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Abstract 1 

Anaerobic digestion (AD) is a widely adopted waste management strategy that transforms 2 

organic waste into biogas, addressing both energy and environmental challenges. Feedstock 3 

pretreatment is crucial for enhancing organic matter breakdown and improving biogas yield. 4 

Among various techniques, microwave (MW) irradiation-based pretreatment has shown 5 

significant promise. However, the optimization of MW-assisted AD processes remains 6 

underexplored, necessitating predictive tools for process simulation. Machine Learning (ML) 7 

has recently emerged as a powerful alternative for predicting and optimizing AD performance. 8 

In this study, an ML-driven pipeline was developed to predict methane yield based on food 9 

waste (FW) composition, AD reactor parameters, and MW pretreatment conditions. A range 10 

of data preprocessing techniques and ML models (linear, non-linear, and ensemble) were 11 

systematically evaluated, with model performance assessed via hyperparameter-optimized 12 

cross-validation. The most accurate models (non-linear and ensemble) achieved R² > 0.91 and 13 

RMSE < 35 mL/g volatile solids (gVS), whereas linear models underperformed (R² < 0.71, 14 

RMSE > 70 mL/gVS). Support Vector Machine (SVM) emerged as the best-performing model, 15 

with R² ~0.94 and RMSE ~34 mL/gVS. Beyond predictive accuracy, this study offers novel 16 

insights into MW pretreatment’s role in AD efficiency. Permutation feature importance (PFI) 17 

analysis revealed that while MW pretreatment enhances methane yield, its effects are 18 

secondary to reactor pH and FW composition. This suggests that MW treatment primarily 19 

facilitates substrate disintegration but does not drastically alter biochemical methane potential 20 

unless coupled with optimized reactor conditions. Additionally, minor fluctuations in MW 21 

pretreatment time and temperature were found to have negligible impacts on methane 22 

production, indicating a level of operational flexibility in MW-based AD processes. These 23 

findings provide a refined understanding of MW pretreatment’s practical implications, guiding 24 

process design for improved scalability and industrial application. 25 

  26 
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1 Introduction 1 

With the continued urbanization across the globe, municipal waste production is expected to 2 

increase by 70%, resulting in 3.4 billion metric tons by 2050, adding significant pressure on 3 

waste management [1]. The organic fraction of municipal waste (OFMSW) typically comprises 4 

food waste (FW). As per the UN Food and Agriculture Organization (FAO), 1.3 billion tonne 5 

of FW is globally generated each year, typically disposed of via incineration, landfilling, and 6 

compositing [2]. This exacerbates the direct greenhouse gas emissions associated with FW 7 

disposal, jeopardizing the UN SDG 13 (i.e., climate action). Biogas and digestate production 8 

via Anaerobic Digestion (AD) of FW has improved waste valorisation while facilitating a 9 

circular economy. 10 

AD uses microbial communities to decompose organic and moisture content-rich FW 11 

substrates to produce biogas containing 55-70% methane, a promising source of clean energy 12 

production [3]. The semi-solid by-product, digestate is rich in nitrogen and phosphorus-based 13 

nutrients, which serve as a potential biofertilizer. AD is a multi-step complex bio-kinetic 14 

process, consisting of four sequential stages: hydrolysis, acidogenesis, acetogenesis, and 15 

methanogenesis [4]. The methane yield from an AD process is affected by feedstock 16 

compositions, bioreactor operating conditions, reactor design, inoculum type, etc, optimization 17 

of which is a challenging task. Hydrolysis is one of the slowest stages and determines the 18 

organic matter decomposition, ultimately regulating methane yield [5]. 19 

Feedstock pretreatment accelerates hydrolysis, enhancing substrate solubilization, 20 

biodegradability, and expediting organic waste decomposition. Traditional pretreatment 21 

methods encompass: (a) chemical (e.g., saponification and alkali treatments), (b) mechanical 22 

(e.g., ultrasonic, extrusion, and grinding), (c) thermal (e.g., steam explosion and hydrothermal 23 

processes), or (d) biological (e.g., compositing, fungal, and enzymatic methods) [6]. 24 

Microwave (MW)-assisted pretreatment has emerged as a promising thermal method for 25 

enhancing anaerobic digestion (AD) processes. MW-assisted pre-treatment offers advantages 26 

such as rapid heating rates, improved energy efficiency, and uniform heating [7]. This 27 

technique facilitates the release of organic matter from complex substrates like food waste 28 

(FW) into the soluble phase, increasing the biodegradable fraction available to microorganisms. 29 

MW pretreatment operates at powers ranging from 440 to 500 W, temperatures between 30°C 30 

and 160°C, and durations of 1 to 10 minutes [8].  31 

However, MW pretreatment presents specific challenges that require careful 32 

consideration. Excessive temperatures (above 160°C) or prolonged treatment times can induce 33 
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the Maillard reaction, producing recalcitrant compounds that inhibit microbial activity, thereby 1 

reducing AD efficiency and biogas production [9]. Additionally, the non-thermal effects of 2 

microwaves and their mechanisms remain subjects of ongoing research and debate. A 3 

comprehensive understanding of these effects is crucial for optimizing MW pretreatment 4 

conditions. Furthermore, the energy consumption associated with MW pretreatment is a critical 5 

factor; the energy input must not outweigh the benefits gained in biogas production. Therefore, 6 

it is imperative to optimize MW pretreatment parameters—such as power, temperature, and 7 

duration—while considering their holistic impact on methane production and overall process 8 

efficiency [10]. Addressing these MW-specific challenges is essential for the effective 9 

integration of MW pretreatment in AD systems. 10 

FW is characterized by high moisture and organic content, making it an ideal substrate 11 

for the MW-AD process. Nevertheless, the geographical variability of food habits makes FW 12 

a complex AD feedstock. This affects their digestibility, hydrolysis rate, and decomposition 13 

time, ultimately varying the methane production [11]. MW-based precise uniform heating 14 

facilitates enzymatic reaction for breaking complex organic matters, maximizing the biogas 15 

yield of AD. For example, varying the pretreatment temperature across a range of 70, 120, and 16 

150°C improves the biogas yield by 2.7%, 24%, and 11.7% respectively [12]. Nevertheless, 17 

increasing the temperature beyond a threshold slows down the decomposition rate due to the 18 

formation of complex polymers (e.g., melanoidins), which impart an inhibitory effect on the 19 

AD reactor. Other investigations have indicated the importance of optimizing MW time and 20 

temperature, simultaneously [11]. Although a slower heating rate (HR, 1.9 °C/min) resulted in 21 

faster digestibility (due to gradually cell decomposition and lower chances of inhibitory 22 

compounds formation from thermal shock), the anaerobic biodegradability improved at a faster 23 

HR (7.8°C/min). MW pretreatment at HRs 1.9 and 3.9 °C/min increased the biogas production 24 

by 14-fold for the soluble fraction. In contrast, for the whole fraction of FW, HR = 7.8 °C/min 25 

improved the biogas yield, suggesting the necessity of transient MW time control for MW-AD 26 

[11]. 27 

In parallel to the pretreatment parameters, other routinely controlled AD process 28 

attributes are temperature, pH, scale of operation (i.e., reactor volume), hydraulic retention time 29 

(HRT), etc. Meanwhile, feedstock properties such as total solid (TS), volatile solid (VS), and 30 

carbohydrate (%C), protein (%P), and lipid (%L) contents are essential components that 31 

regulate methane production [13]. To improve the process efficiencies and understand the 32 

whole-system operation of the AD process a range of mathematical models have been 33 

developed, among which the Anaerobic Digestion Model 1 (ADM1) is one of the most 34 
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sophisticated biokinetic models [14]. Nevertheless, the intricate nature of the model limits its 1 

applicability to real-time AD reactor control systems, moreover, the ADM1 requires extensive 2 

model calibration before industrial implementation [15]. To circumvent the drawbacks of 3 

ADM1, machine learning-based methane yield prediction models have rapidly emerged over 4 

the past few years [16]. 5 

Frequent choices for ML models have been Artificial neural network (ANN), K-nearest 6 

neighbour (KNN), Linear regression (LR), ElasticNet (EN), Gaussian process regression 7 

(GPR), Support Vector Machine (SVM), Random Forest (RF), and eXtreme gradient boosting 8 

(XGBOOST) [17]. Some of the seminal works include: (a) tree-based model development for 9 

predicting methane yield for anaerobic co-digestion for a diverse organic waste stream based 10 

on long-term data [18], (b) prediction of biogas yield based on genetic abundance data [19], 11 

and (c) data-driven inverse interpretable ML modelling to predict biogas yields [20]. An 12 

extensive overview of ML modelling for AD can be found elsewhere [13, 16]. 13 

Despite extensive efforts to develop interpretable ML models for predicting methane yields for 14 

AD processes without feedstock pretreatment, relevant ML modelling accounting for feedstock 15 

pretreatment is relatively sparse. Previous efforts include ML modelling for (a) AD of activated 16 

sludge with hydrothermal pretreatment [21], (b) generalizable AD modelling for a range of 17 

pretreatment methods (e.g., chemical, ultrasonic, and thermal) of sewage sludge [22], and (c) 18 

mechanical grinding and Fe3O4 additive-assisted AD of Arachis hypogea (i.e., peanut) shells 19 

[23]. To our knowledge, there has not been any effort toward developing an optimal ML model 20 

selection pipeline for MW-AD process.  21 

The development of ML models for MW-AD of FW as the feedstock adds significant 22 

value to the literature from a process modelling and optimization perspective. Specifically, 23 

accurate MW-AD process modelling has the potential to facilitate the implementation and 24 

practical design of the process towards greater efficiency and sustainability.  FW being one of 25 

the ubiquitous feedstocks for AD and MW-based pretreatment of feedstock offering efficient 26 

and rapid heating has the potential to decarbonize the overall carbon footprint of the biogas 27 

production process. This work develops and compares a series of ML models (linear, non-28 

linear, and ensemble-based) to predict methane production based on FW composition, AD 29 

conditions, and MW pretreatment parameters. The models are built upon and validated, which 30 

upon optimization achieve high accuracy and enhanced interpretability (i.e., via permutation 31 

feature importance). 32 

Jo
urn

al 
Pre-

pro
of



6 

 

2 Methodology 1 

2.1 Data assimilation 2 

In total, 53 datasets were collected from the literature to develop the data-driven models [24-3 

32]. This included a wide variety of food waste streams (e.g., kitchen waste, organic fraction 4 

of municipal solid waste), mono- or co-digestion, thermophilic or mesophilic conditions, and 5 

mostly batched reactors. The collected datasets contained a range of information on feedstock 6 

properties such as substrate compositions (protein (%P), carbohydrate (%C), lipids (%L)), 7 

volatile solids (VS, wt.%), AD reactor operating temperature (°C), hydraulic retention time 8 

(HRT, days), pH, reactor volume (L), MW pretreatment temperature (°C), MW pretreatment 9 

time (minutes), and methane yield from AD (mL/g VS). The first ten variables (%P, %C, %L, 10 

VS, AD temperature, HRT, pH, volume, MW temperature, and MW time) are considered the 11 

predictor variables. In contrast, the methane yield is taken as the predicted variable. The raw 12 

dataset is provided in the Supplementary Material. 13 

2.2 Data preprocessing methodologies 14 

Since the dataset contains experimental datasets from several different research groups; the 15 

assimilated dataset will contain missing values, outliers, and values with dissimilar ranges. This 16 

will cause consistency issues while training ML-based continuous regression models, thus 17 

affecting their accuracy in predicting methane yield. This problem was addressed by imputing 18 

the missing values of an attribute to its corresponding mean [33], ultimately resulting in a 19 

complete dataset. It is important to note that these artificially imputed mean values were only 20 

performed during the model training and therefore would not affect the model testing. 21 

The constructed dataset would also contain outliers, which require additional 22 

preprocessing steps to remove them. Two such popular outlier removal methods such as (a) Z-23 

score normalization and (b) interquartile range (IQR) are considered [4]. The first maps the 24 

dataset in terms of the standard normal variate 𝑍 = (𝑋 − 𝜇) 𝜎⁄ , where 𝑋 is the attribute of 25 

interest, 𝜇 and 𝜎 are the mean and standard deviation of the attribute, respectively. In this case, 26 

any datasets with 𝑍 scores beyond ±3 are eliminated from the datasets. As a competing method, 27 

IQR-based outlier removal removes any datapoint beyond the 25th and 75th percentile. 28 

Following the outlier removal, the dataset was normalized to ensure that the features 29 

were appropriately scaled for the ML model development. Two types of normalization were 30 

explored (a) max-min normalization (MMN) and (b) maximum absolute scaling (MAS) [33]. 31 

MMN uses the transformation function 𝑋′ = (𝑋 − 𝑋𝑚𝑖𝑛) (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)⁄  where 𝑋𝑚𝑎𝑥 and 32 
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𝑋𝑚𝑖𝑛 are the maximum and minimum values of the attribute 𝑋, respectively. In contrast, the 1 

MAS scales the entire dataset using the absolute maxima of the attribute, i.e., 𝑋′ = 𝑋 |𝑋𝑚𝑎𝑥|⁄ . 2 

2.3 Machine learning models 3 

Based on the pre-processed datasets a total of eight different types of ML models are developed 4 

and compared, which uses 10 input attributes to predict the methane yield of MW-pretreated 5 

AD process. The entire ML workflow has been constructed in Python using the scikit-learn 6 

library. The pre-processed dataset is split into 80% training and 20% testing fractions to 7 

evaluate the model performances. Each of the model was trained using k-fold cross validation 8 

approach, which ensures high generalizability of the model and mitigate overfitting. The k-fold 9 

cross-validation was coupled with a hyperparameter optimization engine (i.e., GridSearchCV 10 

in scikit-learn), where initially k = 5 was assigned. The optimization routine heuristically 11 

searches through a dictionary of hyperparameters for each model adhering to the k-fold cross-12 

validation routine and maximizes the model prediction accuracy. The data-driven modelling 13 

pipeline integrated with dataset preprocessing methods are shown in Figure 1. The ML models 14 

are described below. 15 

Among the linear ML models, LR and EN are considered. LR can embed several 16 

independent variables into the model to predict an output variable (i.e., methane yield). 17 

Training an LR model involves determination of unknown regression constants by minimizing 18 

the prediction error. The EN is a more sophisticated version of the LR which uses regularisation 19 

to mitigate drawbacks of LR. This is achieved via combining the penalty terms of Lasso (L1) 20 

and Ridge (L2) regression methods, enabling the model to simultaneously perform variable 21 

selection and handle correlated predictors. This becomes important when the datasets involve 22 

a larger number (i.e., 10+) of input attributes.  23 

From the pool of non-linear models, ANN, KNN, SVM, and GPR have been selected. 24 

Multilayer perceptron (MLP)-based ANN is considered due to its deep non-linear pattern 25 

recognition abilities from complex physical datasets. The key to develop an MLP-based ANN 26 

is identifying the optimal number of neurons, hidden layer, weights, biases, and activation 27 

function. To determine an optimal combination of these hyperparameters for a certain dataset, 28 

ANNs must therefore be trained using an hyperparameter optimization engine. KNN model 29 

predicts output variables based on individual datapoints and its proximity to k neighbouring 30 

datapoint. The number of k instances in the training dataset is usually determined using 31 

statistical distance from the data cluster centroid with Euclidean or Manhattan distances. These 32 

further embed onto weighted averaging that determines the influence of neighbouring points 33 

Jo
urn

al 
Pre-

pro
of



8 

 

on predicting a target variable. The SVM model is a non-parametric, non-probabilistic method 1 

which are suitable for high dimensional datasets handling large number of input/output 2 

variables. The model maps input features into a multi-dimensional space using non-linear 3 

kernel function, further creating an optimal hyperplane to differentiate between various subsets. 4 

In contrast, GPR is a Bayesian probabilistic regression method beneficial for datasets with high 5 

variances. The GPR method determines covariance of model predictions which enables 6 

uncertainty quantification, generally overlooked by the other ML models. 7 

Among ensembled tree models, RF and XGBoost are chosen due to their complex data 8 

learning capabilities for regression applications. Both these models combine many decision 9 

trees via ensembling, which ultimately mitigate overfitting issues. The RF is a bagging 10 

technique where each tree is trained on a random subset of the training dataset. These individual 11 

predictions are then unified via statistical metrics (e.g., mean, median, and mode) towards a 12 

robust final prediction, ultimately increasing the model generalizability. XGBoost, on the other 13 

hand, is a boosting-based ensembled learning methods where deeper trees are grown in an 14 

additive manner. It implements a boosting framework that bases predictions on individual 15 

decision trees while simultaneously mitigating errors introduced from each tree. Features such 16 

as regularization and randomization minimize the loss function, resulting in reduced 17 

overfitting. In general, it is important to note that boosting-based algorithms have shorter 18 

training time that bagging algorithms. 19 

2.4 Model performance and interpretability 20 

The root mean squared error (RMSE) and coefficient of determination (R2) are considered 21 

performance metrics for the ML-base regression models. 22 

R2 =
∑(𝑦𝑖 − �̂�)2

∑(𝑦𝑖 − �̅�)2
 (1) 

RMSE = √
∑ (𝑦𝑖 −  �̂�𝑖)𝑁

𝑖=1

𝑁
 (2) 

Here 𝑦𝑖 and �̂� are the true and predicted values of the output attribute (i.e., methane yield), 23 

respectively; �̅� is the mean of the methane yields, and 𝑁 is the total number of datasets, which 24 

is 53.  25 

In addition, understanding the dependence of model predictions on the input features (i.e., 26 

model interpretability) is essential. Being a global interpretability analysis method, permutation 27 

feature importance is chosen that provide an overall correlation strength for each predictor 28 

variable toward methane yield prediction. This technique is particularly useful for non-linear 29 
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or opaque estimators and involves randomly shuffling the values of a single feature and 1 

observing the resulting degradation of the model’s accuracy. By disrupting the relationship 2 

between the predictor and the predicted, it is determined how much a model relies on that 3 

predictor. It is important to note that PFI is a model-agnostic (i.e., model-independent) method.  4 

3 Results and Discussion 5 

3.1 Statistical analysis of the dataset 6 

To understand the correlations between variables in the assimilated dataset, which substantiate 7 

the physics of MW-AD process, a preliminary statistical analysis is carried out. This includes 8 

exploratory analysis on all the variables, data spread visualization, and correlation 9 

quantification (see Figure 2). Coupling MW pretreatment with AD increases the digestibility 10 

of organics by effective decomposition of extracellular polymeric substances (e.g., protein, 11 

carbohydrate), which would then be easily available to microbial communities. The substrate 12 

concentration, reactor operating conditions, and MW conditions altogether regulate the 13 

methane yield as suggested by the exploratory data analysis (see Figure 2A). To understand 14 

the linear correlation strength of any two variables in the dataset, the Pearson Correlation 15 

Coefficient (PCC) is evaluated. PCC ~ ±1 signifies that the variables are highly correlated, 16 

while a 𝑃𝐶𝐶 = 0 suggests that the attributes are uncorrelated. The PCC between any two 17 

attributes 𝑥𝑖 and 𝑦𝑖 is defined as, 18 

𝑃𝐶𝐶 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2 ∑(𝑦𝑖 − �̅�)2
 

(3) 

The PCCs are shown in Figure 2C via a two-dimensional map where the diameters of the circles 19 

are proportional to the PCC values. This reveals that the methane yield is positively correlated 20 

with the pH, lipid content, and microwave conditions (i.e., time and temperature). In contrast, 21 

negative correlation was observed between the protein and carbohydrate contents, VS, AD 22 

temperature and HRT. 23 

3.2 Systematic optimization of the ML models 24 

Following the statistical analysis, a range of what-if scenarios were investigated for developing 25 

an optimal ML model selection pipeline from a pool of eight different models (LR, EN, GPR, 26 

KNN, SVM, ANN, RF, and XGBoost). Figure 3 shows the effects of applying different data 27 

preprocessing (i.e., outlier removal and normalization), dimension reduction (i.e., principal 28 
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component analysis (PCA)), and hyperparameter optimization methods. As mentioned above, 1 

the R2 and RMSE values are used for the accuracy quantification of the ML models.   2 

A high-level comparison across Figures 3A and 3B reveals that the ML models developed 3 

using Z-score-based outlier removal methods provide R2 ~ 0.92 with RMSE ~ 38.5 mL/gVS, 4 

where RF, KNN, and XGBoost outperform the other models. In contrast, the IQR-coupled ML 5 

models fail to predict the methane yield accurately, thus providing unrealistic R2 values. This 6 

is attributed to the fact that IQR is extremely sensitive to dataset removal that removes any data 7 

points outside the 25th and 75th quartile. Inspecting Figure 2B suggests that for the present 8 

dataset, many datapoints are beyond this range, which makes the IQR method unfavorable. In 9 

contrast, the Z-score-based outlier detection is much more conservative in removing outliers, 10 

relying on µ and ±3σ values. After selecting the optimal outlier removal method, the effect of 11 

utilizing two different data normalization methods (MMN and MAS) on the model 12 

performance is explored. Figures 3C and 3D suggest that either of the normalizations can 13 

provide accurate model development. The highest accuracy was observed with the ANN model 14 

achieving R2 values up to 0.94, with RMSE as low as 33.5 mL/gVS. Based on this analysis, 15 

the Z-score outlier removal with MMN was used for all subsequent analyses. 16 

Coupling dimensionality reduction methods (e.g., PCA) with ML models helps toward feature 17 

engineering, eliminates collinearity, and can prevent model overfitting. To understand if PCA 18 

is required for the current model pipeline development, all the models were integrated with the 19 

PCA-based feature reduction method. Inspecting Figure 3E reveals that although R2 and RMSE 20 

values for some ML models improve when coupled with PCA, it does not drastically change 21 

their values. The KNN model outperforms other methods, with an R2 ~ 0.92 and RMSE ~ 38 22 

mL/gVS. The potential reason for not gaining additional accuracy improvement by adding PCA 23 

might be attributed to the size of the dataset, where the current dataset is at least an order of 24 

magnitude smaller than the scenarios where PCA can provide better results. Subsequently, the 25 

ML models were subjected to a 5-fold cross-validation routine with an automatic 26 

hyperparameter optimization algorithm (i.e., GridSearchCV). The cross-validation coupled 27 

with hyperparameter mitigates model overfitting, provides a generic model accuracy averaged 28 

over multiple trials, and ensures model generalizability for unseen (i.e., testing) datasets. The 29 

optimal setting of hyperparameters for each ML model is provided in Table 1. Figure 3F shows 30 

that the SVM model has the highest predictive accuracy after hyperparameter optimization, 31 

with an R2 ~ 0.84 and RMSE ~ 33.5 mL/gVS. 32 
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3.3 Performance of optimal ML models 1 

The accuracy of methane yield prediction across eight different ML models is visualized in the 2 

parity plots shown in Figure 4. The dotted lines represent the ideal prediction line, with an 3 

optimal model aligning predicted values closely to this line. Among the linear models (Figures 4 

4a and 4b), the LR and EN models achieved training R2 values of 0.78 and 0.77, respectively, 5 

with corresponding RMSE values of 57.64 and 59.24 mL/gVS. For the testing phase, the LR 6 

model retained an R2 of 0.72 and RMSE of 71.13 mL/gVS, whereas the EN model exhibited 7 

a slight performance drop with an R2 of 0.67 and RMSE of 76.92 mL/gVS. The smaller 8 

difference between training and testing accuracies in the LR model suggests better 9 

generalization ability. This may be because EN incorporates regularization parameters, which, 10 

while beneficial for preventing overfitting, require larger datasets for optimal tuning and 11 

effective performance. 12 

Despite the acceptable performance of linear models, AD is governed by complex biokinetic 13 

interactions that involve non-linear relationships between operational and compositional 14 

parameters [13]. Hence, non-linear ML models are expected to provide superior predictive 15 

capabilities for methane yield. 16 

Figures 4c–4f present the predictive performance of non-linear models, including SVM, KNN, 17 

ANN, and GPR. These models demonstrated significantly improved accuracy, with training 18 

R2 values of 0.94, 1.0, 0.97, and 0.96, and RMSE values of 29.8, 5.14, 21.4, and 24.5 mL/gVS, 19 

respectively. In the testing phase, these models retained R2 values of 0.94, 0.92, 0.93, and 0.92, 20 

with RMSE values of 33.98, 37.23, 36.06, and 37.59 mL/gVS, respectively. These RMSE 21 

values, being within 10% of the mean methane yield, indicate that the developed ML pipeline 22 

can effectively predict AD performance trends. Similar observations have been reported in 23 

prior studies, where ANN-based models outperformed linear regressors when predicting biogas 24 

yields from pretreated lignocellulosic and food waste substrates [17]. 25 

Ensemble models such as RF and XGBoost exhibited the highest accuracy during training, 26 

with R2 values of 0.96 and 0.99 and RMSE values of 25.52 and 14.04 mL/gVS, respectively 27 

(Figures 4g and 4h). However, their testing performance revealed increased RMSE values of 28 

36.98 mL/gVS (RF) and 41.16 mL/gVS (XGBoost), suggesting overfitting. This aligns with 29 

findings with literature [16], where ensemble-based models, while powerful, often struggle 30 

with generalization when trained on small datasets due to their high sensitivity to outliers and 31 

redundant variables. 32 
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Although non-linear and ensemble models demonstrated superior predictive power, they also 1 

showed a tendency to overfit, particularly for KNN, ANN, GPR, XGBoost, and RF models. 2 

The SVM model, however, balanced training and testing accuracy effectively, with relatively 3 

low RMSE values, making it a robust choice for methane yield prediction. The overfitting 4 

observed in other models is likely due to the limited dataset size (53 entries), which restricts 5 

their ability to generalize across different feedstock conditions. Previous studies have reported 6 

that larger datasets (>200 entries) significantly improve the performance of ANN and 7 

ensemble-based models by allowing them to better capture the non-linear biokinetics of AD 8 

[16, 21]. 9 

These findings highlight the need for a carefully curated dataset to enhance ML model 10 

robustness for methane yield prediction in MW-assisted AD systems. While MW pretreatment 11 

plays a crucial role in solubilizing organic matter, the variability in feedstock composition and 12 

process parameters necessitates advanced ML approaches that effectively balance accuracy and 13 

generalizability. 14 

3.4 Model-agnostic global feature importance analysis 15 

To elucidate the relative importance of various predictor variables in forecasting methane yield 16 

during, a feature importance analysis was conducted using PFI, a global interpretability method 17 

(Figure 5). Analysis indicated that pH was the most influential factor affecting methane yield 18 

in MW-assisted AD, followed by lipid and carbohydrate compositions. The methanogenesis 19 

stage of AD is highly sensitive to pH fluctuations, with an optimal range of approximately 6.8–20 

7.2. Deviations from this range can adversely affect microbial activity and process stability. 21 

MW pretreatment alters the chemical composition of substrates by solubilizing complex 22 

biopolymers, enhancing biodegradability, and releasing by-products like organic acids, leading 23 

to decreased pH. Studies have shown that MW pretreatment can increase organic matter 24 

solubilization, thereby improving methane production [9]. Interestingly, fluctuations in 25 

feedstock pH during AD have a more pronounced impact on methane yield than the operational 26 

parameters associated with MW pretreatment. This suggests that unless MW pretreatment is 27 

applied under extreme conditions, its influence on methane yield is secondary to factors such 28 

as pH and substrate composition [34]. 29 

Hydrothermal pretreatment, another thermal method for enhancing anaerobic digestibility, 30 

involves exposing substrates to high temperatures (120–220°C) under pressurized conditions, 31 

leading to extensive breakdown of complex organic matter. However, this method can produce 32 
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inhibitory compounds like furfurals and hydroxymethylfurfural (HMF), which may suppress 1 

microbial activity if not properly managed [35]. In contrast, MW pretreatment utilizes rapid, 2 

selective heating through dielectric polarization, targeting polar molecules such as water. This 3 

leads to localized overheating, promoting cell wall disruption and release of intracellular 4 

components without significantly degrading sugars into inhibitory compounds [27, 29]. 5 

Consequently, MW pretreatment enhances bioavailability while minimizing the risk of toxic 6 

by-product formation. This distinction aligns with previous studies suggesting that variations 7 

in feedstock composition have a greater influence on methane yield than changes in 8 

pretreatment conditions. For instance, studies that maintained constant MW pretreatment 9 

parameters while altering feedstock chemical composition observed more significant 10 

deviations in methane yield compared to those that modified MW pretreatment conditions 11 

alone [36]. 12 

While controlling MW pretreatment conditions can influence methane yield, the effect is 13 

relatively moderate unless extreme MW treatment settings are applied. This emphasizes the 14 

need for tailored modelling strategies that prioritize microbial and biochemical parameters over 15 

purely physical pretreatment variables. Future research should explore integrating advanced 16 

multi-omics data with machine learning approaches to better capture the microbial dynamics 17 

governing AD performance under different pretreatment strategies. 18 

4 Conclusions 19 

To facilitate data-driven process optimization of MW-pretreated AD of FW, the work herein 20 

developed and compared a series of ML models i.e., linear, non-linear, and ensembled-learning 21 

models. The predictor variables included information on FW composition, AD reactor 22 

conditions, and MW pretreatment parameters. Upon systematic comparison of the selection of 23 

data preprocessing techniques, cross-validation, and hyperparameter optimization, models 24 

achieved excellent accuracy in predicting the methane yield for MW-pretreated AD of FW. 25 

The optimized SVM-based model coupled with the Z-score method as outlier removal and the 26 

Max-Min normalization technique provided R2 values in the range of 0.85-0.9 with an RMSE 27 

of 34 mL/gVS (representing less than 10% relative error). The model’s interpretability was 28 

augmented by permutation feature importance analysis, a global model-agnostic model 29 

explainer. It projected insights into the most influential variables that regulate methane yield 30 

for MW-AD processes, suggesting that AD reactor pH and FW compositions were more 31 

influential than MW operational parameters. The developed model with added experimental 32 

datasets, in the future, could be used for what-if scenario analysis, life cycle assessment 33 
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framework, and reactor control frameworks towards rapid process optimization. This will 1 

ultimately facilitate the practical application of AD-based waste valorization systems and 2 

contribute to a circular economy.   3 
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 1 
Figure 1. Sequential stages of the machine learning model development to predict methane 2 

yield. Following on to the preliminary dataset construction, missing values in the dataset were 3 

imputed with respective means. The dataset was then subjected data preprocessing that 4 

included outlier removal and variables scaling. The pre-processed dataset was split into training 5 

and testing sets using which a range of ML models were constructed. The predictive accuracy 6 

of the optimized ML model was quantified in terms of RMSE and R2 metrics. Finally, the 7 

relationships between the variables were understood via Permutation Feature Importance 8 

analysis and Pearson Correlation Coefficient. 9 

 10 
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 1 
Figure 2. Statistical analysis of the assimilated dataset. (A) Exploratory data analysis across 2 

different variables via two-ways plots. (B) Box-whisker plot showing spread of different 3 

variables. (C) Pearson correlation coefficient map across any two variables where the diameter 4 

of the circles is proportional to the correlation coefficient. VS: Volatile Solids, Pro: Protein, 5 

Car: Carbohydrate, Lip: Lipid, DT: Digester temperature, HRT: Hydraulic retention time, 6 

MWTe: Microwave pretreatment temperature, MWTi: Microwave pretreatment time, Vol: 7 

Digester volume, CH4: Methane yield. 8 

 9 

  10 
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 1 
Figure 3. Performance assessment of different data-driven models using R2 (light blue) and 2 

RMSE (red). (A) Z-score based outlier removal, (B) interquartile range-based outlier removal, 3 

(C) max-min normalization, (D) max absolute scaling, (E) with principal component analysis, 4 

(F) after hyperparameter optimization.  5 
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 1 
Figure 4. Parity plots obtained after optimizing different ML models. (A) LR, (B) ElasticNet, 2 

(C) SVM, (D) ANN, (E) GPR, (F) KNN, (G) RF, and (H) XGBoost.  3 
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 1 
Figure 5. Premutation feature importance (normalized) analysis showing relative importance 2 

of predictor variables for different ML models after optimization. (A) LR, (B) ElasticNet, (C) 3 

SVM, (D) ANN, (E) GPR, (F) KNN, (G) RF, and (H) XGBoost. The absence of protein content 4 

in these plots is due to its exclusion during ML model development  5 
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Table 1. Optimal hyperparameter values of the ML models using GridSearchCV algorithm. 1 

ML Model Optimal Hyperparameter Combination 

Linear Regression Fit Intercept: False 

ElasticNet Fit Intercept: False, : 0.1, L1 Ratio: 0.9 

Support Vector Machine C: 50, : 0.1, Kernel Type: Polynomial 

K-Nearest Neighbour No. Neighbours: 9, Weight Function: Distance 

Artificial Neural Network Hidden Layer Size: 100, Activation Function: Logistic, 

Solver: SGD, Max Iterations: 1000 

Gaussian Process Regression Kernel Type: RBF 1, Normalise: True 

Random Forest No. of Trees: 50, Max Depth of Trees: 5, Min Leaf 

Samples: 2, Min Split Samples: 2 

eXtreme Gradient Boosting No. of Boosting rounds: 50, Max Depth of Trees: 3, 

Learning Rate: 0.1, Subsample Ratio 1: 0.8, Subsample 

Ratio 2: 1 

 2 
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Highlights  

• Data-driven models predict methane production for Microwave-pretreated AD 

• A suite of data-preprocessing and ML modelling techniques were explored 

• The ML models were either linear, non-linear, and ensemble-based 

• Support vector machine has highest accuracy (R2 = 0.9 with <10% relative error) 

• Feature analysis identified pH and food waste composition as high-importance parameters 
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