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A B S T R A C T

Magnetorheological elastomers (MREs) are soft solids that can undergo large and reversible deformation in
the presence of an externally applied magnetic field. This coupled magneto-mechanical response can be used
for active control of surface roughness and actuation in engineering applications by exploiting the reversible
instabilities in these materials. In this work, we develop a general mathematical formulation to analyse the
surface instabilities of a finitely deformed and magnetised MRE half-space and find the critical stretch that
causes bifurcation of the solution of the resulting partial differential equations. The equations are derived using
a variational approach in the reference configuration and the null-space relating the incremental solutions is
presented to provide a basis for post-bifurcation analysis. Details of the numerical calculations are presented
to clearly identify and discount non-physical solutions. Stability phase diagrams are presented to analyse the
effect of material parameters and strength/direction of magnetic field.

1. Introduction

Soft solids undergoing surface undulations due to compressive stresses is a well documented phenomenon [1,2]. In elastic solids, these reversible
wrinkles, creases, or folds are often modelled as a form of surface instability [3–8]. Although the mathematical modelling of wrinkles for hyperelastic
solids with a first order stability analysis is well understood, a general framework to model surface instabilities in a multi-physics scenario is lacking.
In this work, we present a variational approach to analyse the surface instabilities of a finitely deformed and magnetised magnetoelastic half-space.
In particular, we clarify issues around non-physical numerical solutions that are undocumented in literature and present new numerical results for
magnetic field applied parallel and perpendicular to the surface.

Magnetorheological elastomers (MREs) are a class of smart materials that consist of magnetisable particles, ranging in size from micron to
nanoscale, dispersed within a polymer matrix. The observed characteristics of this material indicate a propensity to show a mechanical reaction to
external magnetic fields. Magnetoelastic effects can be categorised into two distinct groups, namely direct effects and indirect effects [9]. The direct
magnetoelastic effects are most well-recognised in the literature and are concerned with changes in dimensions and stiffness due to an external
magnetic field. Indirect effects pertain to alterations in a material’s magnetic susceptibility resulting from mechanical stress [9,10]. James Joule [11]
first identified magnetostriction in 1842 during his investigation of an iron sample. Over the last several decades, much research has focused
on investigating and simulating the mechanics of MREs by focussing on the magnetoelastic effects [12]. Multiple researchers have investigated
experimental techniques to quantify the mechanical response of MREs in the presence of an external magnetic field [1,13–15].

The modelling of MREs involves several methods, such as macro-continuum-based models, micro-particle interaction-based models, and data-
driven phenomenological models [16]. Continuum models incorporate nonlinear coupling between magnetic and mechanical fields, thereby
enabling the analysis of the magneto-mechanical behaviour of MREs under complex loading and boundary conditions [17,18]. Dorfmann and
Ogden [18] introduced constitutive formulations based on modified free energy functions and the total stress tensor to develop fully coupled
nonlinear field theories. It has been shown that either one of the magnetic induction, magnetic field or magnetisation vectors can act as an
independent variable in the formulation [19–22]. Bustamante et al. [23] derived the universal relations for nonlinear magnetoelastostatics; this
was further expanded by Kumar et al. [24] for coupled electro-magneto-elastic soft materials.

Biot formulated the bifurcation theory [3,25] to describe surface instability of an incompressible neo-Hookean elastic half-space by taking
into account the existence of wavelike/smooth undulation modes on the surface. Numerous elastic systems, both biological and synthetic, exhibit
Biot-like surface instability under large deformation. This instability may contribute to various aspects of morphogenesis in biological systems
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including development of fingerprints [26], retina folds [27], the placental villous tree [28], and the sulci of the brain cortex [29]. It has also been
associated with plastic surface instabilities in industrial applications [30].

A considerable amount of theoretical [3,6,31–33], computational [34,35], and experimental [30,36] investigations have been conducted due
to the wide range of possible applications of surface instability phenomena in soft materials. The aforementioned publications explored a diverse
ange of surface instabilities, including wrinkling, cavitation, creasing, ridging, folding, and fringe.

Surface instability of electro-elastic [37] and magneto-elastic [38,39] elastomers has been extensively studied both theoretically and experimen-
ally over the past two decades because of their applications in micro/nano-electromechanical systems (MEMS/NEMS), magnetostrictive actuation,

soft robotics, pattern formation and morphology control, energy harvesting and sensing, soft electronics, biomedical and wearable devices [40–
44]. Otténio et al. [5] used the incremental theory [45] to analyse the surface instability of a magnetoelastic half-space that is subjected to
erpendicular magnetic field with low and moderate magnitudes. The same incremental formulation was used by Saxena and Ogden [46,47] to
tudy the dynamic problem of wave propagation. Rudykh and Bertoldi [48] studied this surface instability for a periodically layered MRE composite
sing a micromechanics based formulation. Dorfmann et al. [49] utilised an equivalent framework to analyse surface instability in an electroelastic

neo-Hookean half-space. Danas et al. [1] showed experimentally that surface instability of a pre-stretched MRE block can be modulated by a
perpendicular magnetic field. In this paper, we develop a general formulation to analyse the surface instabilities of a finitely deformed half-space
under both perpendicular and parallel magnetic fields. A variational approach is used to clearly identify all the relevant partial differential equations
and the solution variables [22]. Solution of the bifurcation equations requires derivation of the null-space of the matrix system of equations that
sets a foundation for post-bifurcation analysis [6]. A numerical method is implemented using Maple and Mathematica programming environments
to track all the potential solutions of this highly nonlinear problem, identify the system’s limit points, and discard non-physical solutions.

1.1. Notation

Scalar variables are presented in normal weight font, while first or second-order tensors are denoted with bold weight font. Circular brackets
() are used to indicate the parameters of a function while square brackets [ ] are used to group mathematical expressions. A comma in a subscript
represents a partial derivative with respect to the in-plane coordinates (𝑋1, 𝑋2). The scalar product of two vectors 𝐦 and 𝐧 is denoted by 𝐦 ⋅ 𝐧,
and their tensor product is represented by a second-order tensor 𝐀 = 𝐦 ⊗ 𝐧. The operation of this second-order tensor 𝐀 on a vector 𝐩 is given
by 𝐀 ⋅ 𝐩. A second-order tensor 𝐀 can be expressed in its component form using the matrix notation 𝐴𝑖𝑗 . The scalar product of two tensors 𝐀 and
𝐁 is defined as 𝐀 ∶ 𝐁 = 𝐴𝑖𝑗𝐵𝑖𝑗 . The differentiation operator in the reference configuration is denoted as ∇𝑅 = 𝜕

𝜕𝐗 while the same in the current
configuration is denoted as ∇ = 𝜕

𝜕𝐱 .

2. Nonlinear magnetoelastostatics

Consider an incompressible magnetoelastic solid that occupies a region 𝛺𝑅 in its stress-free reference configuration. The deformed configuration
s denoted by 𝛺. The points 𝐗 ∈ 𝛺𝑅 and 𝐱 ∈ 𝛺 are related by a volume-preserving, smooth, and invertible mapping 𝜒 ∶ 𝛺𝑅 → 𝛺. The

deformation gradient is a second order tensor and is denoted as 𝐅 = ∇𝑅(𝜒). The deformation map is smoothly extended to the surrounding free
pace 𝛺′

𝑅 = R3 ⧵𝛺𝑅, 𝜒 ∶ 𝛺′
𝑅 → 𝛺′ to enable the definition of the referential counterparts of the magnetic variables in vacuum.

The magnetic field h, the magnetic induction b, and the magnetisation m in 𝛺 are related as

b = 𝜇0h +m, (2.1)

where 𝜇0 is the magnetic permeability of the free space. The magnetic field h and the magnetic induction b need to satisfy the Maxwell’s relations

∇ ×h = 𝟎, and ∇ ⋅b = 0. (2.2)

The presence of divergence-free and curl-free conditions motivates the introduction of a magnetic vector potential field a and a magnetic scalar
otential field 𝜙 such that

h = −∇𝜙, and b = ∇ × a. (2.3)

The corresponding fields in vacuum are denoted by an asterisk and follow the constitutive relation

b∗ = 𝜇0h
∗. (2.4)

Upon defining the referential quantities [19]

B = 𝐽𝐅−1b, H = 𝐅𝑇h, A = 𝐅𝑇a, 𝛷(𝐗) = 𝜙(𝐱(𝐗)) (2.5)

Eqs. (2.1)–(2.4) can be reformulated as

∇𝑅 ×H = 𝟎, ∇𝑅 ⋅B = 0, H = −∇𝑅𝛷 , B = ∇𝑅 ×A, B∗ = 𝜇0𝐽𝐂−1H∗. (2.6)

The response of the magnetoelastic solid can be described with the help of a total energy density function denoted by 𝑊 (𝐅,B). For an isotropic
nd incompressible material, it can be shown that the energy is dependent on scalar invariants of the right Cauchy–Green deformation tensor 𝐂
nd the magnetic induction B

𝐼1 = tr(𝐂), 𝐼2 =
1
2
[

(t r 𝐂)2 − (

t r 𝐂2)] , 𝐼4 = B ⋅B, 𝐼5 = 𝐂B ⋅B, 𝐼6 = 𝐂B ⋅ 𝐂B. (2.7)
2 
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Here we ignore the dependence on the third scalar invariant of 𝐂 since the constraint of incompressibility 𝐼3 = det(𝐂) = 𝐽 2 = 1 renders it a constant.
The first Piola–Kirchhoff stress 𝐏 and the magnetic field H can be written using the total energy density function as

𝐏 = 𝜕 𝑊
𝜕𝐅

− 𝑝𝐅−𝑇 , H = 𝜕 𝑊
𝜕B

, (2.8)

where 𝑝 is the Lagrange multiplier associated with the constraint of incompressibility. One can also define an energy density function for the
ree-space 𝑊𝑒 [50,51]

𝑊𝑒
(

𝐅,B∗) = 1
2
𝜇−10 𝐽−1 [𝐅B∗] ⋅

[

𝐅B∗] , (2.9)

that allows us to express the pull-back of Maxwell stress in vacuum 𝐏𝑚 and the referential magnetic field H∗ as

𝐏𝑚 =
𝜕 𝑊𝑒
𝜕𝐅

, H∗ =
𝜕 𝑊𝑒

𝜕B∗ . (2.10)

2.1. Variational formulation and corresponding governing equations

The functional form of the total potential energy for a magnetoelastic system, consisting of the body 𝛺𝑅 and its exterior 𝛺′
𝑅 = R3 ⧵𝛺𝑅 can be

xpressed as a function of the deformation function 𝜒 , the Lagrange multiplier 𝑝 associated with the constraint of incompressibility, and magnetic
induction in the body B and vacuum B∗ [19,22],

𝐸
(

𝜒 , 𝑝,B,B∗) = ∫𝛺𝑅
𝑊 (𝐅,B) 𝑑 𝑉𝑅−∫𝛺𝑅

𝑝 [𝐽 − 1] 𝑑 𝑉𝑅 + ∫𝛺′𝑅

𝑊 𝑒 (𝐅,B∗) 𝑑 𝑉𝑅. (2.11)

2.1.1. Equilibrium: first variation
The partial differential equations that describe equilibrium of the magnetoelastic solid are derived as the Euler–Lagrange equations of the

functional 𝐸 in Eq. (2.11). By considering small and random perturbations of the solution variables 𝜒 → 𝜒+𝛿 𝜒 , 𝑝→ 𝑝+𝛿 𝑝,𝐅 → 𝐅+𝛿𝐅,B → B+𝛿B
nd B∗ → B∗ + 𝛿B∗, the total energy is written as

𝐸(𝜒 + 𝛿 𝜒 , 𝑝 + 𝛿 𝑝,B + 𝛿B,B∗ + 𝛿B∗) = ∫𝛺𝑅
𝑊 (𝐅 + 𝛿𝐅,B + 𝛿B)𝑑 𝑉𝑅−∫𝛺𝑅

[𝑝 + 𝛿 𝑝]
[

[𝐽 + 𝛿 𝐽 ] − 1
]

𝑑 𝑉𝑅

+ 1
2𝜇0 ∫𝛺′𝑅

[𝐽 + 𝛿 𝐽 ]−1
[

[𝐅 + 𝛿𝐅][B∗ + 𝛿B∗]
]

⋅
[

[𝐅 + 𝛿𝐅][B∗ + 𝛿B∗]
]

𝑑 𝑉𝑅, (2.12)

Considering only the first order increments in the above expansion, upon using (2.6), (2.8), and (2.10), and applying the Divergence theorem,
e can write the first variation of the functional as [22]

𝛿 𝐸 =∫𝛺𝑅

[

[

∇𝑅 ⋅ 𝐏
]

⋅ 𝛿 𝜒 +
[

∇𝑅 ×H
]

⋅ 𝛿A − [𝐽 − 1]𝛿 𝑝
]

𝑑 𝑉𝑅

+ ∫𝜕 𝛺𝑅

[

[

[

𝐏 − 𝐏𝑚
]

⋅ 𝐍
]

⋅ 𝛿 𝜒 +
[

𝐍 ×
[

H − 1
𝜇0

𝐂B∗
]]

⋅ 𝛿A
]

𝑑 𝑆𝑅

+ ∫𝛺′𝑅

[

−[∇𝑅 ⋅ 𝐏𝑚] ⋅ 𝛿 𝜒 + 1
2𝜇0

[

∇ ×H∗] ⋅ 𝛿A∗
]

𝑑 𝑉𝑅 . (2.13)

Here, 𝐍 is the outward unit normal to the boundary 𝜕 𝛺𝑅. The governing equations of the equilibrium are obtained by setting 𝛿 𝐸 = 0. Since the
variations 𝛿 𝜒 , 𝛿A, 𝛿A∗, and 𝛿 𝑝 are arbitrary, we arrive at the governing equations of equilibrium

∇𝑅 ⋅ 𝐏 = 𝟎 in 𝛺𝑅, (2.14)

𝐽 − 1 = 0 in 𝛺𝑅, (2.15)

∇𝑅 ×H = 𝟎 in 𝛺𝑅, (2.16)

∇𝑅 ×H∗ = 𝟎 in 𝛺𝑅′ , (2.17)

∇𝑅 ⋅ 𝐏𝑚 = 𝟎 in 𝛺′
𝑅, (2.18)

and the boundary conditions

[𝐏 − 𝐏𝑚] ⋅ 𝐍 = 𝟎 on 𝜕 𝛺𝑅, (2.19)

𝐍 × [H −H∗] = 𝟎 on 𝜕 𝛺𝑅, (2.20)

[B −B∗] ⋅ 𝐍 = 0 on 𝜕 𝛺𝑅. (2.21)

2.1.2. Critical point: second variation
To analyse the critical point of bifurcation, the perturbations in the equilibrium state must adhere to specific incremental equations and boundary

conditions. They are obtained from the second variation of the total potential energy. With details provided in Appendix, the governing equations
are given as

∇𝑅 ⋅

[

𝑊,𝐅𝐅𝛥𝐅 −
[

𝛥𝑝
[

𝐽𝐅−𝑇 ] + 𝑝
[

𝐽
[

𝐅−𝑇 ∶ 𝛥𝐅
]

𝐅−𝑇 − 𝐽𝐅−𝑇 [𝛥𝐅]𝑇𝐅−𝑇 ]] +𝑊,𝐅B𝛥B

]

= 𝟎 in𝛺𝑅 (2.22)

−T
𝛥𝐽 = 𝐽𝐅 ⋅ 𝛥𝐅 = 0 in𝛺𝑅 (2.23)

3 
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∇𝑅 ×
[

𝑊,BB𝛥B +𝑊,B𝐅𝛥𝐅
]

= 𝟎 in𝛺𝑅 (2.24)

∇𝑅 ×

[

𝑊 𝑒
BB

𝛥B∗ +𝑊 𝑒
B𝐅𝛥𝐅

∗

]

= 𝟎 in𝛺′
𝑅, (2.25)

∇𝑅 ⋅

[

𝑊 𝑒
,𝐅𝐅𝛥𝐅

∗ +𝑊 𝑒
,𝐅B𝛥B

∗

]

= 𝟎 in𝛺′
𝑅. (2.26)

The incremental boundary conditions are given as

[𝛥𝐏 − 𝛥𝐏𝑚] ⋅ 𝐍

=
[

𝑊,𝐅𝐅𝛥𝐅 −
[

𝛥𝑝
[

𝐽𝐅−𝑇 ] + 𝑝
[

𝐽
[

𝐅−𝑇 ⋅ 𝛥𝐅
]

𝐅−𝑇 − 𝐽𝐅−𝑇 [𝛥𝐅]𝑇𝐅−𝑇 ]] +𝑊,𝐅B𝛥B − 𝛥𝐏𝑚
]

⋅ 𝐍 = 𝟎, (2.27)

𝛥[H −H∗] × 𝐧𝑅 =
[

𝑊,BB𝛥B + 1
2
[𝑊,B𝐅 + 𝑊̂,𝐅B]𝛥𝐅 − 𝛥H∗

]

× 𝐍 = 𝟎, (2.28)

[𝛥B − 𝛥B∗] ⋅ 𝐍 = 0, (2.29)

[𝐔 − 𝐔∗] = 𝟎. (2.30)

The expressions for 𝛥𝐏𝑚 and 𝛥H∗ are given in detail in Appendix.

2.1.3. Specialisation to a Mooney–Rivlin type magnetoelastic energy density function
We use a prototype magnetoelastic energy density function which is a generalisation of the classical incompressible Mooney–Rivlin energy

density function for numerical calculations in the later sections [5]. It is given as

𝑊 = 1
4
𝜇
[

[1 + 𝛾][𝐼1 − 3] + [1 − 𝛾][𝐼2 − 3]
]

+ 1
2𝜇0

[

𝛼 𝐼4 + 𝛽 𝐼5
]

. (2.31)

Here 𝜇 , 𝛾 , 𝛼 , 𝛽 are the constitutive parameters of the magnetoelastic solid under consideration.
Upon substituting the energy (2.31) into the incremental governing equations (2.22)–(2.25), we get the following equations in the component

form
[

𝑖𝛼 𝑗 𝛽𝛥𝐹𝑗 𝛽 +𝛱𝑖𝛼 𝛽𝛥B𝛽 + 𝐿𝑖𝛼𝛥𝑝
]

,𝛼 = 0, (2.32)

𝐿𝑖𝛼𝛥𝐹𝑖𝛼 = 0, (2.33)

𝜀𝜈 𝛾 𝛽
[

𝛱𝑖𝛼 𝛽𝛥𝐹𝑖𝛼 +𝐾𝛽 𝛼𝛥B𝛼

]

,𝛾
= 0, (2.34)

𝜀𝜈 𝛾 𝛽
[

𝛱∗
𝑖𝛼 𝛽𝛥𝐹 ∗

𝑖𝛼 +𝐾
∗
𝛽 𝛼𝛥B∗

𝛼

]

,𝛾
= 0, (2.35)

[

∗
𝑖𝛼 𝑗 𝛽𝛥𝐹 ∗

𝑗 𝛽 +𝛱∗
𝑖𝛼 𝛽𝛥B∗

𝛽

]

,𝛼
= 0. (2.36)

along with the boundary conditions
[

𝑖𝛼 𝑗 𝛽𝛥𝐹𝑗 𝛽 +𝛱𝑖𝛼 𝛽𝛥B𝛽 + 𝐿𝑖𝛼𝛥𝑝 −∗
𝑖𝛼 𝑗 𝛽𝛥𝐹 ∗

𝑗 𝛽 −𝛱∗
𝑖𝛼 𝛽𝛥B∗

𝛽

]

𝑁𝛼 = 0, (2.37)

𝜀𝜈 𝛽 𝛾
[

𝛱𝑖𝛼 𝛽𝛥𝐹𝑖𝛼 +𝐾𝛽 𝛼𝛥B𝛼 −𝛱∗
𝑖𝛼 𝛽𝛥𝐹 ∗

𝑖𝛼 −𝐾
∗
𝛽 𝛼𝛥B∗

𝛼

]

𝑁𝛾 = 0, (2.38)

[𝛥B𝛼 − 𝛥B∗
𝛼]𝑁𝛼 = 0, (2.39)

[𝑈𝛼 − 𝑈∗
𝛼 ] = 0, (2.40)

in which we have used the following definitions of the various fourth, third, and second order tensors

𝑖𝛼 𝑗 𝛽 =
𝜇
2

[

[1 + 𝛾] [𝛿𝑖𝑗𝛿𝛼 𝛽
]

+ [1 − 𝛾] [𝐹𝑖𝛼𝐹𝑗 𝛽 − 𝐹𝑖𝛽𝐹𝑗 𝛼 + 𝐶𝛾 𝛾𝛿𝑖𝑗𝛿𝛼 𝛽 − 𝐹𝑖𝛾𝐹𝑗 𝛾𝛿𝛼 𝛽 − 𝐶𝛼 𝛽𝛿𝑖𝑗
]

]

+ 𝜇−10 𝛽
[

𝛿𝑖𝑗B𝛼B𝛽
]

− 𝑝
[

−𝐹−1
𝛽 𝑖 𝐹−1

𝛼 𝑗 + 𝐹−1
𝛽 𝑗 𝐹−1

𝛼 𝑖
]

,

∗
𝑖𝛼 𝑗 𝛽 = 𝜇−10

[

𝛿𝑖𝑗B
∗
𝛼B

∗
𝛽 −B

∗
𝛼𝐹𝑖𝛾B

∗
𝛾𝐹

−1
𝛽 𝑗 −B∗

𝛽𝐹𝑗 𝛾B∗
𝛾𝐹

−1
𝛼 𝑖 + 1

2
𝐹𝑘𝛾B

∗
𝛾𝐹𝑘𝜈B

∗
𝜈

[

𝐹−1
𝛼 𝑖 𝐹−1

𝛽 𝑗 + 𝐹−1
𝛼 𝑗 𝐹−1

𝛽 𝑖
]

]

,

𝛱𝑖𝛼 𝛽 = 𝜇−10 𝛽
[

𝛿𝛼 𝛽𝐹𝑖𝛾B𝛾 +B𝛼𝐹𝑖𝛽
]

,

𝛱∗
𝑖𝛼 𝛽 = 𝜇−10

[

𝛿𝛼 𝛽𝐹𝑖𝛾B∗
𝛾 +B

∗
𝛼𝐹𝑖𝛽 − 𝐹

−1
𝛼 𝑖 𝐹𝑘𝛽𝐹𝑘𝛾B∗

𝛾

]

,

𝐿𝑖𝛼 = −𝐹−1
𝛼 𝑖 ,

𝐾𝛽 𝛼 = 𝜇−10
[

𝛼 𝛿𝛼 𝛽 + 𝛽 𝐶𝛼 𝛽
]

,

𝐾∗
𝛽 𝛼 = 𝜇−10 𝐹𝑘𝛼𝐹𝑘𝛽 .

(2.41)

Note that in the calculations above, the subscripts in Greek indices (𝛼 , 𝛽 ,… ) correspond to differentiation with respect to the (𝑋1, 𝑋2, 𝑋3) coordinate
ystem. This is distinct from the material parameters 𝛼 , 𝛽 , 𝛾 in the energy density function (2.31).
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Fig. 1. The schematic of a magnetoelastic half-space (𝑋2 < 0) under a compression/tension mechanical load and a perpendicular/parallel magnetic field in the undeformed/deformed
states.

3. Problem description and the corresponding equations

Consider a magnetoelastic half-space (𝑋2 < 0) with the boundary 𝑋2 = 0 in its reference configuration as shown in Fig. 1. A uniform
compression/tension is applied along the 𝑋1 direction while maintaining the plane-strain condition in the (𝑋1, 𝑋2) plane. Additionally a uniform
external magnetic induction is applied in either the 𝑋1 or the 𝑋2 direction. Consider 𝑋𝑖, 𝑖 = 1, 3 be Cartesian coordinates introduced material points
in the reference configuration (undeformed body) so that the coordinate 𝑋1 is aligned with the direction of in-plane compression, 𝑋2 is aligned
perpendicular to the free surface of the undeformed half-space and 𝑋3 is the out-of-plane coordinate. The deformation gradient assumes the form
[𝐅] = diag(𝜆1, 𝜆2, 1) where 𝜆2 = 𝜆−11 due to incompressibility. We aim to find the critical values of the applied stretch and magnetic induction that
lead to a bifurcation of the solution in the form of surface wrinkling.

3.1. Uniform and incremental fields

Displacement of the points in the body are denoted by 𝐮 (𝐗). The principal plane-strain solution is denoted as 𝑢(0)𝑖 =
(

𝜆𝑖 − 1)𝑋𝑖 (𝑖 = 1, 2 and no
sum on i). The incremental displacements 𝑈𝑖, 𝑖 = 1, 2 are periodic with zero average stretch in the 𝑋1 direction such that [6]

𝐮(𝑋1, 𝑋2) = 𝐮(0) + 𝐔(𝑋1, 𝑋2). (3.1)

The deformation gradient and its increment is given by

𝐅 = 𝐈 + 𝜕𝐮(0)
𝜕𝐗

, 𝛥𝐅 = 𝜕𝐔
𝜕𝐗

, 𝛥𝐅∗ = 𝜕𝐔∗

𝜕𝐗
. (3.2)

The deformation gradient must satisfy the internal constraint of incompressibility. The incompressibility condition 𝐽 = det[𝐅 + 𝛥𝐅] = 1 gives

𝑈1,1𝑈2,2 − 𝑈1,2𝑈2,1 + 𝜆2𝑈1,1 + 𝜆1𝑈2,2 = 0. (3.3)

The uniform magnetic induction inside and outside the body are denoted by b and b∗, respectively, in the current configuration. Their
components are given as

[b] =
[

𝐵1
𝐵2

]

, [b∗] =
[

𝐵1
∗

𝐵2
∗

]

, (3.4)

The magnetic boundary conditions (2.20), (2.21) along with the use of the energy density function (2.31) require that

𝐵∗
1 =

[

𝛼 𝜆−11 + 𝛽 𝜆1
]

𝐵1, 𝐵∗
2 = 𝐵2. (3.5)

Their referential counterparts are given as

[B] =
[

𝐵1𝜆2
𝐵2𝜆1

]

, [B∗] =
[

𝐵∗
1𝜆2

𝐵2𝜆1

]

. (3.6)

Expansion of Maxwell’s equation (2.6)2 for incremental quantities 𝛥B(𝐗) and 𝛥B∗(𝐗) results in the following governing equations

∇𝑅 ⋅ 𝛥B = 0, ∇𝑅 ⋅ 𝛥B∗ = 0. (3.7)

Since there is no dependence on the 𝑋3 coordinate, we can write 𝛥B and 𝛥B∗ in terms of stream functions 𝜑(𝐗) and 𝜓(𝐗) as

[𝛥B] =
[

𝜑,2
]

, [𝛥B∗] =
[

𝜓,2
]

. (3.8)

−𝜑,1 −𝜓,1
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The Lagrange multiplier, 𝑝, linked to the incompressibility constraint can be determined using the boundary condition (2.19) applied to the
ooney–Rivlin model (2.31) as

[

1
4
𝜇
[

[1 + 𝛾] 𝜕 𝐼1
𝜕𝐅

+ [1 − 𝛾] 𝜕 𝐼2
𝜕𝐅

]

+ 1
2
𝜇−10

[

𝛼
𝜕 𝐼4
𝜕𝐅

+ 𝛽
𝜕 𝐼5
𝜕𝐅

]

− 𝑝𝐅−𝑇

−𝜇−10 𝐽−1
[

[

[𝐅B∗]⊗ [𝐅B∗] − 1
2
[𝐅B∗] ⋅ [𝐅B∗]𝐈

]

𝐅−𝑇
]

]

⋅𝐍 = 0,
(3.9)

resulting in

𝑝 = 1
2
𝜆−21

[

𝜇
[

2 − [𝛾 − 1]𝜆21
]

+ 𝜇−10
[

𝛽2𝜆41𝐵
2
1 + [2𝛼 𝛽 𝜆21𝐵2

1 + 2[𝛽 − 1
2
]

𝐵2
2 ]𝜆

2
1 + 𝛼

2𝐵2
1

]

]

. (3.10)

Note that based on the above expression, the Maxwell stress in vacuum can apply a non-zero traction on the half-space even if the material is
purely elastic (𝛼 = 𝛽 = 0) for the case 𝐵2 ≠ 0.

3.2. Incremental governing equations

The form of the principal and incremental solutions in Section 3.1 are substituted in the governing equations (2.32)–(2.35) with the help of
ncremental tensors (2.41) to determine the required equations for the surface instabilities of the magnetoelastic half-space. Eq. (2.32) results in
he following two equations in the body

1
2
𝜆−21

[

𝜇
[

2𝜆21 + 1 − 𝛾] + 𝜇−10
[

𝛽 𝐵2
1
]

]

𝑈1,11 +
[

𝜇 + 𝜇−10
[

𝛽 𝜆21𝐵2
2
]

]

𝑈1,22 +
1
2

[

𝜇[1 − 𝛾]
]

𝑈2,12 −
[

𝜆−11
]

𝑄,1

+ 2𝜇−10
[

𝛽 𝐵1𝐵2
]

𝑈1,12 + 𝜇−10
[

𝛽 𝐵1
]

𝜑,12 + 𝜇−10
[

𝛽 𝜆21𝐵2
]

𝜑,22 = 0,
(3.11)

1
2
𝜇 [1 − 𝛾]𝑈1,12 +

[

𝜇 + 𝜇−10
[

𝛽 𝜆−21 𝐵2
1
]

]

𝑈2,11 +
[1
2
𝜇
[

2 + 𝜆21 − 𝛾 𝜆21
]

+ 𝜇−10
[

𝛽 𝐵2
2𝜆

2
1
]

]

𝑈2,22 −
[

𝜆1
]

𝑄,2

+ 2𝜇−10
[

𝛽 𝐵1𝐵2
]

𝑈2,12 − 𝜇−10
[

𝛽 𝐵2
]

𝜑,12 − 𝜇−10
[

𝛽 𝜆−21 𝐵1
]

𝜑,11 = 0.
(3.12)

The incompressibility condition (2.33) provides the third equation as

𝜆−21 𝑈1,1 + 𝑈2,2 = 0. (3.13)

The fourth Eq. (2.34) in the body is expanded as

−
[

𝛽 𝐵2𝜆
2
1
]

𝑈1,22 −
[

𝛽 𝐵1
]

𝑈1,12 +
[

𝛽 𝜆−21 𝐵1
]

𝑈2,11 +
[

𝛽 𝐵2
]

𝑈2,12 −
[

𝛼 + 𝛽 𝜆−21
]

𝜑,11 −
[

𝛽 𝜆21 − 𝛼
]

𝜑,22 = 0. (3.14)

Finally, Eq. (2.35) in vacuum is given as

−
[

𝜆−21 𝐵2
]

𝑈∗
1,11 −

[

𝜆−21 𝐵2
]

𝑈∗
1,22 +

[

𝛼 𝜆−31 𝐵1 + 𝛽 𝜆−11 𝐵1
]

𝑈∗
2,11 +

[

𝛽 𝜆31𝐵1 + 𝛼 𝜆1𝐵1
]

𝑈∗
2,22 −

[

𝜆−21
]

𝜓,11 −
[

𝜆21
]

𝜓,22 = 0, (3.15)

Eq. (2.36) in vacuum is given as
[

𝜆−21 𝐵2
2
]

𝑈∗
1,11 +

[

𝜆21𝐵
2
2
]

𝑈∗
1,22 −

[

𝜆−31 𝐵2𝐵1𝜂
]

𝑈∗
2,11 −

[

𝜆1𝐵2𝐵1𝜂
]

𝑈∗
2,22 +

[

𝜆−21 𝐵2
]

𝜓,11 +
[

𝜆21𝐵2
]

𝜓,22 = 0, (3.16)

and

−
[

𝜆−31 𝐵2𝐵1𝜂
]

𝑈∗
1,11 −

[

𝜆1𝐵2𝐵1𝜂
]

𝑈∗
1,22 +

[

𝜆−41 𝐵2
1𝜂

2]𝑈∗
2,11 +

[

𝐵2
1𝜂

2]𝑈∗
2,22 −

[

𝐵1𝜂
]

𝜓,11 −
[

𝐵1𝜆1𝜂
]

𝜓,22 = 0, (3.17)

in which 𝜂 = 𝛽 𝜆21 + 𝛼.
We define the following dimensionless quantities to non-dimensionalise the above equations

𝑋̄𝑖 =
𝑋𝑖
𝐿
, 𝑈̄𝑖 =

𝑈𝑖
𝐿
, 𝑄̄ = 𝑄

𝜇
, 𝜑̄ =

𝜑
√

𝜇 𝜇0
, 𝜓̄ =

𝜓
√

𝜇 𝜇0
, 𝑇1 =

𝐵1𝜆2
√

𝜇0𝜇
, 𝑇2 =

𝐵2𝜆1
√

𝜇0𝜇
. (3.18)

By using Eq. (3.18), multiplying (3.11)–(3.12) by 𝐿∕𝜇, and multiplying (3.14)–(3.17) are multiplied by 𝐿
√

𝜇0∕𝜇, we obtain the following
non-dimensional governing equations

1
2
𝜆−21

[

2𝜆21 + 1 − 𝛾 + 𝛽 𝜆21𝑇 2
1
]

𝑈̄1,11 +
[

1 + 𝛽 𝑇 2
2
]

𝑈̄1,22 +
1
2
[1 − 𝛾] 𝑈̄2,12 −

[

𝜆−11
]

𝑄̄,1

+ 2 [𝛽 𝑇1𝑇2
]

𝑈̄1,12 +
[

𝛽 𝜆1𝑇1
]

𝜑̄,12 +
[

𝛽 𝜆1𝑇2
]

𝜑̄,22 = 0,
(3.19)

1
2
[1 − 𝛾] 𝑈̄1,12 +

[

1 + 𝛽 𝑇 2
1
]

𝑈̄2,11 +
[1
2
[

2 + 𝜆21 − 𝛾 𝜆21
]

+ 𝛽 𝑇 2
2

]

𝑈̄2,22 −
[

𝜆1
]

𝑄̄,2

+ 2 [𝛽 𝑇1𝑇2
]

𝑈̄2,12 −
[

𝛽 𝜆−11 𝑇2
]

𝜑̄,12 −
[

𝛽 𝜆−11 𝑇1
]

𝜑̄,11 = 0,
(3.20)

𝑈̄2,2 + [𝜆−21 ]𝑈̄1,1 = 0, (3.21)

−
[

𝛽 𝑇2𝜆1
]

𝑈̄1,22 −
[

𝛽 𝜆1𝑇1
]

𝑈̄1,12 +
[

𝛽 𝜆−11 𝑇1
]

𝑈̄2,11 +
[

𝛽 𝜆1𝑇2
]

𝑈̄2,12 −
[

𝛼 + 𝛽 𝜆−21
]

𝜑̄,11 −
[

𝛽 𝜆21 − 𝛼
]

𝜑̄,22 = 0, (3.22)

−
[

𝜆−31 𝑇2
]

𝑈̄∗
1,11 −

[

𝜆1𝑇2
]

𝑈̄∗
1,22 +

[

𝛼 𝜆−21 𝑇1 + 𝛽 𝑇1
]

𝑈̄∗
2,11 +

[

𝛽 𝜆41𝑇1 + 𝛼 𝜆21𝑇1
]

𝑈̄∗
2,22 −

[

𝜆−21
]

𝜓̄,11 −
[

𝜆21
]

𝜓̄,22 = 0, (3.23)

[

𝜆−41 𝑇 2
2
]

𝑈̄∗
1,11 +

[

𝑇 2
2
]

𝑈̄∗
1,22 −

[

𝜆−31 𝑇2𝑇1𝜂
]

𝑈̄∗
2,11 −

[

𝜆1𝑇2𝑇1𝜂
]

𝑈̄∗
2,22 +

[

𝜆−31 𝑇2
]

𝜓̄,11 +
[

𝜆1𝑇2
]

𝜓̄,22 = 0, (3.24)

−
[

𝜆−3𝑇 𝑇 𝜂
]

𝑈̄∗ −
[

𝜆 𝑇 𝑇 𝜂
]

𝑈̄∗ +
[

𝜆−2𝑇 2𝜂2
]

𝑈̄∗ +
[

𝑇 2𝜆2𝜂2
]

𝑈̄∗ −
[

𝜆−2𝑇 𝜂
]

𝜓̄ −
[

𝑇 𝜆2𝜂
]

𝜓̄ = 0. (3.25)
1 2 1 1,11 1 2 1 1,22 1 1 2,11 1 1 2,22 1 1 ,11 1 1 ,22
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3.3. Incremental boundary conditions

The form of principal and incremental solutions in Section 3.1 are substituted in the boundary conditions (2.37)–(2.39) with the help of the
incremental tensors (2.41) to obtain the required boundary conditions at the top-surface of the half-space as follows.

1
2

[

−2𝜇
[

1 − 𝛾 − 𝜆−21
]

+ 𝜇−10 𝐵2
1
[

𝛽2𝜆21 + 2𝛼 𝛽 + 𝛼2𝜆−21
]

+ 𝐵2
2 [2𝛽 − 1]

]

𝑈2,1 +
[

𝜇 + 𝜇−10
[

𝛽 𝜆21𝐵2
2
]

]

𝑈1,2 + 𝜇−10
[

𝛽 𝐵1𝐵2
]

𝑈1,1

+ 𝜇−10
[

𝛽 𝜆21𝐵2
]

𝜑,2 − 𝜇−10
[

𝛽 𝐵1
]

𝜑,1 − 𝜇−10
[

𝜆21𝐵
2
2
]

𝑈∗
1,2 −

1
2
𝜇−10

[

𝐵2
1 [𝛼 𝜆−11 + 𝛽 𝜆1]

2 + 𝐵2
2

]

𝑈∗
2,1

+ 𝜇−10
[

𝛼 𝜆1𝐵1𝐵2 + 𝛽 𝜆31𝐵1𝐵2
]

𝑈∗
2,2 − 𝜇

−1
0

[

𝜆21𝐵2
]

𝜓,2 + 𝜇−10
[

𝛼 𝜆−11 𝐵1 + 𝛽 𝜆1𝐵1
]

𝜓,1 = 0,

(3.26)

1
2

[

2𝜇
[

1 − 𝛾 + 𝜆−21
]

− 𝜇−10
[

𝐵2
1
[

𝛽2𝜆21 + 2𝛼 𝛽 + 𝛼2𝜆−21
]

+ 𝐵2
2 [2𝛽 − 1]

]

]

𝑈1,1 −
[

𝜆1
]

𝑄 + 𝜇−10
[

𝛽 𝐵1𝐵2
]

𝑈2,1

+ 1
2

[

𝜇
[

2 + 2𝛾 + 𝜆21 − 𝛾 𝜆21
]

+ 𝜇−10
[

2𝛽 𝜆21𝐵2
2
]

]

𝑈2,2 − 𝜇−10
[

2𝛽 𝐵2
]

𝜑,1 + 𝜇−10
[

𝛼 𝜆1𝐵1𝐵2 + 𝛽 𝜆31𝐵1𝐵2
]

𝑈∗
1,2

+ 1
2
𝜇−10

[

𝐵2
2 + 𝐵

2
1
[

𝛼 𝜆−11 + 𝛽 𝜆1
]2]𝑈∗

1,1 − 𝜇
−1
0

[

𝜆21𝐵
2
1
[

𝛼 𝜆−11 + 𝛽 𝜆1
]2]𝑈∗

2,2 + 𝜇
−1
0

[

𝛼 𝜆1𝐵1 + 𝛽 𝜆31𝐵1
]

𝜓,2 + 𝜇−10
[

𝐵2
]

𝜓,1 = 0,

(3.27)

𝛽 𝜆21𝐵2𝑈1,2 + 2𝛽 𝐵1𝑈1,1 + 𝛽 𝐵2𝑈2,1 +
[

𝛽 𝜆21 + 𝛼
]

𝜑,2 − 𝐵2𝜆
2
1𝑈

∗
1,2 − 𝐵2𝑈

∗
2,1

−𝜇−10
[

𝛼 𝜆−11 𝐵1 + 𝛽 𝜆1𝐵1
]

𝑈∗
1,1 +

[

𝛼 𝜆1𝐵1 + 𝛽 𝜆31𝐵1
]

𝑈∗
2,2 − 𝜆

2
1𝜓,2 = 0, (3.28)

− 𝜑,𝟷 + 𝜓,𝟷 = 0, (3.29)

𝑈𝟷 − 𝑈∗
𝟷
= 0, (3.30)

𝑈𝟸 − 𝑈∗
𝟸
= 0. (3.31)

Using the dimensionless variables in Eqs. (3.18) multiplying (3.26)–(3.31) by 𝜇−1, 𝜇−1,
√

𝜇0∕𝜇 , 1∕
√

𝜇 𝜇0, 1∕𝐿 and 1∕𝐿, respectively, we get

1
2

[

−2
[

1 − 𝛾 − 𝜆−21
]

+ 𝑇 2
1

[

𝛽2𝜆41 + 2𝛼 𝛽 𝜆21 + 𝛼2𝜆21
]

+ 𝑇 2
2
[

2𝛽 𝜆−21 − 𝜆−21
]

]

𝑈̄2,1 +
[

1 + 𝛽 𝑇 2
2
]

𝑈̄1,2 +
[

𝛽 𝑇1𝑇2
]

𝑈̄1,1

+
[

𝛽 𝜆1𝑇2
]

𝜑̄,2 −
[

𝛽 𝜆1𝑇1
]

𝜑̄,1 −
[

𝑇 2
2
]

𝑈̄∗
1,2 −

1
2
𝜇−10

[

𝜆21𝑇
2
1 [𝛼 𝜆−11 + 𝛽 𝜆1]

2 + 𝜆−21 𝑇 2
2

]

𝑈∗
2,1 +

[

𝛼 𝜆1𝑇1𝑇2 + 𝛽 𝜆31𝑇1𝑇2
]

𝑈̄∗
2,2

−
[

𝜆1𝑇2
]

𝜓̄,2 +
[

𝛼 𝑇1 + 𝛽 𝜆21𝑇1
]

𝜓̄,1 = 0,

(3.32)

1
2

[

2
[

1 − 𝛾 + 𝜆−21
]

−
[

𝑇 2
1
[

𝛽2𝜆41 + 2𝛼 𝛽 𝜆21 + 𝛼2
]

+ 𝑇 2
2
[

2𝛽 𝜆−21 − 𝜆−21
]

]

]

𝑈̄1,1 −
[

𝜆1
]

𝑄̄ +
[

𝛽 𝑇1𝑇2
]

𝑈̄2,1

+ 1
2

[

[

2 + 2𝛾 + 𝜆21 − 𝛾 𝜆21
]

+
[

2𝛽 𝑇 2
2
]

]

𝑈̄2,2 −
[

2𝛽 𝜆−11 𝑇2
]

𝜑̄,1 +
[

𝛼 𝜆1𝑇1𝑇2 + 𝛽 𝜆31𝑇1𝑇2
]

𝑈̄∗
1,2

+ 1
2

[

𝜆−21 𝑇 2
2 + 𝑇 2

1 𝜆
2
1
[

𝛼 𝜆−11 + 𝛽 𝜆1
]2] 𝑈̄∗

1,1 −
[

𝜆41𝑇
2
1
[

𝛼 𝜆−11 + 𝛽 𝜆1
]2] 𝑈̄∗

2,2 +
[

𝛼 𝜆21𝑇1 + 𝛽 𝜆41𝑇1
]

𝜓̄,2 +
[

𝜆−11 𝑇2
]

𝜓̄,1 = 0,

(3.33)

[

𝛽 𝜆1𝑇2
]

𝑈̄1,2 +
[

2𝛽 𝜆1𝑇1
]

𝑈̄1,1 +
[

𝛽 𝜆−11 𝑇2
]

𝑈̄2,1 +
[

𝛽 𝜆21 + 𝛼
]

𝜑̄,2 −
[

𝛼 𝑇1 + 𝛽 𝜆21𝑇1
]

𝑈̄∗
1,1 −

[

𝑇2𝜆1
]

𝑈̄∗
1,2

− 𝜇−10 [𝜆−11 𝑇2]𝑈∗
2,1 +

[

𝛼 𝜆21𝑇1 + 𝛽 𝜆41𝑇1
]

𝑈̄∗
2,2 −

[

𝜆21
]

𝜓̄,2 = 0, (3.34)

− 𝜑̄,𝟷 + 𝜓̄,𝟷 = 0, (3.35)

𝑈̄𝟷 − 𝑈̄∗
𝟷
= 0, (3.36)

𝑈̄𝟸 − 𝑈̄∗
𝟸
= 0. (3.37)

4. Solution procedure

4.1. Purely mechanical half-space

To validate the model, the magnetic field is neglected and solutions obtained for surface instabilities of a purely mechanical half-space [6,25].
We consider periodic solutions for the differential equations (3.19)–(3.21)

𝑈̄1 = 𝐹 𝑒𝑘𝑠𝑋̄2 sin(𝑘𝑋̄1), 𝑈̄2 = 𝐺 𝑒𝑘𝑠𝑋̄2 cos(𝑘𝑋̄1), 𝑄̄ = 𝑘𝜆−11 𝐻 𝑒𝑘𝑠𝑋̄2 cos(𝑘𝑋̄1), (4.1)

where 𝐹 , 𝐺 , 𝐻 are constants, 𝑘 is the wave number, and 𝑠 is a scalar multiplier. Upon substituting the above ansatz in the governing
equations (3.19)–(3.21), we arrive at the following matrix equation

[𝑆][𝐹 , 𝐺 , 𝐻]𝑇 = 0, (4.2)

where [𝑆] is the 3 × 3 matrix of coefficients. To have a non-trivial solution for 𝐹 , 𝐺 , 𝐻 in Eq. (4.2), the determinant of [𝑆] must vanish. This
condition results in a fourth order polynomial equation in 𝑠

det (𝑆) = 𝜆−4
[

[𝑠 − 1][𝑠 + 1][𝑠𝜆2 − 1][𝑠𝜆2 + 1]
]

= 0. (4.3)
1 1 1
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The four solutions are 𝑠1,3 = ±1 and 𝑠2,4 = ±𝜆−21 . Since all the solutions must decay as 𝑋̄2 → −∞, only the positive roots of 𝑠 are retained. By
ubstituting 𝑠1 and 𝑠2 inside the matrix S, we determine the null-space of the linear system (4.2) as

𝐺1 = −𝐹1
[

𝜆−21
]

, (4.4a)

𝐺2 = −𝐹2, (4.4b)

𝐻1 = 0, (4.4c)

𝐻2 = 𝐹2
[

𝜆41 − 1] 𝜆−21 . (4.4d)

Upon substituting the above in Eq. (4.1), we get the updated solutions as

𝑈̄1 =
2
∑

𝑛=1
𝐹𝑛 sin

(

𝑘𝑋̄1
)

e𝑘𝑠𝑛𝑋̄2 , (4.5a)

𝑈̄2 =
2
∑

𝑛=1
𝐺𝑛 cos

(

𝑘𝑋̄1
)

e𝑘𝑠𝑛𝑋̄2 , (4.5b)

𝑄̄ = 𝑘𝜆−11

2
∑

𝑛=1
𝐻𝑛 cos

(

𝑘𝑋̄1
)

e𝑘𝑠𝑛𝑋̄2 . (4.5c)

By substituting the updated solutions (4.5) inside the boundary conditions (3.32)–(3.33) for the top surface 𝑋̄2 = 0, we arrive at a linear system
𝑖𝑗𝐹𝑗 = 0, {𝑖, 𝑗} ∈ {1, 2}. The matrix A is given as

[

1 + 𝜆−41 2𝜆−21
−2𝜆−21 −𝜆21 − 𝜆

−2
1

]

. (4.6)

Bifurcation happens when the system allows for non-trivial solutions, that is, det(𝐴𝑖𝑗 ) = 0 as

−
[

[

𝜆1 − 1] [𝜆1 + 1] [𝜆31 − 𝜆21 + 𝜆1 + 1] [𝜆31 + 𝜆21 + 𝜆1 − 1]
]

𝜆−61 = 0, (4.7)

The above can be solved analytically and results in the critical stretch for bifurcation as 𝜆𝑐 𝑟 = 0.5437 that is consistent with the value obtained
by [6,25]. This critical stretch value is independent of the Mooney–Rivlin material parameters [31].

4.2. Magnetoelastic half-space

At the boundary 𝑋̄2 = 0, continuity of the displacement and the deformation gradient motivates the following ansatz for the fictitious
isplacements 𝑈̄∗

1 and 𝑈̄∗
2 to be used in the boundary conditions later

𝑈̄∗
1 =𝑀 sin

(

𝑘𝑋̄1
)

𝑒𝑘𝑠
∗𝑋̄2 , 𝑈̄∗

2 = 𝑁 cos
(

𝑘𝑋̄1
)

𝑒𝑘𝑠
∗𝑋̄2 . (4.8)

Considering the role of magnetic induction in the magneto-elastic response of the half-space, we will focus on two distinct scenarios. First, 𝐵2 = 0
ith 𝐵1≠ 0 called as parallel magnetic induction, and secondly, 𝐵1 = 0 with 𝐵2≠ 0 called as perpendicular magnetic induction.

4.2.1. Parallel magnetic induction
In addition to the ansatz for 𝑈̄1, 𝑈̄2, and 𝑄̄ in Eq. (4.1), and fictitious displacements of 𝑈̄∗

1 and 𝑈̄∗
2 in Eq. (4.8), we consider the following periodic

ansatz for the magnetic variables in the body and vacuum,respectively

𝜑̄ = 𝑉 cos(𝑘𝑋̄1) 𝑒𝑘𝑠𝑋̄2 , (4.9a)

𝜓̄ = 𝑊 cos(𝑘𝑋̄1) 𝑒𝑘𝑠
∗𝑋̄2 , (4.9b)

where 𝑉 and 𝑊 are constants for the parallel magnetic load. Upon substituting the above ansatz in the governing equations (3.19)–(3.22) for the
body, we arrive at the following matrix equation

[𝑆][𝐹 , 𝐺 , 𝐻 , 𝑉 ]𝑇 = 0. (4.10)

where [𝑆] is the 4 × 4 matrix of coefficients. To have a non-trivial solution for 𝐹 , 𝐺 , 𝐻 , 𝑉 in Eq. (4.10), the determinant of [𝑆] must vanish. This
ondition results in

−𝜆−61
[

[𝑠 − 1][𝑠 + 1][𝑠𝜆21 − 1][𝑠𝜆21 + 1][𝛽 𝑠2𝜆41 + 𝛼[−𝛽 𝑇 2
1 + 𝑠2 − 1]𝜆21 − 𝛽

]

]

= 0. (4.11)

resulting in six easily tractable solutions 𝑠1,4 = ±1, 𝑠2,5 = ±𝜆−21 , and 𝑠3,6 = ±𝜆−11

√

√

√

√

𝛼 𝛽 𝜆21𝐵2 + 𝛼 𝜆21 + 𝛽
𝛽 𝜆21 + 𝛼

. Since all the solutions must decay as

𝑋̄2 → −∞, only the positive roots of 𝑠 are retained. By substituting 𝑠1, 𝑠2 and 𝑠3 inside the matrix 𝑆, we determine the null-space of the linear
ystem (4.10) as

𝐺1 = −𝐹1
[

𝜆−21
]

, (4.12a)

𝐻1 = 0, (4.12b)

𝑉1 = −𝐹1
[

𝜆−11 𝑇1
]

, (4.12c)

𝐺2 = −𝐹2, (4.12d)
[ 2 2 2 −2]
𝐻2 = 𝐹2 𝛽 𝜆1𝑇1 + 𝜆1 − 𝜆1 , (4.12e)
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𝑉2 = 0, (4.12f)

𝐺3 = −𝐹3
[

𝛽 𝜆21 + 𝛼
]

𝜆−11 𝜉−11 , (4.12g)

𝐻3 = 0, (4.12h)

𝑉3 = −𝐹3
[

𝑇 2
1 𝛽 𝜆41 + 𝜆41 − 1] 𝜆−21 𝑇 −1

1 𝜉−11 , (4.12i)

in which

𝜉1 =
[

𝛽 𝜆21 + 𝛼
] [
𝑇 2
1 𝛼 𝛽 𝜆21 + 𝛼 𝜆21 + 𝛽

]

. (4.13)

Substituting the ansatz (4.8) and (4.9b) in each of the governing equations (3.23)–(3.25) for the vacuum, we arrive at 𝑠∗1,2 = ±𝜆−21 . Since the
olutions in the vacuum must decay as 𝑋̄2 → +∞, only the negative root, 𝑠∗1 = −𝜆−21 , is retained.

We note in passing that this null-space is necessary to conduct the post-bifurcation analysis as has been demonstrated for the purely mechanical
problem [6]. The updated solutions are

𝑈̄1 =
3
∑

𝑛=1
𝐹𝑛 sin

(

𝑘𝑋̄1
)

e𝑘𝑠𝑛𝑋̄2 , (4.14a)

𝑈̄2 =
3
∑

𝑛=1
𝐺𝑛 cos

(

𝑘𝑋̄1
)

e𝑘𝑠𝑛𝑋̄2 , (4.14b)

𝑄̄ = 𝑘𝜆−11

3
∑

𝑛=1
𝐻𝑛 cos

(

𝑘𝑋̄1
)

e𝑘𝑠𝑛𝑋̄2 , (4.14c)

𝜑̄ =
3
∑

𝑛=1
𝑉𝑛 cos

(

𝑘𝑋̄1
)

e𝑘𝑠𝑛𝑋̄2 , (4.14d)

𝜓̄ = 𝑊 cos(𝑘𝑋̄1)𝑒
𝑘𝑠∗1𝑋̄2 , (4.14e)

𝑈̄∗
1 =𝑀 sin

(

𝑘𝑋̄1
)

e𝑘𝑠
∗
1𝑋̄2 , (4.14f)

𝑈̄∗
2 = 𝑁 cos

(

𝑘𝑋̄1
)

e𝑘𝑠
∗
1𝑋̄2 . (4.14g)

By substituting the updated solutions (4.14) and (4.8) inside the boundary conditions (3.32)–(3.37) for the top surface 𝑋̄2 = 0, we arrive at a linear
system [𝐴][𝐹1, 𝐹2, 𝐹3, 𝑊 , 𝑀 , 𝑁]𝑇 = 0.

The matrix 𝐴 is given as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + 𝜆−41

1
2
𝑇 2
1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜆21𝛽
2

+𝜆−21 𝛼2

+2𝛽 𝛼
−2𝛽

⎤

⎥

⎥

⎥

⎥

⎥

⎦

2𝜆−21

+1
2
𝑇 2
1

⎡

⎢

⎢

⎢

⎣

𝜆41𝛽
2

+𝛼2

+2𝛼 𝛽 𝜆21

⎤

⎥

⎥

⎥

⎦

1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑇 2
1 𝛽

3𝜆81 + 2𝛼
+
[

3𝑇 2
1

[

𝛼 − 2
3

]

𝛽2 − 2𝛽
]

𝜆61

+𝛼
[

2 + 3𝑇 2
1

[

𝛼 + 2
3

]

𝛽
]

𝜆41
+
[

𝑇 2
1 𝛼

3 + 6𝛽] 𝜆21

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝜆−31 𝜉−11 −𝑇1𝜂 0 1
2
𝑇 2
1 𝜂

2

−2𝜆−21

−1
2
𝑇 2
1

⎡

⎢

⎢

⎢

⎣

𝜆41𝛽
2

+𝜆21𝛼
2

+2𝛼 𝛽 𝜆21

⎤

⎥

⎥

⎥

⎦

−𝜆21 − 𝜆
−2
1

−1
2
𝑇 2
1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

+2𝛽 𝛼 𝜆21
+𝛼2

+𝜆41𝛽
2

+2𝛽 𝜆21

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−2𝜆−21

−1
2
𝑇 2
1

[

𝛽2𝜆41 + 𝛼
2

+2𝛼 𝛽 𝜆21

]

−𝑇1𝜂
1
2
𝑇 2
1 𝜂

2 𝑇 2
1 𝜂

2

𝑇1
[

𝛽 𝜆1 − 𝛼 𝜆−11
]

2𝛽 𝜆1𝑇 𝑇 −1
1

[

𝜆−31 − 𝜆1
+𝛽 𝜆1𝑇 2

1

]

1 −𝑇1𝜂 −𝑇1𝜂

−𝜆−11 𝑇1 0 𝑇 −1
1

[

𝜆−21 − 𝜆21
−𝛽 𝜆21𝑇 2

1

]

𝜉−1 −1 0 0

1 1 1 0 −1 0

−𝜆−21 −1 −
[

𝛽 𝜆1 + 𝜆−11
]

𝜉−11 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.15)

Bifurcation happens when the system allows for non-trivial solutions, that is, det(𝐴𝑖𝑗 ) = 0.

Neglecting 𝑈∗
1 and 𝑈

∗
2 :

For the sake of completeness, we also present brief results in the case 𝑈∗ and 𝑈∗ are neglected.
1 2
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Upon neglecting the terms containing 𝑈∗
1 and 𝑈∗

2 in the boundary conditions (3.32)–(3.37), the matrix 𝐴 for the modified linear system is given
as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + 𝜆−41

+1
2
𝑇 2
1

⎡

⎢

⎢

⎢

⎣

𝛽2𝜆21
+𝛼2𝜆−21
+2𝛽 [𝛼 − 1]

⎤

⎥

⎥

⎥

⎦

2𝜆−21

+1
2
𝑇 2
1

⎡

⎢

⎢

⎢

⎣

𝛽2𝜆41
+2𝛼 𝛽 𝜆21
+𝛼2

⎤

⎥

⎥

⎥

⎦

1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

3𝑇 2
1

[

𝛼 − 2
3

]

𝛽2
]

𝜆31
+𝛽3𝜆51𝑇

2
1 + 2𝛼 𝜆−31

+𝛼
[

2 + 3𝑇 2
1

[

𝛼 + 2
3

]

𝛽
]

𝜆1

+
[

𝛼3𝑇 2
1 + 6𝛽] 𝜆−11 − 2𝛽 𝜆31

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝜉−11 −𝑇1𝜂 0 0

−2𝜆−21

−1
2
𝑇 2
1

⎡

⎢

⎢

⎣

𝛽2𝜆41 + 𝛼
2

+2𝛼 𝛽 𝜆21

⎤

⎥

⎥

⎦

−
[

𝜆21 + 𝜆
−2
1
]

−1
2
𝑇 2
1

[

𝛽2𝜆41 + 𝛼
2

+2𝛽 [𝛼 + 1] 𝜆21

]

−2𝜆−21

−1
2
𝑇 2
1

⎡

⎢

⎢

⎢

⎣

𝛽2𝜆41
+2𝛼 𝛽 𝜆21
+𝛼2

⎤

⎥

⎥

⎥

⎦

−𝑇1𝜂 0 0

𝑇1
[

𝛽 𝜆1 − 𝛼 𝜆−11
]

2𝛽 𝜆1𝑇1
[

1 + [

𝛽 𝑇 2
1 − 1] 𝜆41

]

𝜆−31 𝑇 −1
1 1 0 0

𝜆−11 𝑇1 0
[

1 − [

𝛽 𝑇 2
1 + 1] 𝜆41

]

𝜆−21 𝑇 −1
1 𝜉−11 −1 0 0

1 1 1 0 0 0

−𝜆−21 −1
[

−𝛽 𝜆1 − 𝜆−11
]

𝜉−11 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.16)

4.2.2. Perpendicular magnetic induction

The analysis in this section follows Section 4.2.1 closely with a few minor differences. The following periodic ansatz for the magnetic variables
is considered

𝜑̄ = 𝑉 sin(𝑘𝑋̄1) 𝑒𝑘𝑠𝑋̄2 , (4.17a)

𝜓̄ = 𝑊 sin(𝑘𝑋̄1) 𝑒𝑘𝑠
∗𝑋̄2 (4.17b)

where 𝑉 and 𝑊 are constants. Vanishing of the determinant of the 4 × 4 matrix 𝑆 for the linear system [𝑆][𝐹 , 𝐺 , 𝐻 , 𝑉 ]𝑇 = 0 gives

−𝜆−61

[

[𝑠 − 1] [𝑠 + 1] [𝑠 𝜆21 − 1] [𝑠 𝜆21 + 1]
[

𝛽 𝑠2𝜆41 +
[

−1 + [𝑇 2
2 𝛽 + 1]𝑠2]𝛼 𝜆21 − 𝛽

]

]

= 0. (4.18)

The six solutions are 𝑠1,4 = ±1, 𝑠2,5 = ±𝜆−2, and 𝑠3,6 = ±𝜆−11

√

√

√

√

𝛼 𝜆21 + 𝛽
𝛼 𝛽 𝑇 2

2 + 𝛽 𝜆21 + 𝛼
. Since all the solutions must decay as 𝑋̄2 → −∞, only the positive

oots of 𝑠 are retained. By substituting 𝑠1, 𝑠2 and 𝑠3 inside the matrix 𝑆, we determine the null-space as

𝐺1 = −𝐹1
[

𝜆−21
]

, (4.19a)

𝐻1 = 0, (4.19b)

𝑉1 = −𝐹1
[

𝜆−11 𝑇2
]

, (4.19c)

𝐺2 = −𝐹2, (4.19d)

𝐻2 = −𝐹2
[

−𝜆21 + 𝜆
−2
1 + 𝛽 𝜆−21 𝑇 2

2
]

, (4.19e)

𝑉2 = 0, (4.19f)

𝐺3 = −𝐹3
[

𝑇 2
2 𝛼 𝛽 + 𝛽 𝜆21 + 𝛼

]

𝜆−11 𝜉−12 , (4.19g)

𝐻3 = 0, (4.19h)

𝑉3 = −𝐹3[−𝜆41 + 𝑇 2
2 𝛽 + 1]

[

𝑇2𝜆1
[

𝛼 𝜆21 + 𝛽
]

]−1
, (4.19i)

in which

𝜉2 =
√

[

𝛼 𝛽 𝑇 2
2 + 𝛽 𝜆21 + 𝛼

] [
𝛼 𝜆21 + 𝛽

]

. (4.20)

Substituting the ansatz (4.8) and (4.17b) in each of the governing equations (3.23)–(3.25) for the vacuum, we arrive at 𝑠∗1,2 = ±𝜆−21 . Since the
solutions in the vacuum must decay as 𝑋̄2 → +∞, only the negative root, 𝑠∗1 = −𝜆−21 , is retained.

The updated solutions for 𝑈̄1, 𝑈̄2, 𝑄̄, 𝑈̄∗
1 , 𝑈̄

∗
2 follow Eqs. (4.14) and (4.8) by considering (4.19a)–(4.19i). The updated solutions for 𝜑̄ and 𝜓̄ are

given as
3
∑

( ̄ ) 𝑘𝑠𝑛𝑋̄2 ̄ 𝑘𝑠∗𝑋̄2
𝜑̄ =
𝑛=1

𝑉𝑛 sin 𝑘𝑋1 𝑒 , 𝜓̄ = 𝑊 sin(𝑘𝑋1) 𝑒 1 . (4.21)

10 
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Upon substituting the above updated solutions in the boundary conditions (3.32)–(3.37) for 𝑋̄2 = 0, we arrive at a linear system
[𝐴][𝐹1, 𝐹2, 𝐹3, 𝑊 , 𝑀 , 𝑁]𝑇 = 0, where the matrix 𝐴 is given as

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + 𝜆−41
+ 1

2𝑇
2
2 𝜆

−4
1 [2𝛽 − 1]

2𝜆−21
+𝑇 2

2 𝜆
−2
1

[

2𝛽 − 1
2

]

⎡

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎣

𝜆41 + 1
+
[

𝛽 − 1
2

]

𝑇 2
2

⎤

⎥

⎥

⎦

[𝑇 2
2 𝛼 𝛽 + 𝛼 + 𝛽 𝜆21]

⎤

⎥

⎥

⎥

⎥

⎦

𝜆−31 𝜉−12 𝜆−11 𝑇2 𝜆−21 𝑇 2
2

1
2𝜆

−2
1 𝑇 2

2

−2𝜆−21

+1
2
𝑇 2
2 𝜆

−2
1

−
[

𝜆21 + 𝜆
−2
1
]

+𝑇 2
2

[

−𝛽 𝜆−21 + 1
2𝜆

−2
1

]

⎡

⎢

⎢

⎢

⎢

⎣

−2𝛽 𝜆21 +
1
2𝜆

−2
1 𝑇 2

2 𝛽

−2𝛼
⎡

⎢

⎢

⎣

𝑇 2
2 𝛽

− 1
4𝑇

2
2 + 1

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎦

[

𝛼 𝜆21 + 𝛽
]−1 𝜆−11 𝑇2

1
2𝜆

−2
1 𝑇 2

2 0

𝑇2
⎡

⎢

⎢

⎣

−𝛼 𝜆−11
+𝛽 𝜆−31

⎤

⎥

⎥

⎦

𝑇2
[

2𝛽 𝜆−11
]

⎡

⎢

⎢

⎣

[

𝜆41 + 𝑇
2
2 𝛽 − 1]

[

𝑇 2
2 𝛼 𝛽 + 𝛽 𝜆21 + 𝛼

]

⎤

⎥

⎥

⎦

𝜆−21 𝑇 −1
2 𝜉−12 1 𝜆−11 𝑇 𝜆−11 𝑇

𝜆−11 𝑇2 0
⎡

⎢

⎢

⎣

1 − 𝜆41
+𝛽 𝑇 2

2

⎤

⎥

⎥

⎦

[

𝑇2𝜆1
[

𝛼 𝜆21 + 𝛽
]]−1 1 0 0

1 1 1 0 −1 0

−𝜆−21 −1
⎡

⎢

⎢

⎣

𝛽 𝜆21 + 𝛼
+𝑇2𝛼 𝛽

⎤

⎥

⎥

⎦

𝜆−11 𝜉−12 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.22)

and bifurcation is achieved when det(𝐴) = 0.
Similar to the case considered in Section 4.2.1, if we neglect the contribution of 𝑈∗

1 and 𝑈∗
2 in the boundary conditions, then the matrix 𝐴 is

odified as
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 + 𝜆−41

+𝑇 2
2

⎡

⎢

⎢

⎣

𝛽 𝜆−41
− 1

2𝜆
−4
1

⎤

⎥

⎥

⎦

2𝜆−21

+𝑇 2
2

⎡

⎢

⎢

⎣

2𝛽 𝜆−21
− 1

2𝜆
−2
1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

⎡

⎢

⎢

⎣

𝜆41 + 1
+
[

𝛽 − 1
2

]

𝑇 2
2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑇 2
2 𝛼 𝛽

+𝛼 + 𝛽 𝜆21

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

𝜆−31 𝜉−12 𝜆−11 𝑇2 0 0

−2𝜆−21

+1
2
𝑇 2
2
[

𝜆−21
]

−
[

𝜆21 + 𝜆
−2
1
]

+𝑇 2
2

[

−𝛽 𝜆−21 + 1
2𝜆

−2
1

]

1
2

⎡

⎢

⎢

⎣

𝑇 2
2 𝛽 𝜆−21 − 4𝛽 𝜆21

−
[

4𝑇 2
2 𝛽 − 𝑇

2
2 + 4] 𝛼

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛼 𝜆21
+𝛽

⎤

⎥

⎥

⎦

−1

𝜆−11 𝑇2 0 0

𝑇2
⎡

⎢

⎢

⎣

−𝛼 𝜆−11
+𝛽 𝜆−31

⎤

⎥

⎥

⎦

𝑇2
[

2𝛽 𝜆−11
]

⎡

⎢

⎢

⎣

[

𝜆41 + 𝑇
2
2 𝛽 − 1]

[

𝑇 2
2 𝛼 𝛽 + 𝛽 𝜆21 + 𝛼

]

𝑇 −1
2 𝜆−21

⎤

⎥

⎥

⎦

𝜉−12 1 0 0

𝜆−11 𝑇2 0
⎡

⎢

⎢

⎣

1 − 𝜆41
+𝛽 𝑇 2

2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑇2𝜆1
⎡

⎢

⎢

⎣

𝛼 𝜆21
+𝛽

⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

−1

1 0 0

1 1 1 0 0 0

−𝜆−21 −1 −
⎡

⎢

⎢

⎣

𝛽 𝜆21 + 𝛼
+𝑇2𝛼 𝛽

⎤

⎥

⎥

⎦

𝜆−11 𝜉−12 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.23)

5. Numerical results

Bifurcation criteria derived in Section 4 is solved numerically by implementing an iterative Newton–Raphosn and arc-length control in
athematica using a combination of NDSolve and WhenEvent functions. Firstly, we demonstrate the difference in the solution that can arise

y considering or neglecting the important fictitious displacement 𝐔∗ in vacuum. We also show the non-physical solutions that arise as part of the
umerical method that must be discounted. Then, we calculate the dependence of critical stretch on the material constants (𝛼 , 𝛽) and the magnetic
oad applied in parallel and perpendicular directions.

5.1. Choice of the correct numerical solution

Using the equations derived in Section 4.2 for the full magnetoelastic problem, we present the dependence of the critical stretch 𝜆𝑐 𝑟 on the
arallel and perpendicular magnetic inductions with 𝛼 = 𝛽 = 0.5 in Fig. 2. A few observations are in order. Firstly, three numerical solutions are

obtained and are denoted as 𝜆(1), 𝜆(2), 𝜆(3) in Fig. 2. Only 𝜆(1) must be considered as a physical solution since other two are trivial alternatives as
hown by Nowinski [4] for the purely mechanical case. Secondly, the graphs demonstrate the importance of using the arc-length continuation

method to determine the solution due to the presence of a limit point in 𝜆(1) vs 𝑇1 plot. Thirdly, the physical solution has considerably different
ehaviour if 𝑈∗

1 and 𝑈∗
2 are considered or neglected in the boundary conditions (refer to the equations derived at the end of Sections 4.2.1 and

4.2.2). These perturbations must be included in the equations for completeness as has been demonstrated in other computational studies [52–54]
ut are not explicitly discussed in other more theoretical papers [5,46]. Henceforth, we present results that include the effect of 𝑈∗

1 and 𝑈∗
2 in the

boundary conditions.
11 
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Fig. 2. The three numerical solutions obtained for the critical stretch 𝜆𝑐 𝑟 as a function of the parallel magnetic induction 𝑇1 and the perpendicular magnetic induction 𝑇2 with
= 𝛽 = 0.5. Only 𝜆1 considering 𝑈 ∗ is the physical solution.

Fig. 3. Dependence of the critical bifurcation stretch 𝜆𝑐 𝑟 on the applied magnetic load in the 𝑋1 direction. The four graphs show the influence of the material constants 𝛼 and 𝛽
n the bifurcation curves.
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Fig. 4. Dependence of the critical bifurcation stretch 𝜆𝑐 𝑟 on the applied magnetic load in the 𝑋2 direction. The four graphs show the influence of the material constants 𝛼 and 𝛽
n the bifurcation curves.

5.2. Parallel magnetic induction: Dependence on 𝑇1

Fig. 3 shows the dependence of the critical bifurcation stretch 𝜆𝑐 𝑟 with respect to the applied dimensionless parallel magnetic induction 𝑇1. The
aterial constant 𝛼 is fixed and the parameter 𝛽 is varied in Figs. 3(a, b), while 𝛽 is fixed and 𝛼 is varied in Figs. 3(c, d).

All the curves start from the critical value of the purely mechanical problem, 𝜆𝑐 𝑟 = 0.54, at zero magnetic loading. The stability curves for
the parallel magnetic loading is highly nonlinear. For small to moderate values of 𝛼 and 𝛽 as 𝑇1 is increased, 𝜆𝑐 𝑟 first decreases gradually before
reaching a turning point and then snaps back and increases rapidly. It implies that no stable state is possible for the half-space with low 𝛽 values
under a large 𝑇1 load. A monotonic reduction in 𝜆𝑐 𝑟 is observed only for large values of 𝛽 > 2 which implies a stabilisation of the half-space upon
the application of a magnetic field. The results for changing 𝛼 with a constant 𝛽 in Fig. 3c are similar with some differences. When 𝛽 is kept constant
and 𝛼 → 0 or very large values, the critical stretch gradually but monotonically decreases with 𝑇1. The snap-back after limit point behaviour is
observed for moderate values of 𝛼 indicating a nonlinear relationship of stability with the 𝛼 parameter. For very large value of 𝛽 = 5 in Fig. 3d, a

onotonic reduction in 𝜆𝑐 𝑟 is observed for all values of 𝛼 indicating a stabilisation effect.

5.3. Perpendicular magnetic induction: Dependence on 𝑇2

Fig. 4 shows the dependence of the critical bifurcation stretch 𝜆𝑐 𝑟 with respect to the applied dimensionless perpendicular magnetic induction
2. The material constant 𝛼 is fixed and the parameter 𝛽 is varied in Figs. 4(a, b), while 𝛽 is fixed and 𝛼 is varied in Figs. 4(c, d). The combined

effect of magnetic load and the values of material parameters on the stability is quite nonlinear and explained below.
It is seen from Figs. 4(a, b) that for both high and low values of 𝛽 the magnetic induction 𝑇2 increases the critical stretch 𝜆𝑐 𝑟 at high 𝑇2 values

thereby destabilising the half-space. When 𝑇2 is small, increasing the magnetic induction first stabilises and then destabilises the half-space. The
nly exception is the case when 𝛽 is close to 1; in this increase in 𝑇2 monotonically reduces the 𝜆𝑐 𝑟 thereby stabilising the half-space. Similar trends
ere reported by Otténio et al. [5], albeit for a smaller range of 𝑇2. For coupling parameter values of 𝛽 ≤ 0.5 and 𝛼 ≥ 0.5, it can be seen from

Fig. 4c that increasing the magnetic induction first reduces and then increases 𝜆𝑐 𝑟. This effect is more prominent for higher values of 𝛼 = 5. For a
igh value of 𝛽 = 5 in Fig. 4d, 𝜆𝑐 𝑟 monotonically increases with the applied magnetic induction. An increase in the magnetic induction 𝑇2 increases
he critical stretch 𝜆𝑐 𝑟, thereby destabilising the half-space with the effect being more prominent for lower 𝛼 values. Unlike the case for parallel
agnetic load discussed in Section 5.2, no limit point is observed for the perpendicular magnetic load.
13 
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6. Conclusion

We have developed a general mathematical formulation to analyse surface instability of a magnetoelastic half-space under both parallel and
perpendicular magnetic loads. The governing equations of equilibrium and bifurcation are natural outcomes of a variational procedure. The
solution process considers all the fields without any algebraic reduction and is therefore amenable to computational implementation as has been
demonstrated herein. The numerical approach highlighted the significance of including fictitious displacements in the vacuum as well as a careful
treatment to avoid non-physical solutions, confirming the necessity of comprehensive formulations in magnetoelastic modelling. We present new
results for bifurcation phase-diagrams for parallel magnetic loads and large perpendicular magnetic loads. In parallel magnetic loads, we observed
that the critical stretch decreases and then increases nonlinearly, revealing the possibility of limit points in the stability curve, a phenomenon which
is absent in the perpendicular magnetic loading condition. Consequently, the numerical solution requires an arc-length approach to appropriately
capture the limit points in the stability phase-space.

Overall, this work lays a foundation for further exploration of magnetoelastic materials in advanced engineering applications, particularly in
ields where controlled surface morphologies are crucial, such as soft robotics, adaptive surfaces, smart sensors and biomedical devices [40–44].

The interplay between magnetic and mechanical fields in elastomers opens new avenues for designing responsive materials capable of dynamic
surface modulation.
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Appendix. Calculations for the second variation of the total energy

In order to consider the second variation of the total energy, we consider two separate perturbations of 𝑊 with respect to both the arguments,
that is, variations 𝛿𝐅, 𝛥𝐅, 𝛿B, 𝛥B. An application of Taylor’s series expansion gives

𝑊 (𝐅 + 𝛿𝐅 + 𝛥𝐅,B + 𝛿B + 𝛥B) =𝑊 (𝐅,B) +𝑊,𝐅 ⋅ [𝛿𝐅 + 𝛥𝐅] +𝑊,B[𝛿B + 𝛥B]

+ 1
2

[

𝑊,𝐅𝐅[𝛿𝐅 + 𝛥𝐅]
]

⋅ [𝛿𝐅 + 𝛥𝐅] + 1
2

[

𝑊,BB[𝛿B + 𝛥B]
]

⋅ [𝛿B + 𝛥B]

+ 1
2
[𝑊,𝐅𝐵

[

𝛿B + 𝛥B]
]

⋅ [𝛿𝐅 + 𝛥𝐅] + 1
2

[

𝑊,B𝐅[𝛿𝐅 + 𝛥𝐅]
]

⋅ [𝛿B + 𝛥B], (A.1)

Similarly, we consider functions with two separate types of variations for Lagrange multiplier and energy density function in the vacuum, and
by focusing exclusively on the second-order terms, the expression for the second variation is

𝛿2𝐸 =∫𝛺𝑅

[

[ 𝜕2𝑊
𝜕𝐅𝜕𝐅

∶ 𝛿𝐅
]

∶ 𝛥𝐅 −
[

𝑝
[ 𝜕2(𝐽 )
𝜕𝐅𝜕𝐅

∶ 𝛿𝐅
]

∶ 𝛥𝐅 + 𝛥𝑝𝛿 𝐽 + 𝛿 𝑝𝛥𝐽
]

+ 2
[ 𝜕2𝑊
𝜕𝐅𝜕 𝐵 ∶ 𝛿𝐅

]

⋅ 𝛥𝐅 +
[ 𝜕2𝑊
𝜕 𝐵 𝜕B ⋅ 𝛿B

]

⋅ 𝛥B

]

𝑑 𝑉𝑅

+ ∫𝛺′𝑅

[

[ 𝜕2𝑊 𝑒

𝜕𝐅𝜕𝐅
∶ 𝛿𝐅

]

∶ 𝛥𝐅 + 2
[ 𝜕2𝑊 𝑒

𝜕𝐅𝜕B∗ ∶ 𝛿𝐅
]

⋅ 𝛥𝐅 +
[ 𝜕2𝑊
𝜕B∗𝜕B∗ ⋅ 𝛿B∗

]

⋅ 𝛥B∗

]

𝑑 𝑉𝑅,

(A.2)

in which

𝐽 (𝐅 + 𝛿𝐅 + 𝛥𝐅) = 𝐽 + 𝜕 𝐽
𝜕𝐅

∶ (𝛿𝐅 + 𝛥𝐅) + 1
2

[

𝜕2𝐽
𝜕𝐅𝜕𝐅

∶ (𝛿𝐅 + 𝛥𝐅)
]

∶ (𝛿𝐅 + 𝛥𝐅) , 𝛿 𝐽 = 𝐽𝐅−𝑇 ⋅ 𝛿𝐅, 𝛥𝐅 = 𝐽𝐅−𝑇 ⋅ 𝛥𝐅. (A.3)

The application of the divergence theorem gives us the second variation as follows to analyse the critical point,

∫𝛺𝑅

[

−Div
(

𝑊,𝐅𝐅𝛥𝐅 −
[

𝛥𝑝[𝐽𝐅−𝑇 ] + 𝑝[𝐽 [𝐅−𝑇 ∶ 𝛥𝐅]𝐅−𝑇 − 𝐽𝐅−𝑇 [𝛥𝐅]𝑇𝐅−𝑇 ]
]

+ 1
2
[𝑊,𝐅B + 𝑊̂,B𝐅]𝛥B

)

⋅ 𝛿 𝜒
]

𝑑 𝑉𝑅

+ ∫𝛺𝑅

[

−
[

𝐽𝐅−𝑇 𝛥𝐅
]

⋅ 𝛿 𝑝 + Cur l
(

𝑊,BB𝛥B + 1
2
[

𝑊,B𝐅 + 𝑊̂,B𝐅
]

𝛥𝐅
)

⋅ 𝛿A

]

𝑑 𝑉𝑅

+ ∫𝛺′𝑅

[

−Div(𝛥𝐏𝑚) ⋅ 𝛿 𝜒 + Cur l
(

𝛥H∗
)

⋅ 𝛿 𝐴
]

𝑑 𝑉𝑅

+ ∫𝜕 𝛺𝑅

[

[

[

𝑊,𝐅𝐅𝛥𝐅 + 1
2
[

𝑊,𝐅B + 𝑊̂,B𝐅
]

𝛥B
]

−
[

𝛥𝑝[𝐽𝐅−𝑇 ] + 𝑝
[

𝐽
[

𝐅−𝑇 ∶ 𝛥𝐅
]

𝐅−𝑇 − 𝐽𝐅−𝑇 [𝛥𝐅]𝑇𝐅−𝑇
]]

− 𝛥𝐏𝑚
]

𝐍 ⋅ 𝛿 𝜒
]

𝑑 𝑆𝑅

+ ∫

[

[

[

𝑊,BB𝛥B + 1 [𝑊,B𝐅]𝛥𝐅
]

− 𝛥H∗
]

× 𝐍 ⋅ 𝛿 𝐴 +
[

𝛥𝐏𝑚𝐍 ⋅ 𝛿 𝜒 + 𝛥H∗ × 𝐍 ⋅ 𝛿 𝐴
]

]

𝑑 𝑆𝑅 = 0

(A.4)
𝜕 𝛺𝑅 2
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in which 𝛥𝐏𝑚 and 𝛥H∗ are

𝛥H∗ = 1
𝜇0𝐽

[

−
[

𝐅−T ⋅ 𝛥𝐅∗]𝐅T𝐅B∗ +
[

𝛥𝐅∗]T𝐅B∗ + 𝐅T𝛥𝐅∗B∗ + 𝐅T𝐅𝛥B∗
]

, (A.5)

and

𝛥𝐏𝑚 = 1
2𝜇0𝐽

[

[𝐅B∗] ⋅ [𝐅B∗]
[

[𝐅−T ⋅ 𝛥𝐅∗]𝐅T + 𝐅−T[𝛥𝐅∗]T𝐅−T
]

− 2
[

[𝛥𝐅∗B∗] ⋅ [𝐅B∗] + [𝐅𝛥B∗] ⋅ [𝐅B∗]
]

𝐅−T

−2[𝐅−T ⋅ 𝛥𝐅∗][𝐅B∗]⊗B∗ + 2[𝐅B∗]⊗ 𝛥B∗ + 2[𝐅𝛥B∗]⊗B∗ + 2[𝛥𝐅∗B∗]⊗B∗

]

. (A.6)

Within this expression, we have introduced the third-order tensors 𝑊,B𝐅, 𝑊̂,B𝐅, which are defined based on the subsequent property:

[𝑊̂,𝐅B𝐮] ⋅ 𝐔 = [𝑊,B𝐅𝐔] ⋅ 𝐮. (A.7)

Data availability

No data was used for the research described in the article.
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