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The brain is arguably the most complex human organ and modelling
its mechanical behaviour has challenged researchers for decades. There
is still a lack of understanding on how this multiphase tissue responds
to mechanical loading and how material parameters can be reliably
calibrated. While previous viscoelastic models with two relaxation times
have successfully captured the response of brain tissue, the Theory of
Porous Media provides a continuum mechanical framework to explore
the underlying physical mechanisms, including interactions between
solid matrix and free-flowing interstitial fluid. Following our previously
published experimental testing protocol, here we perform finite element
simulations of cyclic compression–tension loading and compression–
relaxation experiments on human brain white and gray matter specimens.
The solid volumetric stress proves to be a crucial factor for the overall
biphasic tissue behaviour as it strongly interferes with porous effects
controlled by the permeability. An inverse parameter identification reveals
that poroelasticity alone is insufficient to capture the time-dependent
material behaviour, but a poro-viscoelastic formulation captures the
response of brain tissue well. We provide valuable insights into the
individual contributions of viscous and porous effects. However, due to the
strong coupling between porous, viscous, and volumetric effects, additional
experiments are required to reliably determine all material parameters.

1. Introduction
Despite decades of research, the human brain still poses exciting challenges
for researchers from various fields. More recently, there is increasing interest
in the role of mechanical signals for brain development [1–3], injury [4–6]
and disease [7–10]. Modelling based on the theory of nonlinear continuum
mechanics proves a valuable tool to computationally test hypotheses that
complement experimental findings [11], to understand processes in the brain
under physiological and pathological conditions [12] and to assist diagnosis
and treatment of neurological disorders through personalized predictions
[13–15].
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Depending on the application, mechanical models for human brain tissue need to cover a wide range of time and length
scales. Its highly heterogeneous, region-dependent microstructure relates to viscoelastic effects [16] and cannot be neglected
for predictions on the organ scale [17]. Viscoelastic models with two relaxation times have been successful in capturing the
time-dependent mechanical response of brain tissue under various loading conditions [11,18]. However, free-flowing interstitial
fluid occupies a large fraction of the brain volume and contributes to the biomechanical response of human brain tissue through
poroelastic effects [19–21]. For some applications, e.g. drug delivery in the brain during cancer treatment, it is essential to model
the porous properties of brain tissue explicitly [22,23].

Existing poroelastic models are tailored to particular applications, e.g. tissue fracture [24], decompressive craniotomy [25],
tumour growth and treatment [13], hydrocephalus [26] or drug delivery [22]. Models that treat brain tissue as a biphasic
poro-viscoelastic material either focus on a specific experimental setup [27] or incorporate important analytical simplifications
[28–30]. To our knowledge, the model described by [31] and the formulation proposed by our group [32] are the only
approaches to date with the potential to capture the wide range of characteristics observed in the response of brain tissue
under different biomechanical loading scenarios by modelling the brain as a poro-viscoelastic material.

Our versatile poro-viscoelastic model provides the possibility to describe and explore the underlying physical mechanisms
within a biphasic material during mechanical loading, but identifying the associated model parameters becomes increasingly
difficult with increasing model complexity. Even for poroelastic models (without accounting for viscoelastic effects) and without
the specific application to brain tissue, the meaning of—and the correlation between—the individual model parameters seems
poorly understood. In particular, parameters that control the volumetric response of the solid constituent of the biphasic
material are chosen and interpreted in various fashions. For example, the shear modulus and the first Lamé parameter are
often obtained through direct conversion from the Young’s modulus and the Poisson’s ratio values of brain tissue extracted
from literature [22,23,33]. Pierce et al. [34] account for Lamé’s first parameter as a stress-like material parameter, which in
the case of isochoric deformation of the solid matrix degenerates to a non-physical (positive) penalty parameter used to
enforce incompressibility. Lucci et al. [35] mention that volumetric moduli penalize volumetric changes in the solid skeleton
and acknowledge that their estimation is difficult. Indeed, due to the strong interaction between several parameters within a
poro-viscoelastic formulation, currently available experimental data is not yet comprehensive enough to find unique material
parameters.

In this study, we first carefully assess the physical meaning of poroelastic parameters in a poro-viscoelastic model based
on the Theory of Porous Media. Thereby, we specifically analyse the correlation between volumetric constraints on the solid
constituent and the porous effects in the overall biphasic tissue. We further discuss the size-dependency of poroelastic relax-
ation behaviour in a fully nonlinear setting. We then provide the basis to identify the free model parameters based on an
inverse approach using the finite element method and experimental data from cyclic and stress relaxation experiments on
human brain tissue from two different regions: visual cortex (grey matter) and corona radiata (white matter). We find that
poroelasticity alone can capture important mechanical characteristics of human brain tissue, but is not sufficient to capture
the highly hysteretic material response. Finally, we provide an outlook towards a reliable quantification of poro-viscoelastic
material parameter sets in the future.

2. Material and methods
We apply our nonlinear poro-viscoelastic model [32] based on the Theory of Porous Media [36] to two different brain regions,
i.e. the corona radiata (white matter) and the visual cortex (grey matter).

2.1. Experimental data
As a reference, we use experimental data from large-strain compression and tension experiments performed on two cylindrical
samples with a radius r = 4 mm, one extracted from the human visual cortex (grey matter) and one from the corona radiata
(white matter), as illustrated in figure 1. The human brain tissue was extracted from a body donor (male, 71) who had given
his written consent to donate his body to research and stored in artificial cerebrospinal fluid [38] until testing. The study
was additionally approved by the Ethics Committee of Friedrich-Alexander-University Erlangen-Nürnberg, Germany, with
the approval number 405_18 B. For details regarding the sample preparation and the experimental setup, we refer to [38].
We first applied three cycles of compression and tension with a loading velocity of 40 μm s−1, and minimum and maximum
overall vertical stretches of 0.85 and 1.15, corresponding to 15% strain in compression and tension, respectively (figure 1a).
Subsequently, we performed a stress relaxation test, first in compression then in tension, at a maximum stretch of 0.85 and 1.15,
respectively, with a loading velocity of 100 μm s−1 and a holding period of 300 s (figure 1b). We recorded the corresponding force
in the direction of loading and determined the nominal stress as the force divided by the undeformed cross-sectional area of
the specimen. The recorded data is subsequently preprocessed using a moving average filter and the Ramer–Douglas–Peucker
algorithm [39], where the latter reduces the number of data points. To be able to perform tensile testing, we fully fixed the
specimens to the upper and lower specimen holders using sandpaper and superglue. We tested the specimens fully submerged
in phosphate buffered saline solution at 37°C. The pictures in figure 1a show a deformed specimen from the cortex at 15%
compression (left) and 15% tension (right). Figure 1c demonstrates the lateral retraction of the deformation during long-term
relaxation of 2 h for a corona radiata specimen extracted from a body donor (male, 57) who had given his written consent to
donate his body to research. The final diameter dt = 0.98 d0 after relaxation is smaller than the initial diameter d0 at the beginning
of the relaxation period, measured with Fiji ImageJ [37].
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2.2. Continuum kinematics
The biphasic brain tissue consists of a viscoelastic solid, representing the network of cells and blood vessels embedded within
the extracellular matrix, fully saturated by free-flowing interstitial fluid. The individual solid and fluid constituents are assumed
to be incompressible, while the overall compressibility of the biphasic material is captured by changing the solid and fluid
volume fractions nS and nF, respectively, subjected to the saturation condition nS + nF = 1.

Following the Theory of Porous Media, the constituent deformation map reads x = χS(XS, t) = χF(XF, t) and indicates that the
material constituents originate from different reference positions XS and XF at time t0, but occupy the same spatial position x in
the current configuration at time t (figure 2). We obtain the displacement of the solid component

(2.1)uS = x − XS

and its material deformation gradient

(2.2)FS = ∂x
∂XS

.

Importantly, the Jacobian of the solid deformation gradient JS = det FS > n0S
S  describes volumetric changes of the whole biphasic

material, i.e. it also captures volumetric changes due to pore fluid flow. Once the Jacobian approaches the initial solid volume
fraction JS ⟶ n0S

S , the point of compaction is reached, all pores are closed and the incompressibility constraint of the solid
component prevents any further volume deformations [36].

2.3. Governing equations
We assume quasi-static loading conditions and neglect body forces and external tractions such that the weak form of the linear
momentum balance in the reference configuration B0 reads

(2.3)
B0
∇(δuS):τ dV0S = 0 ∀δuS .

The constitutive equation of the solid component renders the Kirchhoff stress tensor τ, dV0S refers to the volume elements of the
biphasic material in the reference configuration of the solid and δuS are the solid displacement test functions. Since we do not
prescribe fluid flow across the boundaries, the nonstationary, time-dependent mass balance equation reduces to

(2.4)
B0
δpJ̇SdV0S −

B0
∇(δp) ⋅wJSdV0S = 0 ∀δp .

The constitutive equation of the fluid provides the volume-weighted seepage velocity w = nFwF, J̇S denotes the material time
derivative of the Jacobian and δp are the pore pressure test functions.

2.4. Constitutive equations
We perform a multiplicative decomposition of the solid deformation gradient into elastic and viscous parts, i.e. FS = FS

e⋅FS
v [40].

Similar to previous studies, we assume that the viscous contribution is purely isochoric, based on the premise that the volumet-
ric response of brain tissue is primarily governed by fluid flow captured through poroelasticity. From a biophysical perspective,
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Figure 1. (a) Total nominal stress response during cyclic loading in compression and tension for samples extracted from the human visual cortex and corona radiata,
respectively. In addition, we show a representative deformed specimen from the cortex and its corresponding finite element model. (b) Experimental results for
compression relaxation and tension relaxation, normalized by the peak stress. (c) Lateral retraction of the deformation during long-term compression relaxation of
2 h for a corona radiata specimen. The final diameter dt = 0.98 d0 after relaxation is smaller than the initial diameter d0 at the beginning of the relaxation period,
measured with Fiji ImageJ [37].

3

royalsocietypublishing.org/journal/rsfs 
Interface Focus 14: 20240026

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 D

ec
em

be
r 

20
24

 



this modelling choice is motivated by the fact that the viscoelastic response is intended to solely represent the behaviour of
the solid matrix, consisting of the extracellular matrix and the network of cells, inside which fluid is mostly trapped in the
physiological state. We thus expect a purely isochoric viscous contribution, and the volumetric-isochoric decomposition in
figure 2 is recovered through FS = FS

e, vol⋅FS
e~ ⋅FS

v~
= FS

vol⋅F~S. Then, the solid ‘extra’ stress τE
S is split into (full) equilibrium (eq) and

isochoric non-equilibrium (neq) parts and an additional volumetric (vol) contribution:

(2.5)τ = τE
S − pJS1 = τE

eq + τE
neq + τE

vol − pJS1 .

The fluid exerts a hydrostatic stress (−pJS1) on the solid and 1 denotes the second-order unit tensor. Note that setting τE
neq = 0

in equation (2.5) reduces our nonlinear poro-viscoelastic model to a nonlinear poroelastic model. Based on previous studies
[11,20,38], we choose a one-term Ogden model for the equilibrium and non-equilibrium parts. The equilibrium part of the
Kirchhoff stress tensor is

(2.6)τE
eq = a = 1

3 β∞, anS, a⊗ nS, a with β∞,a = μ∞ λS, a α∞ − 1 ,

and depends on the principal stretches λS,a and the eigenvectors nS,a of the left Cauchy–Green strain tensorbS = FS⋅FS
⊤ = a = 1

3 λS, a2 nS, a⊗ nS, a. The constitutive parameters are the equilibrium Ogden shear modulus μ∞ and the nonlinearity
parameter α∞. We formulate the non-equilibrium Kirchhoff stress tensor

(2.7)τE
neq = a = 1

3 β1,anS, ae ⊗ nS, ae with β1, a = μ1 λ~S, ae α1
− 1

3 λ~S, 1
e α1

+ λ~S, 2
e α1

+ λ~S, 3
e α1

in terms of the isochoric elastic principal stretches λ~S, ae
= [JS

e]−1/3λS,ae , the eigenvectors nS,ae  of the elastic part of the left Cau-
chy–Green strain tensor bS

e = FS
e⋅(FS

e)⊤ = a = 1
3 [λS, ae ]2nS, ae ⊗ nS, ae , the non-equilibrium Ogden shear modulus μ1 and the nonlinear-

ity parameter α1. To ensure thermodynamical consistency, we assume isotropy and introduce an evolution equation

(2.8)−ℒvSbS
e⋅ bS

e −1 = 1ητE
neq ,

where ℒvS denotes the Lie derivative along the velocity field of the solid motion and η is the solid viscosity, such that we a priori
satisfy non-negative viscous dissipation power, i.e.

(2.9)Dv = 1
2ητE

neq:τE
neq ≥ 0 for η > 0.

The volumetric Kirchhoff stress contribution [36]

(2.10)τE
vol = λ* 1 − n0S

S 2 JS

1 − n0S
S −

JSJS − n0S
S 1

t0

0

FS

t

υS
υF

τ

XF

XS
x = xS = xF

F (XF, t)

PS

PF

FS = FS   • FS
~

vol

S (XS, t)

vol

PS

PS, PF

PF

t

FS
v~

FS

~

FS
e~

τ > t

p

K0

λ*

µ1, α1

µ∞, α∞

η

ωF (K0 )
S

Figure 2. Kinematics of a biphasic material body within the context of the Theory of Porous Media [36]. Material particles of the solid and fluid components (PS and
PF, respectively) originate from different reference positions in the material configuration B0 at initial time t0, but occupy the same spatial position in the current
configuration Bt at time t. Bτ refers to the configuration at time τ > t. The deformation gradient FS is multiplicatively split into volumetric FS

vol and isochoric F
~

S

contributions. The isochoric part is decomposed into viscous F
~

S
v
 and elastic F

~
S
e
 parts. The seepage velocity wF = vF − vS = ∂χF/∂t−∂χS/∂t describes the motion of

the fluid with respect to the deforming solid. The rheological schematic indicates the solid-fluid interaction via a ‘porous' element depending on the pore pressure p
and the initial intrinsic permeability K0; μ∞, μ1 and α∞, α1 denote the Ogden shear moduli and nonlinearity parameters for the equilibrium and non-equilibrium part,
respectively, while λ* is the first Lamé parameter and η the solid viscosity.
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completes the definition of the solid stress tensor (2.5) and introduces the first Lamé parameter λ* of the solid component and
the volume fraction of the solid component with respect to the solid reference configuration at the initial time, n0S

S .
We compute the volume-weighted seepage velocity of the fluid with a Darcy-like law [41] according to

(2.11)w = − 1μFR
JS − n0S

S

1 − n0S
S K0

S⋅∇p,

where μFR is the effective shear viscosity of the pore fluid and K0
S = K01 is the initial intrinsic permeability tensor, which we

assume is isotropic. The porous dissipation power is

(2.12)Dp = μFRK0

1 − n0S
SJS − n0S
S w ⋅w ≥ 0 ,

and will always be non-negative, given that μFR and K0 are necessarily positive, n0S
S ∈ (0,1) and JS > n0S

S .

2.5. Numerical setup
The open source finite element library deal.ii [42] provides the numerical framework to reconstruct our large-strain cyclic
loading and stress relaxation experiments introduced in §2.1. We discretize a quarter of our cylindrical specimens with 384
full integration Q2P1 elements, i.e. quadratic shape functions for the solid displacements, linear shape functions for the pore
pressure and third-order Gaussian quadrature. We have performed a mesh refinement study to ensure that the simulation
results were independent of the chosen mesh. The geometry dimensions are specimen specific for the visual cortex (r = 4 mm,ℎ = 3.4 mm) and the corona radiata (r = 4 mm, ℎ = 5.0 mm). The solid volume fraction is n0S

S = 0.75 and the fluid shear viscosityμFR = 0.89 Pa ⋅ s [32,43]. The degrees of freedom at the bottom surface are fixed in space and a vertical displacement in thez-direction is applied to the top surface while being fixed in the x-y-plane (figure 1a). We apply symmetric boundary conditions
to the flat lateral surfaces and only the cylinder hull is drained, i.e., fluid can only leave the sample through the cylinder
hull and not through the spatially fixed (glued) top and bottom surfaces. Greiner et al. [43] describe the data analysis of the
quantities (stresses, dissipation power, etc.) that we use to visualize and compare the finite element results.

In §3.2, we perform cyclic loading simulations with three cycles up to 15% strain in compression and tension at a constant
strain rate of 0.01 s−1. For the compression relaxation simulations in §3.3, we apply an almost instantaneous load of 15%
compressive strain with a strain rate of 2.5 s−1 and study the effect of different specimen radii r = {4, 6, 8} mm. Finally, we use an
inverse parameter identification algorithm (trust region reflective algorithm), as introduced in [38], to identify the best fitting
material parameters to reproduce our experimental results introduced in §2.1 and §3.4.

3. Results
3.1. The volumetric stress contribution
Figure 3 shows the volumetric stress response as a function of the Jacobian of the solid deformation gradient JS for an initial
solid volume fraction of n0S

S = 0.75 and three different values of the first Lamé parameter λ* = {102, 103, 104} Pa. The additional
term τE

vol in equation (2.5) primarily ensures incompressibility of the solid component once the compaction point is reached,
i.e. τE

vol ⟶ −∞ when all fluid has left the biphasic material and JS ⟶ n0S
S . Therefore, the domain JS < n0S

S  is non-admissible,
indicated by the grey pattern. But, depending on the choice of λ*, τE

vol may add a significant volumetric constraint to the whole
biphasic material over the entire deformation range—not only close to the compaction point. We clearly observe this effect in
the inlet of figure 3, which shows the volumetric stress response in a range that is relevant for brain tissue with a stiffness of
≈ 1 kPa. Here, high values of λ* already lead to a strong volumetric stress response for small volumetric changes of the biphasic
material that in return constrains the actual fluid flow through the material. In other words, poroelastic effects are suppressed
without changing the permeability of the material. As the permeability should control the fluid flow within a porous medium
rather than the volumetric stress contribution, our analyses highlight that the choice of λ* should be made with caution and
under consideration of the expected overall material response.

3.2. Poroelastic effects during cyclic loading
Figure 4 shows the influence of the first Lamé parameter λ* on the poroelastic material behaviour for three different intrinsic
permeabilities K0 during cyclic loading. By way of example, we chose the equilibrium hyperelastic model parameters according
to [38], who provided the Ogden parameters μ∞ and α∞ for the visual cortex based on an inverse parameter identification. We
observe that with decreasing λ*, the influence of the permeability on the overall material response increases. Specifically, forλ* = 102 Pa, the total nominal stress in compression increases significantly with decreasing permeability. On the contrary, forλ* = 104 Pa, the stress–stretch curves almost coincide and indicate that the permeability, and thus the porous material properties,
do not affect the biphasic material response. We further recognize an increasing hysteresis with decreasing λ*. The hysteresis
originates from the porous energy dissipation and reaches a maximum for λ* = 102 Pa and K0 = 10−7 mm2 and decreases again for
lower permeabilities [43].
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Figure 5 (left) highlights the effect of λ* on the porous dissipation rate, i.e. the hysteresis caused by porous effects, for
the first compression–tension cycle (subsequent cycles display analogous responses). The porous dissipation rate increases for
decreasing λ*. In addition, the curve for λ* = 104 Pa shows a significantly different behaviour. Here, the porous dissipation rate
rapidly decreases to zero after the change of loading direction at 15 s, followed by an intermediate maximum at ≈ 20 s and
another decrease in dissipation. Instead, for lower λ*, we observe a delayed decrease in dissipation after the change of loading
direction at 15 s, followed by a monotonous increase until the next change of loading direction at 45 s—without an intermediate
maximum. Figure 5 (middle) shows that λ* not only affects the total material response but also the individual contribution of
the fluid constituent. In particular, the fluid stress contribution increases with decreasing volumetric constraints, i.e. lower λ*,
accompanied by a larger hysteresis. Again, similar to the porous dissipation, the fluid stress response is entirely different forλ* = 104 Pa. Here, the maximum fluid tensile stress does not coincide with the maximum tensile stretch. Instead, we observe a
maximum shortly after the change of loading direction, i.e. shortly after the maximum compressive strain has been reached.

Figure 5 (right) depicts the solid volumetric stress contribution induced by equation (2.10). As we can already expect from
figure 3, the volumetric stress contribution almost vanishes for low values of λ*. For high λ*, it contributes up to one-third of the
total biphasic material response, including a noticeable compression–tension asymmetry (compare with figure 4, right).

Figure 6 shows the pore pressure distribution and the seepage velocity in the x–z-plane of our cylindrical specimen at
various time steps during the first loading cycle for different values of λ* = {102, 103, 104} Pa and an intrinsic permeability ofK0 = 10−7 mm2. At t = 15 s, we reach the maximum compression at 15% strain. The pore pressure increases with decreasing λ*,
which indicates that the fluid takes a larger part of the load (compare figure 5, middle). The spatial distribution of the pore
pressure is quite similar for different λ*, but, due to the increasing pressure gradient, the seepage velocities increase for lowerλ* (see red coloured arrows). After the change of loading direction, at t = 20 s, the fluid immediately flows back into the sample
for high λ*, while for low λ*, even at t = 25 s, the fluid flow is not fully reversed. At t = 30 s, after half of the loading cycle, the
specimen reaches its initial height. For high λ*, the specimen volume is back to its initial volume, while the visible contraction
for low λ* indicates a reduced specimen volume. Under 15% tensile strain at t = 45 s, we observe again higher pressure gradients
and seepage velocities for lower λ*. Similar to the situation after the first change of loading direction, the fluid flow into the
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sample continues for low λ* until the present pressure gradient decreases, while the flow reverses almost immediately for highλ*. The first loading cycle is over after t = 60 s and the specimen shows a slightly increased volume for low λ*.

3.3. Poroelastic effects during compression relaxation
We choose a high loading rate of 2.5 s−1 to approximately represent instantaneous loading and avoid that relaxation effects
occur during loading. This way, we can further assume that the biphasic material acts almost as an incompressible elastic
material during loading—independent of the choice of the first Lamé parameter λ*. Figure 7 shows the simulated total
nominal stress normalized by the peak loading stress during stress relaxation in compression for three different specimen radiir = {4, 6, 8} mm, three different permeabilities K0 = {10−6, 10−7, 10−8} mm2 and three different values of the first Lamé parame-
ter λ* = {102, 103, 104} Pa. It highlights the size-dependency of nonlinear poroelasticity during stress relaxation with different
specimen dimensions. The absolute amount of stress relaxation increases significantly with increasing specimen radius: from
10% to 60% for λ* = 104 Pa and from 60% to 90% for λ* = 102 Pa. A larger specimen radius induces larger volumetric deforma-
tions, i.e. more fluid flow, more porous dissipation and larger stress relaxation. Increasing the first Lamé parameter λ* decreases
the amount of stress relaxation, e.g. from 60% to 10% for r = 4 mm. This observation confirms our findings from §3.2 that
increasing volumetric constraints diminish the porous effects. The permeability K0 affects only the relaxation time, but not the
total amount of relaxation. In most cases, we observe slightly less relaxation for the highest permeability K0 = 10−6 mm2, which
may indicate that still some relaxation has already happened during the loading phase.

Figure 8 shows the poroelastic relaxation behaviour for various combinations of the first Lamé parameter λ* and intrinsic
permeabilities K0 for three different specimen radii r = {4, 6, 8} mm. The plots are normalized by the peak stress and subtracted
by the equilibrium (relaxed) stress level after 600 s holding time to solely focus on the relaxation behaviour.

First, the relaxation time decreases significantly with increasing λ*. Large values for λ* impose large volumetric constraints
on the biphasic material (§3.1), thus the admissible amount of volume change, and consequently the amount of induced
fluid flow, decrease such that the material relaxes quicker. Second, the relaxation time increases considerably with decreasing
permeability. This is an expected result, as the permeability controls the resistance of the fluid flow through the solid matrix.
For constant λ*, the applied displacement load induces the same amount of fluid flow, but decreasing permeability reduces the
volume-weighted seepage velocity w (see equation 2.11). Consequently, the relaxation process takes longer. Third, changes in
specimen size seem to barely affect the time it takes to reach equilibrium, but changes the shape of the relaxation curve.

For low λ*, increasing the radius leads to a quicker initial relaxation followed by a slower relaxation process. The size
effect decreases with increasing λ* and even starts to show the opposite trend for λ* = 104 Pa and the lowest permeabilityK0 = 10−8 mm2. This behaviour could be related to the nonlinearity and deformation-dependency of our porous formulation. On
the one hand, for high λ*, the volumetric constraints lead to a rather homogeneous volumetric deformation of the specimen
and thus a spatially homogeneous permeability throughout the specimen. Still, an increased specimen radius imposes larger
volumetric changes and increases the pore pressure gradient from the specimen centre to its lateral surfaces. Following equation
(2.11), the seepage velocity increases with the pressure gradient and compensates the increase in specimen size, such that
the size-dependency of the relaxation time is less pronounced. On the other hand, for low λ*, substantial volume changes
occur and lead to an inhomogeneous permeability distribution in the specimen. In addition, increasing the radius leads to
an increased initial lateral displacement (figures 9 and 10), increased solid strains, and increased solid stresses at the lateral
surfaces. Therefore, the solid exerts a high pressure load on the fluid, which leads to an initially faster relaxation compared to
smaller radii. Recall that this is not the case for high λ*, since here a substantial part of this ‘additional’ load is taken by the
volumetric stresses of the solid itself.

Figure 9 shows the lateral displacement, i.e. the ‘bulging out at half of the specimen height, where it reaches its maximum.
Again, we study the influence of three permeabilities K0 = {10−6, 10−7, 10−8} mm2, three Lamé parameters λ* = {102, 103, 104} Pa and
three specimen radii r = {4, 6, 8} mm on the deformation and relaxation behaviour of the biphasic material. With decreasing
permeability, the material deforms more slowly, but eventually reaches the same final deformation state. The initial maximum
lateral displacement directly after loading remains almost unaffected by the permeability due to the high loading rate, i.e.
volumetric changes during loading are negligible. In contrast, the first Lamé parameter λ* does not only affect the time required
to reach the final deformation (compare figure 8), but also the final deformation state itself.

0 15 30 45 60
time in s

0.9 1 1.1
stretch

0.9 1 1.1
stretch

0.25 0.1

0.05

–0.05

–0.15

–0.2 –0.4

–0.3

–0.2

–0.1

0.1

0.2

0

–0.1

0

0.2

0.15

0.1

0.05

0

p
o
ro

u
s 

d
is

si
p
at

io
n
 r

at
e 
µJ

/s

fl
u
id

 n
o
m

in
al

 s
tr

es
s 

in
 k

P
a

so
li

d
 v

o
lu

m
et

ri
c 

st
re

ss
 i

n
 k

P
a

l* = 10
2
 Pa

l* = 10
3
 Pa

l* = 10
4
 Pa

Figure 5. Poroelastic cyclic loading with Ogden parameters μ∞ = −43.8 Pa and α∞ = −12.76 [38]. Effect of λ* = {102, 103, 104} Pa on the porous dissipation rate
Dp of the first loading cycle (left), the fluid nominal stress pJS1 (middle) and the solid volumetric stress τE

vol (right) for an intrinsic permeability of K0 = 10−7 mm2.

7

royalsocietypublishing.org/journal/rsfs 
Interface Focus 14: 20240026

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 D

ec
em

be
r 

20
24

 



Figure 10 visualizes the final deformation state after 600 s of holding time for a permeability of K0 = 10−6 mm2, and different
combinations of Lamé parameters and specimen radii. The lateral displacement in the fully relaxed state increases significantly
with increasing λ*, as it controls the fluid flow and volume change of the biphasic material. In fact, the lateral displacement
almost vanishes for λ* = 102 Pa—a behaviour we would typically expect from a material with a Poisson’s ratio close to zero—
while, depending on the radius, up to 0.65 mm lateral displacement remain for λ* = 104 Pa. In conjunction with high λ*, larger
specimen radii naturally increase the final lateral displacement as they induce larger volumetric changes, see figure 9. The
radius itself does increase the initial lateral displacement.

Interestingly, for low permeabilities and low λ*, the temporal progression of the lateral retraction changes, maintaining
a larger lateral displacement in the beginning of the relaxation followed by an accelerated decline, see figure 9 right. This
observation is counterintuitive, as we would expect a behaviour similar to the stress relaxation in figure 8. Recalling the solid
volumetric stress contribution from the extension function in figure 3 of our poroelastic model, low values of λ* facilitate local
volumetric changes. As depicted in figure 11, left, this especially includes the possibility of volumetric expansion, i.e. local
accumulation of fluid. Driven by the large pore pressure in the specimen centre, fluid quickly leaves the inner part of the
specimen and then accumulates close to the boundary. In this area, where JS > 1, the resistance of the solid matrix against
volumetric expansion becomes smaller than the fluid flow resistance due to the permeability. This way, the fluid contribution to
the total stress reduces while maintaining a large lateral displacement. In contrast, high values of λ* impede volumetric changes
leading to less fluid flow and a more homogeneous distribution of volumetric deformations, see figure 11 (right).
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3.4. Region-dependent inverse parameter identification
To see how our insights obtained from the parameter studies in the previous sections transfer to real experimental data
introduced in §2.1, we apply an inverse parameter identification scheme to identify the best fitting material parameters for two
regions of the human brain: the grey matter visual cortex and the white matter corona radiata. For details regarding the inverse
parameter identification algorithm, we refer to [38].
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Figure 12 shows the results of the inverse parameter identification for cyclic compression–tension with a purely poroelastic
material model for the visual cortex and the corona radiata. For each brain region, we perform three fits with fixed values forλ* = {102, 103, 104} Pa to determine three unknown material parameters: the Ogden shear modulus μ∞, the Ogden nonlinearity
parameter α∞, and the isotropic initial intrinsic permeability K0. In addition, we run one fit with λfit*  as a fourth parameter that
is identified by the optimization algorithm. In accordance with our observations in §3.2, the highest values for λ* = 104 Pa lead
to the highest model prediction errors, indicated by a root mean square error (RMSE) of 165 Pa for the visual cortex and 94 Pa
the corona radiata, respectively. For λ* = 104 Pa, the volumetric constraints on the biphasic material suppress the actual porous
behaviour and prevent almost any hysteresis.
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Decreasing λ* improves the quality of the fits significantly and our poroelastic model proves its ability to capture important
mechanical characteristics of brain tissue, i.e. compression–tension asymmetry and—to some extent—hysteresis. The optimiza-
tion algorithm identifies an even lower λfit* = 10 Pa as the best possible choice. We note that this is the lower limit of admissible
values we set for λ* to avoid numerical problems. Nevertheless, the quality of the fit does not change noticeably—the curves
for λfit* = 10 Pa and λ* = 102 Pa almost coincide (see also RMSE in tables 1 and 2)—indicating that we approach the limits of the
poroelastic formulation.
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Figure 13. Inverse poro-viscoelastic parameter identification for the visual cortex and the corona radiata. Parameters (μ∞, α∞, μ1, α1, η, K0) are identified for three
different first Lamé parameters λ* = {102, 103, 104} Pa.

Table 1. Inverse poroelastic parameter identification for the visual cortex. Parameters (μ∞, α∞, K0) are identified for four different first Lamé parameters
λ* = {102, 103, 104} Pa. λfit* = 10 Pa shows the result with λ* as an additional parameter for the optimization algorithm.

visual cortex

μ∞ (Pa) α∞ ( − ) K0 (mm2) RMSE (Pa)

λfit
∗ = 10 Pa −1180 −2.38 1.27 × 10−7 84

λ∗ = 102 Pa −1120 −2.43 1.21 × 10−7 88

λ∗ = 103 Pa −714 −3.00 8.46 × 10−8 115

λ∗ = 104 Pa −347 −3.74 2.50 × 10−8 165

Table 2. Inverse poroelastic parameter identification for the corona radiata. Parameters (μ∞, α∞, K0) are identified for four different first Lamé parameters
λ* = {102, 103, 104} Pa. λfit* = 10 Pa shows the result with λ* as an additional parameter for the optimization algorithm.

corona radiata

μ∞ (Pa) α∞ ( − ) K0 (mm2) RMSE (Pa)

λfit
∗ = 10 Pa −498 −3.52 1.89 × 10−7 57

λ∗ = 102 Pa −457 −3.67 1.73 × 10−7 60

λ∗ = 103 Pa −256 −4.93 9.95 × 10−8 76

λ∗ = 104 Pa −266 −3.38 4.01 × 10−8 94

Table 3. Inverse poro-viscoelastic parameter identification for the visual cortex. Parameters (μ∞, α∞, μ1, α1, η, K0) are identified for three different first Lamé
parameters λ* = {102, 103, 104} Pa.

visual cortex

μ∞ (Pa) α∞ ( − ) μ1 (Pa) α1 ( − ) η (Pa⋅s) K0 (mm2) RMSE (Pa)

λ∗ = 102 Pa −1010 −2.78 −1170 −6.31 5380 1.86 × 10−7 45

λ∗ = 103 Pa −683 −3.18 −791 −10.7 5230 1.52 × 10−7 52

λ∗ = 104 Pa −404 −2.94 −1040 −8.85 3300 2.28 × 10−10 49
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Tables 1 and 2 summarize the identified material parameters for cyclic compression–tension and the purely poroelastic case.
Both the Ogden shear modulus μ∞ and the initial intrinsic permeability K0 decrease with increasing first Lamé parameter,
while the nonlinearity slightly increases. This highlights that λ* influences the solid and the fluid behaviour within the biphasic
material. The permeability is slightly lower for the visual cortex than for the corona radiata but in the same order of magnitude.

As the purely poroelastic model is not able to capture the highly hysteretic response of brain tissue, we add a viscoelastic
element to the solid part of our model (§2.4). Figure 13 shows the results of our inverse parameter identification for cyclic
compression–tension for the poro-viscoelastic case. Again, we identify the best fitting material parameters for three different
first Lamé parameters λ* = {102, 103, 104} Pa. The optimization algorithm determines the equilibrium and non-equilibrium Ogden
parameters μ∞,α∞, μ1,α1, the solid viscosity η, and the initial intrinsic permeability K0. For both brain regions, the poro-viscoelas-
tic model improves the quality of the fits significantly compared to the purely poroelastic model. Interestingly, the fits almost
coincide for different values of the first Lamé parameter λ*, indicating that viscoelastic effects dominate the fitted material
response.

Tables 3 and 4 display the best fitting poro-viscoelastic material parameters for cyclic compression-tension. The equilibrium
Ogden parameters for the visual cortex are similar to those of the purely poroelastic model. The corresponding non-equilibrium
parameters increase the material nonlinearity and indicate a significant strain-rate dependency of the tissue. The solid viscosity
decreases with increasing λ*. The equilibrium Ogden parameters for the corona radiata differ slightly from those for the
purely poroelastic model. For all λ*, the equilibrium Ogden shear modulus μ∞ decreases to similar values and the nonlinearity
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relaxation. Parameters (μ∞, α∞, μ1, α1, η, K0) are identified for λ* = 102 Pa.

Table 4. Inverse poro-viscoelastic parameter identification for the corona radiata. Parameters (μ∞, α∞, μ1, α1, η, K0) are identified for three different first Lamé
parameters λ* = {102, 103, 104} Pa.

corona radiata

μ∞ (Pa) α∞ ( − ) μ1 (Pa) α1 ( − ) η (Pa⋅s) K0 (mm2) RMSE (Pa)

λ∗ = 102 Pa −173 −5.57 −810 −3.70 3220 5.75 × 10−9 32

λ∗ = 103 Pa −149 −5.96 −546 −6.18 3120 2.87 × 10−9 32

λ∗ = 104 Pa −181 −4.17 −2970 −1.46 2650 7.57 × 10−4 38
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parameter α∞ increases. The solid viscosity decreases with increasing λ*. For both brain regions, the initial intrinsic permeabilityK0 is similar to that of the poroelastic model for low λ*, while it changes by several orders of magnitude for high λ*. This
further demonstrates that high values of λ* suppress porous effects, such that the permeability loses its influence on the biphasic
material response and might be chosen almost arbitrarily.

So far, our results suggest that a single compression-tension cycle is insufficient to reliably quantify poro-viscoelastic
material parameters. Therefore, we apply our inverse parameter identification scheme to larger experimental datasets. We fit
the experimental response for three subsequent compression–tension loading cycles, followed by compression and tension
relaxation. Thereby, we provide additional information on the conditioning behaviour and include two different displacement
rates, i.e. 40 μm s−1 (cyclic loading) and 100 μm s−1 (relaxation test). Figures 14 and 15 show the fitted material response of the
visual cortex and corona radiata, respectively, for λ* = 102 Pa. Table 5 shows the corresponding best fitting material parameters.
Compared to the poro-viscoelastic parameters in table 3, the equilibrium and non-equilibrium shear moduli decrease signifi-
cantly while the corresponding nonlinearity parameters increase for the visual cortex. The solid viscosity increases slightly
and the permeability decreases by two orders of magnitude. For reduced permeability, the fluid takes longer to flow out of
the sample, indicating that it controls the long-term material response. We observe similar but less pronounced trends for the
corona radiata in comparison with table 4.

The overall quality of the fit is very satisfactory for such a highly complex material as human brain tissue. We almost
perfectly capture the material behaviour under compression and during the relaxation tests for the visual cortex (figure 14).
But, we underestimate the stress under tension—especially in the first loading cycle—and cannot reproduce the conditioning
behaviour under tension. An almost perfect fit is observed for the corona radiata under tensile loading and the relaxation
behaviour is captured reasonably well, while we slightly underestimate the material response under compression (figure 15).
All in all, while our poro-viscoelastic model captures the cyclic loading and relaxation behaviour reasonably well, for the
identified set of parameters, the model cannot reproduce the conditioning behaviour.

Table 5. Inverse poro-viscoelastic parameter identification for the visual cortex (VC) and the corona radiata (CR). Three loading cycles, followed by compression and
tension relaxation. Parameters (μ∞, α∞, μ1, α1, η, K0) are identified for λ* = 102 Pa.

region λ∗ (Pa) μ∞ (Pa) α∞ ( − ) μ1 (Pa) α1 ( − ) η (Pa⋅s) K0 (mm2) RMSE (Pa)

VC 102 −30.7 −11.9 −45.9 −14.4 6770 4.18 × 10−9 62

CR 102 −81.0 −7.60 −494 −1.53 3860 5.16 × 10−9 46

Table 6. Values for brain tissue permeability used throughout the literature for different tissue types: white matter (WM), grey matter (GM) and mixed matter (MM).
Note that experiments typically provide hydraulic permeability, which can be directly related to the intrinsic permeability used in our model. Units have been converted
under the assumption of μFR = 10−3 Pa ⋅ s (effective shear viscosity of water at 20∘C) and γFR = 104 Nm−3 (specific weight of water).

study tissue type permeability K0 in mm2

[27] calve, WM 4.08 × 10−9

[19] human, WM 2.4 × 10−11

Greiner et al. (present study) human, WM 5.16 × 10−9

Greiner et al. (present study) human, GM 4.18 × 10−9

[47] rat, MM 3.56 × 10−6 … 2.22 × 10−12

[31] bovine 1.57 × 10−9

[49] ovine, WM 0.7…2.0 × 10−10

[50] human, WM 1.6 × 10−8

[50] human, GM 1.6 × 10−10

[30] human 2.19 × 10−9

[51] human 1.4 × 10−8

[52] rat, MM 6.4 × 10−12

[53] sheep, WM 0.43…1.71 × 10−12

[45] rat, 3 regions 1.2…5.5 × 10−10

[54] ovine, WM 1.3 × 10−8 … 2.0 × 10−9

[55] human, WM 6.5 × 10−9
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4. Discussion
In this study, we have investigated the physical meaning of poroelastic parameters and their interplay with viscous effects in
the context of a poro-viscoelastic model following the Theory of Porous Media. Based on our analyses, we have identified a
set of model parameters for two different regions of the human brain, visual cortex (gray matter) and corona radiata (white
matter), through an inverse approach using the finite element method and experimental data from cyclic and stress relaxation
loadings. The identified parameters hint towards differences between the individual contributions of viscous and porous effects
in gray and white matter, which can also explain the large variation of corresponding measured properties in the literature that
highly depend on the experimental setup and loading conditions. Finally, we have highlighted critical points for the reliable
quantification of poro-viscoelastic material parameter sets in the future.

4.1. The role of the parameter λ*
The first Lamé parameter λ* plays a crucial role in the model-predicted overall behaviour of biphasic human brain tissue.
Decreasing λ* increases the sensitivity of the model to the permeability K0, while large values of λ* constrain volumetric
changes of the biphasic material and lead to diminishing porous effects, less deformation-dependency of the fluid response
(see equation 2.11), less model nonlinearity and a more homogeneous material behaviour. From a physical perspective, the
permeability should significantly affect the material resistance to compressive loading (e.g. when squeezing a sponge). The
lower the permeability, the more fluid remains ‘trapped’ within the tissue, which generates higher hydrostatic (i.e. volumetric)
stress, and hence, larger total nominal stresses. Our results show that high values of λ*, around one order of magnitude higher
than the classical shear modulus, constrain fluid flow within the tissue and thus prevent physically reasonable behaviour,
including almost any porous dissipation during cyclic loading (compare figure 4, right). Reducing λ* allows larger volumetric
deformations and fluid flow. This introduces a significant time dependence of the poroelastic material response (see deforma-
tion states in figure 6) controlled by the permeability. Therefore, the choice of λ* should be made with caution and under
consideration of the expected overall material stiffness and compressibility.

In comparison to other material model parameters in the literature, the first Lamé parameter has a qualitatively similar
effect to the Poisson’s ratio ν. Therefore, we can relate our findings to [44] mentioning less volume change, less interstitial fluid
movement and less fluid flow-dependent viscoelasticity in articular cartilage for ν→ 0.5, i.e. high λ*. In addition, [45], observe
a decreasing fluid contribution with increasing Poisson’s ratio during rat brain indentation. In contrast [31], set a rather high
Poisson’s ratio, ν = 0.49.

Be aware that we assume the elastic stress tensor τE
eq has both volumetric and isochoric contributions (see equation 2.6),

which implies that the equilibrium shear modulus μ∞ may influence part of the volumetric response of the tissue. However,
our simulations to date suggest that the volumetric stress response is primarily driven by τE

vol and pJS1, hence we focus on the
parameter λ*. A deeper understanding of these potential, hidden interactions could affect how we interpret the influence of the
parameters.

Note that the choice of the first Lamé parameter λ* might become less crucial under different loading conditions. For
example, the parameter sensitivity study performed by [23] found that λ* was not determinant. However, their model considers
a triphasic material (solid skeleton, interstitial fluid and blood) with mass-production terms added to the mass balance equation
that represent a series of cellular mechanisms. Therefore, the parameters controlling these added terms have a larger influence
on the results. Another case is a perfusion setup, where primarily an externally applied fluid pressure drives the fluid flow
through the tissue and deformation-driven fluid flow becomes secondary, i.e. no significant material deformation occurs. But,
this would require a comparably stiff solid matrix in combination with rather high permeabilities, which is certainly not the case
for the ultrasoft human brain tissue.

4.2. Poroelastic effects during stress relaxation experiments
Due to the high loading rate, the biphasic poroelastic material responds like an incompressible elastic material during the
loading phase of the relaxation simulations. This results in almost identical stress-strain states before the actual relaxation
process starts, independent of the choice of the first Lamé parameter λ* and the initial intrinsic permeability K0. In this initial
state, the resistance of the biphasic material to volumetric changes is almost exclusively determined by the fluid constituent,
which bears the pressure load. During the relaxation, two processes occur simultaneously. Due to the pressure exerted by the
solid on the fluid, fluid starts flowing out of the specimen with a seepage velocity regulated by the intrinsic permeability. At
the same time, as fluid content is reduced in the biphasic material, the pressure load on the fluid is gradually transferred to the
solid volumetric stresses. This process is governed by the extension function (see equation 2.10), and accelerates with increasingλ*. The larger λ*, the less volumetric changes are allowed, and the earlier the pressure load on the fluid transfers to the solid
volumetric stresses.

Increasing λ* leads to higher equilibrium stresses and less porous dissipation, i.e. relaxation, while the permeability controls
the shape of the curve, i.e. the relaxation times (compare figure 7). Increasing the specimen radius while keeping the specimen
height constant induces larger volumetric deformations and the effects of porous dissipation and corresponding relaxation
increase in importance. In contrast to other studies [46], the time until equilibrium is reached does not appear to increase
with increasing radius. In fact, for high values of λ*, the relaxation behaviour is not affected by the radius, while the shape
of the relaxation curve changes with the radius for lower values of λ* (figure 8). This could be related to the high degree of
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nonlinearity within our model, as [47] report on much higher stress relaxation in rat brain tissue than predicted by a linear
biphasic theory. Larger deformation leads to higher solid stresses and higher pore pressure. Subsequently, larger pressure
gradients induce higher seepage velocities that compensate for the larger distances the fluid has to move through in a larger
specimen.

Importantly, the first Lamé parameter λ* not only affects the equilibrium stress during relaxation experiments, but also
the temporal evolution of the specimen geometry (figure 9). For high values of λ*, the ‘bulging out’ of the sample during
compression (when the specimen is glued to the upper and lower specimen holder) remains, even after a holding time of 600 s,
as λ* constrains volumetric changes due to fluid flow. For low values of λ*, more fluid can flow out of the sample, so that the
sample almost forms back to a cylindrical shape during the holding time. Note that these effects are also strongly coupled to the
deformation-dependent permeability, which decreases with decreasing specimen volume.

Incorporating a precise camera setup to capture the specimen geometry and deformation during relaxation experiments can
in the future help to choose an appropriate λ* value for poroelastic materials (see also [48]). But, due to the relatively long
timescales involved, it remains to be seen whether effects like tissue degradation or swelling need to be taken into account to
obtain reliable results.

4.3. Poro-viscoelastic material parameters for human brain tissue
While a purely poroelastic model is unable to capture the highly hysteretic response of brain tissue (compare figure 12),
we show that a poro-viscoelastic material model can capture the response of human brain tissue during both cyclic loading
and stress relaxation experiments in compression and tension (see figures 14 and 15). Two coupled processes control the
time-dependent tissue response: viscous effects are responsible for the short-term relaxation and porous effects take over for
the long-term relaxation behaviour. Similar observations have been previously reported for calve white matter [27] and articular
cartilage [44].

As discussed in the previous subsections, high values of λ* suppress porous effects, such that the permeability loses its
influence on the biphasic material response and might be chosen almost arbitrarily during an inverse parameter identification.
Therefore, we purposely chose a low value for λ* to identify all remaining model parameters. We obtained an initial intrinsic
permeability K0 of 4.18 × 10−9 mm2 for the visual cortex and 5.16 × 10−9 mm2 for the corona radiata. Table 6 summarizes perme-
ability measures of brain tissue that have been used previously and shows that our identified permeabilities are within a
reasonable range. Overall, we observe slightly lower permeabilities for grey matter (visual cortex) than white matter (corona
radiata). Differences in permeability alter the biphasic material response to different loading rates: for very small and intermedi-
ate loading rates, more fluid flows through white matter tissue and is squeezed out than in grey matter. As a result, white
matter appears softer than grey matter under slow and intermediate loading conditions. For extremely fast loading in turn,
white matter becomes stiffer as now trapped fluid contributes to the stiffness and the difference between grey and white matter
becomes less pronounced or even inverted. For example, during magnetic resonance elastography at very high frequencies,
corona radiata has been reported to be stiffer than the cortex [56,57].

Equally as important as the porous effect is the second time-dependent process controlled by the solid’s viscosity. Our fits
indicate a 75 % higher viscosity for gray matter than white matter, i.e. faster relaxation for the corona radiata. Again, this could
explain why white matter appears softer for slow loading rates and stiffer than gray matter for high loading rates. In addition,
not only the loading rate but also the loading magnitude can impede the comparability between different experimental setups.
For example, for the corona radiata, our fit suggests a distinctively lower nonlinearity of the non-equilibrium part in combina-
tion with a higher non-equilibrium shear modulus. This indicates a stiffer response in the small-strain regime compared to the
visual cortex.

4.4. Limitations and future perspectives
We note that our inversely identified parameters are not yet unique. For example, the porous and viscous timescales could
switch such that the porous effects dominate the short-term relaxation and the viscous effects control the long-term relaxa-
tion behaviour. This would still allow us to satisfactorily fit the material response, but the underlying physical material
behaviour would change completely, i.e. large and rapid volumetric changes would occur. The non-uniqueness resides on the
model complexity and shows that additional experimental data are required to reliably calibrate all poro-viscoelastic material
parameters. The strong coupling between porous, viscous and volumetric effects in conjunction with the ultrasoft and fragile
nature of human brain tissue poses immense challenges to future experimental setups. Specific perfusion experiments that
precisely trigger and measure fluid flow through the brain on the tissue scale, combined with tracking local deformation states,
appear most promising to identify the first Lamé parameter λ* and the permeability K0. Thereby, the aim should be to keep
the overall deformation as small as possible—while maintaining a measurable and stable fluid flow—and to reduce the loading
rate such that viscous effects can be neglected. With these parameters at hand, complementary large-strain cyclic loading and
relaxation tests can provide the missing viscous material properties and a digital image correlation system could serve as a
validation for the local deformation states. Kainz et al. [58] showed that brain tissue-mimicking materials with very similar
mechanical properties provide the great opportunity to design and calibrate such new experimental setups while adhering to
ethical principles.
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