmarked twice over a 2-week 
period by an experienced operator (an expert). Intra-operator 
error was evaluated using a paired Student’s t-test. A sig-
nificance level of P < .0005 after Bonferroni correction was 
employed. Intra-class correlation coefficients were also calcu-
lated to determine the intra-operator reliability.

The networks of the landmark detection framework
In this study, a patch-based CNN was employed for the pur-
pose of 3D facial landmark detection. Instead of utilizing the 
entire facial image, patches surrounding individual landmarks 
within the 3D facial image were extracted and employed as 
inputs for the CNN. This approach involved the use of 2.5D 
patches, which encompass both texture and depth data from 
the local neighbourhood.

First, the 3D facial images were used to extract fixed-size 
square patches (40 mm × 40 mm) around the annotated land-
marks, with each image having a dimension of 201 × 201 
pixels. The landmark was centred within the extracted patch. 
Then, these patches were converted into a 2.5D representa-
tion, combining 2D texture and depth data for enhanced ac-
curacy in facial landmark detection.

An example of a 2.5D patch, centred at the nasal tip (prn), 
is illustrated in Fig. 3. This representation combines texture 
and depth information obtained by projecting the 3D surface 
onto a 2D plane, preserving both aspects. While computation-
ally intensive, this process simplifies landmark detection for 
the network compared to handling a full 3D model, making it 
more efficient. By incorporating depth and 2D texture infor-
mation (Red, Green, Blue), this 2.5D representation improves 
the landmark detection accuracy compared to traditional 2D 
methods and enhances the network’s understanding of facial 
3D structures.

Data augmentation was carried out using translation crop-
ping on 408 patches, resulting in a dataset of 10 200 PNG 
images (151 × 151 pixels) for each landmark. This expansion 
enabled us to capture image variations, reduced the dimen-
sions of the data to improve the computational efficiency and 
helped the model recognize landmarks under diverse condi-
tions, enhancing the CNN’s predictive accuracy for new data.
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Paired with their corresponding landmark locations, these 
cropped sub-patches form a new dataset, which was used for 
training, validation, and testing. In total, 80% of the images were 

allocated for training (8160 images), and the remaining images 
were used for validation (10%, 1020 images) and testing (10%, 
1020 images). The training and validation sets were employed 

Figure 1. Workflow of dataset construction and experimental process for developing of automated landmarking networks.
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to develop and refine the method, whereas the test sets were re-
served for the final evaluation. It is worth mentioning that the 
test sets were not utilized during the training process.

Figure 4 summarizes the steps taken in this study for land-
mark detection with the patch-based CNN. For the deep 
learning of each landmark, we initially had 408 PNG images 
sized at 201 × 201, which were then augmented into 10 200 
PNG images with a size of 151 × 151.

System evaluation
The test dataset, comprising 1020 patches (10% of the main 
study dataset), was used to assess the performance of the 

developed networks. The accuracy of landmark localization 
was determined by comparing the automatically annotated 
landmarks with their manually annotated counterparts. This 
was carried out by directly comparing the coordinate values 
obtained from both methods.

The automated method was evaluated for each facial land-
mark (37 landmarks in total) by comparing the mean absolute 
distance in each of the three dimensions, i.e. by comparing 
the x-, y-, and z-axis coordinates between the manually digi-
tized and automatically detected landmarks. In addition, 
the Euclidean distance was computed using the following 
formula:

Table 1. Names and definitions of landmarks used in this study.

Landmark 
number

Facial landmarks Definition

1,2 Superciliary point (right + left) The points located above most superior part of the eyebrows.

3,10 Exocanthion Apex of the angle formed at the outer corner of the palpebral fissure where the upper and 
lower eyelids meet.(right + left)

4,9 Endocanthion Apex of the angle formed at the inner corner of the palpebral fissure where the upper and 
lower eyelids meet.(right + left)

5,6,11,12 Upper eyelid (right + left) Anchor points in the upper and lower eyelid.

7,8,13,14 Lower eyelid (right + left)

15 Nasion The midpoint on the soft tissue contour of the base of the nasal root where the frontal and 
nasal bones contact (nasofrontal suture).

16,17 Cheek*

 (right + left) At the intersection between Camper’s plane and a line connecting the external eye canthus 
with the labial commissure. Camper’s plane is defined as passing through right and left 
tragus and subnasale landmarks.

18 Pronasale (prn) Midline point marking the maximum protrusion of the nasal tip.

19,20 Subalare (right + left) The point on the lower margin of the base of the nasal ala where the ala disappears into the 
upper lip skin.

21 Subnasale Midpoint of the angle at the columella base where the lower border of the nasal septum and 
the surface of the upper lip meet (the apex of the nasolabial angle).

22,23 Cheilion Point located at the corner of each labial commissure.

(right + left)

24,25 Crista philtre The peak of Cupid’s bow.

(right + left)

26 Labiale superius The midpoint of the vermilion line of the upper lip.

27 Labiale inferius  The midpoint on the vermilion line of the lower lip.

28 Stomion Midpoint of the labial fissure.

29 Sublabiale Midpoint along the inferior margin of the cutaneous lower lip (labiomental sulcus).

30 Pogonion The most anterior midpoint of the chin.

31 Gnathion Midline point on the inferior border of the mandible.

32 Glabella The most prominent midline point between the eyebrows, identical to bony glabella on the 
frontal bone.

33 Metopion Most anterior (or most convex) midline point on the frontal bone. If the forehead region is 
relatively flat, place this landmark vertically at the midpoint between the superior facial 
border and glabella.

34,35 Gonion (Right + Left) The most lateral point on the soft tissue contour of each mandibular angle located at the 
intersection of the tangent lines of the posterior border and the inferior border of the 
margin of the lower face.

36,37 soft tissue zygion** The soft tissue point located at each intersection of the lines orbitale—soft tissue porion and 
exocanthion—subaurale.

All landmark defined by (Farkas, 1994) except landmarks with * and **.
*Landmark defined by (Ferrario et al. 2003).
**Landmark defined by (Plooij et al. 2009).
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Distance =
»

(x1− x2)2 + (y1− y2)2 + (z1− z2)2

where x1, y1, and z1 are the coordinates for the manual de-
tection, and x2, y2, and z2 are the coordinates for the auto-
mated detection. Descriptive statistics (mean error, standard 
deviation, and Euclidean distance) were compared between 
the manual and automated methods. A 95% confidence 
interval was also estimated for the study outcomes.

The success detection rate (SDR, %) was calculated to 
measure the percentage of landmarks detected within a cer-
tain distance from their true positions. Predictions within 
1mm of the manual identification result were considered 
clinically acceptable. The number of accurate identifications 
based on the SDR was divided into groups based on common 
ranges of ≤ 1.0 mm, 1.5 mm, 2.0 mm, and 3.0 mm.

Results
Manual landmark identification error
The overall mean of the intra-operator error, calculated 
across subjects, along all axes, and for all landmarks, was 
0.56 ± 0.69 mm. These values ranged between 0.20 mm and 
2.23 mm. Most of the landmark’s coordinates did not exhibit 
any statistically significant error based on the paired Student 
t-tests. The ICC was > 0.90, which indicates a high rate of re-
producibility for intra-operator repetitive identification.

The accuracy of automated landmarking in 
comparison with the manually digitized ‘ground 
truth’
According to Fig. 5 and Supplementary Table 1, the overall 
mean of the accuracy along all axes for all landmarks was 
0.47 ± 0.52 mm. The y-axis had the lowest mean error among 
all of the axes (0.41 ± 0.32 mm), while the x-axis had a higher 
mean error than the y-axis (0.45 ± 0.36 mm), and the z-axis 
had the highest mean error and standard deviation when 
compared to the other two axes (0.56 ± 0.89 mm).

The most accurately identified landmark was pronasale 
(z-axis), with a mean error of 0.06 mm. The identified land-
mark with the largest error was the right pogonion (z-axis), 
which had a mean error of 6.45 mm.

The landmark localization error was also calculated for 
each landmark by calculating the 3D Euclidean distance and 
the distribution of the error values for each landmark, as 
represented by the box plot in Fig. 6. The overall landmark 
localization error was 0.83 mm, with a standard deviation 
of 0.49 mm. The lowest localization error was noted at the 
corners of the eyes (endocanthion, exocanthion, R/L) and 
lips (cheilion, R/L). The results for the left gonion exhibited 
the largest discrepancy between the automated and manual 
landmarking, with a mean error of 1.61 mm and a standard 
deviation of 1.05 mm. Other landmarks that demonstrated 
errors of 1 mm or more included the right and left cheeks, 
the pogonion, the gnathion, the glabella, and the right and 
left zygion.

Figure 2. (A) Full set of landmarks indicators placed on 3D facial image by using Di3Dview software, (B) Zoom-in frontal view of 3D facial image. Orange 
dots represent primary landmarks. Red dots represent secondary landmarks.

http://academic.oup.com/ejo/article-lookup/doi/10.1093/ejo/cjae056#supplementary-data
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It is evident from Fig. 7a that the primary landmarks gener-
ally exhibit low errors in automatic identification compared 
to the secondary landmarks. By comparing Fig. 6a and b, it 

can be observed that landmarks with higher errors in manual 
digitization also exhibit higher errors with the automated 
method.

Figure 3. The framework of the Patch-based CNN for single landmark localization. (A) displaying the overall framework and (B) presenting the 
architecture of the landmark detection model.

Figure 4. A 2.5D patch of the nasal tip.
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As shown in Table 2, the right endocanthion achieved the 
highest SDR scores for each error range, with values of 94%, 
99%, 100%, 100%, and 100%, respectively. The mean local-
ization error for the right endocanthion was 0.54 ± 0.30 mm. 
On the other hand, the metopion had the lowest SDR scores 
for all error ranges, measuring 28%, 50%, 71%, 85%, 
and 93%, respectively. The mean localization error for the 
metopion was 1.6 ± 0.87 mm. Table 2 provides a comprehen-
sive summary of the mean localization error values, the cor-
responding 95% confidence intervals, and the SDR values for 
each primary and secondary landmark obtained from the test 
data.

Table 3 displays the results reported in the literature, re-
vealing a noteworthy difference between the results reported 
in prior studies and those of the current study.

Discussion
The results of this study show that the proposed CNN-based 
approach surpassed other existing automatic models in 
detecting 3D landmarks on human faces in a clinical setting. 
This was achieved by including a large sample size, which 
led to a greater number of detected landmarks and signifi-
cantly reduced the localization error. In a very recent study 
conducted by [27], 32 landmarks were automatically anno-
tated. However, their reported mean error distance for all 32 
landmarks was 2.62 mm (SD, 2.39 mm).

In this study, low localization errors were achieved through 
a comprehensive CNN-training approach that combined 
texture and depth information. This proposed approach al-
lowed the model to leverage both texture-based and shape-
based analyses, resulting in improved accuracy. In addition, 
standardized high-quality images from a clinical database 
minimized the variability and confounding factors, further 
enhancing the model’s accuracy. Ensuring consistent acquisi-
tion conditions, lighting, facial expressions, and backgrounds 

across the images can effectively reduce the variability and 
confounding factors that might affect the performance of the 
automated landmarking model [28].

This study revealed that automated identification of midline 
landmarks was more accurate than that of lateral (peripheral) 
landmarks. This finding aligns with previous studies on both 
automated and manual landmark identification. Peripheral 
landmarks are usually located in areas that lack distinct ana-
tomical features, which poses a challenge for automated al-
gorithms to accurately detect landmarks in those regions. 
Similarly, a study by Torres et al. [29] found a limitation of 
their developed automated model when detecting landmarks 
located at non-featured and flat regions.

In contrast to the findings of [25] and [26], who reported 
poor performance in automated landmarking at the corners 
of the eyes, this study demonstrated a significant improve-
ment in the accuracy of these specific landmarks as well as 
the cheilion landmarks (R/L) using the automated CNN-
based landmarking approach. This improvement is attrib-
uted to the reliable ground-truth data used and the unique 
features of these landmarks. A CNN model can automatic-
ally extract significant features without any human super-
vision, enhancing precision and enabling automation [30]. 
Our method effectively exploits these features, resulting in 
higher accuracy, particularly for primary landmarks (Figs 
5 and 6).

The quality of the annotated ground-truth data sig-
nificantly impacts a CNN model’s performance [31]. 
Inconsistencies in annotations within the training set pre-
sent a challenge for CNN models to effectively learn and 
generalize new data, leading to errors in landmark detec-
tion. In this study, the relationship between the accuracy 
of automated CNN models in detecting specific land-
marks and the accuracy and consistency of the manual 
landmarking method (intra-operator error) was examined. 
It was found that landmarks identified with higher errors 

Figure 5. Landmark localization error of the CNN model for the 37 landmarks in each axis.
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in the manual landmarking approach also exhibited higher 
errors when the automated landmarking method was used 
(Fig. 6). This was particularly evident in the zygion land-
marks, which showed the highest error in the z-axis dir-
ection. This can be attributed to the fact that the zygion 
occupies a flat area with ill-defined features, as well as in-
consistencies in annotations within the training set, which 
lead to errors in landmark detection. Improvements are 
necessary to address the limited capability of patch-based 
CNNs in localizing landmarks with ill-defined features. 
One potential solution for this could involve incorporating 
a hybrid approach that combines a patch-based CNN with 
other techniques or models.

The presence of image artefacts caused by hair and the 
presence of reflective objects can reduce the quality of  
the peripheral areas of facial 3D images [32, 18] identified 
the pogonion and earlobes as particularly challenging land-
marks to automatically locate, which can be attributed to the 
strong influence of facial or head hair, potentially leading to 
larger mean errors and standard deviations when using an 
automated detection method. In this study, the gonion was 
landmarked with low precision, and this might be due to the 
quality of the 3D images in this area. Consequently, localizing 
landmarks in peripheral regions is considerably more challen-
ging and contributes to the observed low precision and con-
sistency in identifying certain landmarks.

Figure 6. Box plot of localization errors for primary and secondary landmarks: assessing Euclidean distances between ground truth and automated 
CNN-based model estimations.
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It was observed that there was a difference in the auto-
mated accuracy patterns between bilaterally positioned land-
marks, specifically the right and left gonion. This could be 
attributed to shadowing or variations in lighting conditions 
between the two sides, which may affect the precision of the 
landmark identification.

To ensure accurate automatic landmarking, it is vital to 
assess the reproducibility of manual landmarking. Many 
studies on landmark detection for 3D facial images lack this 
crucial information [11]. To enhance people’s confidence in 
automatic landmarking algorithms, researchers should follow 
recognized reporting standards, document the landmark an-
notation process, and implement quality control measures 
[33, 34]. In this study, the intra-operator reproducibility for 
each landmark was assessed along three axes. These results 
validate the examination techniques used and ensure the val-
idity of our study.

This study presents advancements in automatic landmark 
detection for 3D facial images within clinical contexts, of-
fering potential applications in orthodontics, orthognathic 
surgery, and craniofacial research. The accurate placement of 
anatomical landmarks is critical for meeting clinical stand-
ards and enabling the precise identification of facial meas-
urements. Moreover, the utilization of dense correspondence 
analysis (comprehensive surface analysis) techniques facili-
tates comparisons between patients’ facial features and those 
of unaffected individuals, thereby enhancing clinical assess-
ments and providing valuable insights into treatment efficacy 
and patient outcomes. Furthermore, the implementation of 
accurate landmarking streamlines the workflow of 3D fa-
cial image-processing pipelines, particularly benefitting gen-
etic and developmental studies where detailed phenotyping 
is essential for investigating genetic influences on facial 
morphology.

While this study represents progress in automatic land-
mark detection for 3D facial images in clinical settings, 
it is crucial to acknowledge its several limitations. These 
include its reliance on data from a single centre, the lack 
of external validation, and the use of a single annotator. 
Future research should incorporate diverse datasets from 
multiple centres, patients of various ethnicities, and mul-
tiple annotators to validate the model’s effectiveness 
across different populations. External validation using di-
verse image captures, imaging protocols, and equipment is 
also essential. In addition, the patch-based CNN approach 
has certain drawbacks, such as its time consumption and 
the absence of global context information. A potential 
solution for these issues could be found with a hybrid 
approach that combines a patch-based CNN with other 
techniques. Future studies should aim to overcome these 
limitations.

Conclusion
The automated landmarking method utilized in this study 
demonstrated accurate landmark detections comparable 
to those obtained manually by an observer (the ground 
truth).

This study makes a significant contribution to the field of 
detecting landmarks within 3D facial images by demonstrating 
the effectiveness of using CNNs in clinical settings. Our ap-
proach, a patch-based method, involves training a CNN 
model using augmented patches based on expert-established 
ground-truth data. Ultimately, 37 soft-tissue facial landmarks 
were localized, with an overall mean error of 0.83 ± 0.49 mm; 
these findings strongly support this method’s effectiveness in 
landmark detection. This could aid in diagnosing dentofacial 
deformities, as well as in genetic and developmental studies 

Figure 7. Comparison of mean localization errors between automated CNN model and manual landmarking method for primary (a) and secondary (b) 
landmarks.
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Table 2. The mean localization error and success detection rate (SDR) value of landmarks obtained from test data.

Landmark Success detection rate (SDR)% Mean ± SD 95% Confidence interval of Mean

1.0 mm 1.5 mm 2.0 mm 2.5 mm 3.0 mm

Primary landmarks EX-R 81 96 100 100 100 0.68 ± 0.39 0.65; 0.7

EN-R 92 99 100 100 100 0.53 ± 0.31 0.51; 0.55

EN-L 94 99 100 100 100 0.45 ± 0.30 0.43; 0.46

EX-L 92 99 100 100 100 0.53 ± 0.32 0.51; 0.55

N 75 92 99 100 100 0.75 ± 0.45 0.73; 0.78

PRN 83 97 100 100 100 0.64 ± 0.37 0.62; 0.66

SA-R 89 98 99 100 100 0.59 ± 0.34 0.56; 0.61

SA-L 90 99 100 100 100 0.56 ± 0.32 0.55; 0.58

SN 87 98 99 100 100 0.62 ± 0.32 0.59; 0.64

CH-R 92 99 99 100 100 0.54 ± 0.34 0.52; 0.56

CH-L 93 99 99 100 100 0.55 ± 0.32 0.53; 0.57

CP-R 85 98 100 100 100 0.64 ± 0.36 0.62; 0.66

CP-L 80 95 99 100 100 0.68 ± 0.44 0.66; 0.71

Lab-Sup 86 97 99 100 100 0.61 ± 0.38 0.58; 0.63

Lab-Inf 72 95 99 100 100 0.79 ± 0.42 0.76; 0.81

STO 81 95 98 100 100 0.66 ± 0.43 0.64; 0.69

SL 63 92 98 100 100 0.89 ± 0.44 0.86; 0.91

PO 46 71 87 95 99 1.18 ± 0.68 1.14; 1.22

GN 47 72 87 96 98 1.17 ± 0.69 1.13; 1.21

GL 44 69 83 94 98 1.22 ± 0.73 1.18; 1.27

Overall primary landmarks 79 93 97 99 100 0.72 ± 0.42

Secondary landmark SC-R 68 87 95 99 100 0.89 ± 0.54 0.86; 0.92

SC-L 66 90 97 99 100 0.87 ± 0.48 0.84; 0.9

UE1-R 81 96 99 100 100 0.67 ± 0.41 0.64; 0.7

UE2-R 83 98 100 100 100 0.66 ± 0.36 0.64; 0.69

LE1-R 87 99 100 100 100 0.63 ± 0.34 0.61; 0.65

LE2-R 87 99 99 100 100 0.62 ± 0.35 0.6; 0.64

UE1-L 78 96 99 100 100 0.72 ± 0.4 0.69; 0.74

UE2-L 78 94 99 100 100 0.72 ± 0.42 0.69; 0.75

LE1-L 93 100 100 100 100 0.54 ± 0.29 0.52; 0.56

LE2-L 88 99 100 100 100 0.57 ± 0.33 0.55; 0.59

CHE-R 37 62 81 92 96 1.38 ± 0.79 1.33; 1.43

CHE-L 46 72 84 92 98 1.21 ± 0.74 1.16; 1.25

MET 28 50 71 85 93 1.60 ± 0.87 1.54; 1.65

Go-R 84 98 100 100 100 0.64 ± 0.37 0.61; 0.66

G0-L 35 55 69 81 89 1.61 ± 1.05 1.54; 1.67

Zyg-R 36 55 73 83 91 1.52 ± 0.96 1.46; 1.58

Zyg-L 37 58 73 84 91 1.5 ± 0.99 1.44; 1.56

Overall secondary landmarks 65 82 90 94 97 0.96 ± 0.57

All landmarks 72 88 94 97 99 0.83 ± 0.49

Primary landmarks: EX-R: Exocanthion (right), EN-R: Endocanthion (right), EN-L: Endocanthion (left), EX-L: Exocanthion (left), N: Nasion, PRN: 
Pronasale, SA-R: Subalare (right), SA-L: Subalare (left), SN: Subnasale, CH-R: Cheilion (right), CH-L: Cheilion (left), CP-R: Crista philtre (right), 
CP-L: Crista philtre (left), Lab-Sup: Labiale superius, Lab-Inf: Labiale inferius, STO: Stomion, SL: Sublabiale, PO: Pogonion, GN: Gnathion, GL: 
Glabella.
Secondary landmarks: SC-R: Superciliary point (right), SC-L: Superciliary point (left), UE1-R: Upper eyelid (right), UE2-R: Upper eyelid (right), LE1-R: 
Lower eyelid (right), LE2-R: Lower eyelid (right), UE1-L: Upper eyelid (left), UE2-L: Upper eyelid (left), LE1-L: Lower eyelid (left), LE2-L: Lower eyelid 
(left), CHE-R: Cheek (right), CHE-L: Cheek (left), MET: Metopion, Go-R: Gonion (Right), Go-L: Gonion (Left), Zyg-R: soft tissue zygion (Right), Zyg-L: 
soft tissue zygion (Left).
SD: standard deviation, CI: confidence interval. Landmarks with red highlight indicates a mean error > 1 mm. Bold indicates lowest localization 
error.
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that rely on large datasets. Future research should focus on 
enhancing the model’s robustness and broadening this study’s 
scope to include other population groups.
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