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Highlights
PointNet trained with preprocessed point clouds of facial movements can provide accurate
assessment of facial paralysis.

What are the main findings?

• The accuracy of the new approach was higher than 95%.
• The objective approach offers better assessment than the subjective approach.

What are the implications of the main findings?

• The automated objective assessment of facial paralysis is achievable.
• The deep learning approach enhanced dynamic 3D photogrammetry for facial paraly-

sis assessment.

Abstract: The subjective assessment of facial paralysis relies on the expertise of clinicians;
the main limitation is intra-observer and inter-observer reproducibility. In this paper, we
proposed a deep learning approach combining point clouds of facial movements with
expert consensus to objectively quantify the severity of facial paralysis. A dynamic 3D
photogrammetry imaging system was used to capture the facial movements of five facial
expressions. Point clouds of the face at rest and at maximum expressions were extracted.
These were integrated with the experts grading of the severity of facial paralysis to train
a PointNet network to quantify the severity of facial paralysis. The results showed an
accuracy exceeding 95% for assessing facial paralysis.

Keywords: facial paralysis; dynamic 3D photogrammetry; machine learning; PointNet

1. Introduction
Facial paralysis is a common disorder of the facial nerves, causing weakness and the

disability of facial expressions. The patients lose control of the affected side of their face,
leading to the drooping or stiffness of facial muscles. Facial paralysis can not only cause
significant facial asymmetry, but it can also affect eyesight when the protective closure
mechanisms are lost, leading to corneal ulceration.

Current assessments of facial paralysis in clinical practice rely on the observation of
patients performing specific voluntary facial expressions to assess the function of facial
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muscles. The clinicians subjectively graded the abnormalities in facial morphology and
muscle movements. Subjective facial paralysis grading scale systems, such as the House-
Brackmann scale [1], Sunnybrook Grading scale [2], and Yanagihara system [3], were
used to grade the severity of facial paralysis. Fattah et al. [4] reviewed various facial
paralysis grading scales. They concluded that the Sunnybrook Facial Grading was the only
scale that satisfied all criteria, which included the convenience of clinical use, providing
a regional scoring, static and dynamic measures, and unique features secondary to facial
palsy (e.g., synkinesis). The subjective approaches of assessing facial muscle’s function
presented the shortcoming of low inter-observer and intra-observer reproducibility and
had limited sensitivity and specificity.

In order to improve the diagnosis and management of facial paralysis, the clinicians
need an objective approach to quantify the functional abnormalities associated with facial
muscle movements. Various objective approaches were used to achieve this. Standard
facial images [5–10], videos [11–14], and 3D and 4D images [15–24] have been proposed to
assist clinicians to quantify the severity of facial paralysis. Sophisticated Moiré pattern [25]
and facial blood flow images [26] were proposed to enhance particular facial features for
the diagnosis of facial paralysis. Some recent review papers [27–29] are more inclusive than
previous published papers. So far, no objective assessment methods are widely accepted
for the routine clinical assessment of facial paralysis.

Approaches based on 2D images and videos are readily available using off-shelf
cameras. The 2D analysis of facial muscle movements is limited. Strey et al. [30] attempted
to generate 3D models from 2D images, but errors in the various approaches to generating
3D models were notable. It was reported that 2D analysis underestimated 3D facial
movement amplitudes by up to 43% [31]. 3D imaging approaches provided more accurate
analysis of the 3D facial shape morphology and facilitated the tracking of facial landmarks
or surface points throughout the sequence of the captured 3D facial images.

In order to assess the severity of facial paralysis, facial asymmetry both at rest and
when moving was considered in most objective grading scales of facial
paralysis [7,9,12,13,21,24,26,32,33]. This is not surprising as facial asymmetry is a sig-
nificant feature of facial paralysis. Regional and whole-face analysis became more pop-
ular compared to landmark-based analysis for the detection and assessment of facial
paralysis, especially when the machine learning approaches were applied on images or
videos [7,12,13,32,33]. Only using landmarks or key points on the face required the more
accurate marking or detection of these specific points.

Advances in deep learning and their expanding applications have been utilised to
assess facial paralysis. Image-based approaches [11,34] showed an accuracy of up to 98%
in the detection of facial paralysis; video-based methods produced an accuracy of 95% [14];
and 3D imaging improved the accuracy of classification of facial paralysis by 82% [24].
PointNet [35,36] demonstrated that 3D point clouds can be trained to improve the accuracy
of the recognition of 3D facial expression.

In this paper, we presented our study on the application of PointNet to objectively
quantify the severity of facial paralysis.

2. Materials and Methods
2.1. Data Acquisition

The voluntary facial expressions of 16 patients with unilateral facial paralysis and
16 healthy participants were captured using a dynamic 3D stereophotogrammetry device,
the Di4D capture system (Dimensional Imaging Limited, Hillington Park Innovation Centre,
1 Ainslie Road, Glasgow, G52 4RU, UK). Five voluntary expressions were recorded, which
included eyebrow raising, eye closure, maximal smiling, cheek puffing, and lip puckering.
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The facial expression at rest was also captured. The imaging system consisted of two grey-
scale cameras (1600 × 1200 pixels) and one colour camera that captured videos at 60 fps.
The system was developed by combining stereo matching and optical flow techniques,
being capable of reconstructing a 3D facial model at each frame and tracking any points on
the face of the sequences of expressions [37].

A generic facial mesh of 7859 vertices was conformed to the 3D facial model of the first
frame reconstructed from the captured stereo videos, where the conformed mesh deformed
to the facial shape and maintained the topology of the generic mesh [38,39]. The vertices of
the conformed face mesh were then tracked along the subsequent frames to measure the
movements of the whole face. Using the conformed mesh for facial movement tracking,
the correspondence between all 3D models of the sequences of expressions was established,
enabling further statistical morphometric analysis.

2.2. Feature Engineering

The proposed PointNet network was trained on point clouds of facial expressions
and the corresponding Sunnybrook grades of facial paralysis to predict the severity of
facial paralysis.

The 3D facial models at rest and the maximum frames of each expression were ex-
tracted from the tracked facial expression sequence. At first, the facial model at rest was
aligned with the generic facial mesh using the partial Procrustes method, where its coordi-
nates were defined as x-axis from left to right, y-axis from foot to head, and z-axis from
the back to the front [40]. Then, the facial model at the maximum expression was rigidly
aligned to the 3D model at rest using three facial landmarks (the inner corners of eyes and
the tip of nose). This eliminated the unwanted effect of head movements on the tracked
facial movements. The coordinates of the corresponding vertices of the 3D conformed mesh
of the facial models at rest and maximum expressions were the point clouds data used for
the training of the PointNet network.

We used a modified Sunnybrook grading scale (Table 1) to grade the facial paralysis of
each patient. First, three parameters were assessed at rest, and the other five parameters
were evaluated for each of the five expressions. Seven experts assessed the severity of
the facial paralysis of the recorded videos of the 3D expressions of each patient, and the
grading was repeated after 45 days.

Table 1. Modified Sunnybrook grading system.

Parameter Observation Grade

Resting Symmetry Score
Eye Abnormal/normal 1/2

Cheek [nasolabial] Absent/altered/normal 1/2/3
Mouth [drooped] Abnormal/normal 1/2

Voluntary movement Score
Forehead wrinkling No movement—normal 1–5
Gentle eye closure No movement—normal 1–5

Open mouth smiling No movement—normal 1–5
Cheek puffing No movement—normal 1–5
Lip puckering No movement—normal 1–5

The accuracies of the assessments of individual parameters of the modified Sunny-
brook grades were analysed in a previous study [22]. The 7 assessors graded 16 patients
twice. The modes of the grades were calculated from 14 observations for each patient and
the occurrences of the corresponding modes were obtained. The accuracy of each subjective
parameter was calculated as the number of its occurrences divided by 14.
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The consensus among the seven experts (modes of the grades) were used as the
grades for the training of the PointNet network. The modes of the scores marked by the
clinicians were used as a good standard to evaluate the accuracy of the proposed objective
assessment approach.

2.3. Network Architecture

The network architecture is shown in Figure 1, with FC representing the fully con-
nected layer and BN representing the batch normalisation layer. Features were extracted by
the PointNet layers from the point clouds (vertices of 3D facial models) at rest and at the
maximum frames of each expression. MLP was used to transform individual point features
and also to aggregate global features. Specifically, a shared MLP mapped each point’s
input to a higher-dimensional space [35,36]. This allowed PointNet to learn the feature
representations for each point independently and identically. Two parallel MLPs were used
to process input 1—rest face—and input 2—maximum expression face. Each point cloud
provided distinct information that was processed separately to extract relevant features.
Two parallel MLPs allowed each MLP to specialise in learning the unique characteristics of
each point cloud. Input 3 was a categorical type of data which provided information on the
expression types. The features in combination with the expression type were connected to
fully connected layers to predict the severity of facial paralysis. The output of the regression
layer was the numerical grade of the expression to be assessed. It contained scores for
each of the 5 expressions. An adaptive moment estimation (Adam) solver [41,42] was
used for training the network. The loss function of the regression layer was the half mean
squared error of the predicted responses. There were 160 original data sets which included
5 expressions for 16 patients and 16 health participants. The point clouds were randomly
rotated to the left or right within 15◦, and 2% of random noise was added to augment the
data to 960 samples. A total of 768 samples were used for training and 192 for testing.

Figure 1. Network architecture (FC: fully connected layer, BN: batch normalisation layer).
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2.4. Facial Movement Observation

The conformed 3D model at each frame can also be aligned using the partial Procrustes
method to its own mirrored model to detect the discrepancies between the left and right
sides of the face [43,44], to quantify the facial asymmetry of each 3D captured frame. The av-
erage displacements of facial movements from the rest expression to maximum expression
was calculated. The facial models of the left-sided facial paralysis were all reflected, so the
paralysis was on the right side for the entire sample. The average asymmetries at maximum
expressions were calculated by measuring the distances between the corresponding vertices
of the conformed meshes and their mirrored copy. In perfect symmetry, this measurement
would be equal to zero.

3. Results
Sixteen patients with unilateral facial paralysis were recruited for this study, seven

males and nine females with the average age of 45.3 (23–64) years old. Sixteen age-matched
participants were recruited as well. The Sunnybrook grading scores of the 16 patients were
box plotted and are shown in Figure 2.

Figure 2. Box plot of the Sunnybrook grading scores of the 16 patients (the outliers are plotted
individually using the ‘+’ marker symbol).

The average facial movements of the five facial expressions from the rest frame to the
maximum frame were calculated; the average facial movements of the controls are shown
in the first row of Figure 3, and that of the patients are shown in the second row. The colour
map from blue to red indicates the distances from 0 mm to 10 mm. The differences between
the average movements of the patients and those of the controls are shown in the third
row (blue to red indicate distance differences from −5 mm to 5 mm). The average of the
asymmetries of the patients across the five expressions are shown in the last row (blue to
red indicate distance differences from 0 mm to 10 mm).
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Figure 3. Average facial movements (control−first row; patient−second row); differences between
patients (third row) and controls; and the average asymmetry of the patients (fourth row).

The PointNet network was trained in Matlab R2024a with 768 samples, 200 epochs,
and 96 iteration per epoch. The training finished with a mean squared error (MSE) 0.10,
R-squared 0.93. The training took 38 min on a laptop of single i7 CPU. The curves of the
RMSE and loss of the training process are shown in Figure 4. The 192 test results were
grouped based on the types of expressions and compared to the grades of the exports.
When the difference between the prediction and the grade was less than 0.5, the prediction
was regarded as correct. The accuracies of the PointNet network predictions on the five
expressions were higher than 95% (Table 2). The confusion matrix of each expression is
shown in Figure 5. The accuracies of the Sunnybrook grading of the experts were calculated
from the repeated assessments of the seven assessors as well for comparison.

 

Figure 4. PointNet network training curves of RMSE and Loss.
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Table 2. Accuracy of the assessor and PointNet network on five expressions.

Expressions Eyebrow Raising Eye Closure Smiling Cheek Puffing Lip Puckering

Assessor 74.1% 79.9% 65.2% 73.2% 73.2%
PointNet 100% 97.3% 95.0% 100% 95.7%

Figure 5. Confusion matrix of each expression.

4. Discussion
The 3D dynamic photogrammetry imaging system is capable of tracking full facial

movements [37,42], and the conformation process establishes the correspondences between
all the 3D models of the sequence of the 180 images captured throughout the course of each
facial expression [35,40]. These facial movement data enabled statistical morphometrical
shape analysis. In our previous study on facial paralysis, regional measurements were
calculated to investigate the correlations between the measured asymmetries and the
Sunnybrook grades. Our findings showed that the correlations between the measured
asymmetries and the Sunnybrook grades were poor for cheek puffing and forceful eye
closure [20]. Furthermore, shallow networks were applied on the regional asymmetries
to objectively assess the facial paralysis with reported accuracies of 81.7%, 87.1%, 66.5%,
91.1%, and 77.7% for the five facial expressions, respectively [22]. The regional analysis
simplified the processing of facial data by focusing on anatomically relevant regions for
analysis. This included analysing lid closure in the eye region and smiling in the mouth
region; but in the case of facial paralysis, this approach excluded most compensation facial
movements that are outside the defined anatomical regions. In Figure 3, we can clearly
see the controls performed (red regions) eyebrow raising, smiling, cheek puffing, and lip
puckering but not eye closure due to the poor capturing of the stereophotogrammetry on
the reflective surface of the cornea. The performance of the five expressions was weakened
on the affected right side of facial paralysis, which could be seen from the differences in
the blue and red colours in the third row of Figure 3. The compensation movements of the
facial muscles can be seen, especially in the cheek puffing and lip puckering expressions.
The asymmetries also reflect the weakening side of the face (yellow to red colours). The
colour map is symmetrical due to the fact that the absolute differences between the left and
right are identical.

Given that both the voluntary facial movements and the involuntary compensation
movements “synkinesis” were both important in assessing the severity of facial paralysis,
we believe that full facial movements analysis could improve the accuracy of the assessment.
Machine learning approaches applied on full facial images [24,25] or videos [26] have
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achieved 98% accuracy in the detection/classification of facial paralysis. The combination
of the feature extraction using the 3D dynamic photogrammetry system with the PointNet
network enabled us to achieve accuracies higher than 95% for the assessment of facial
paralysis based on five facial expressions. We believe that the established corresponding
point cloud data enhanced the PointNet network to provide a more accurate assessment of
facial paralysis.

It would be better to integrate the facial image data into the network training to en-
hance the performance of the network. The 3D sequence data process was time consuming
and needs to be addressed.

Further work is needed to extend the assessment on all the parameters of the Sunny-
brook grading scales and the other grading scales to establish an automated assessment
system for the clinical assessment of facial muscle movements. We recommend a larger
sample size to include all spectrums of facial paralysis for deep learning.

5. Conclusions
We enhanced a dynamic 3D stereo photogrammetry imaging system with the proposed

PointNet network for the quantification of the severity of facial paralysis and obtained
accuracies exceeding 95% for severity assessments based on five dynamic facial expressions.

Author Contributions: Conceptualization, X.J., A.A. and S.M.; methodology, X.J. and A.A.; software,
X.J.; validation, X.J.; formal analysis, X.J., A.A. and S.M.; investigation, X.J., A.A. and S.M.; data
curation, X.J.; writing—original draft preparation, X.J.; writing—review and editing, X.J., A.A. and
S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and it was approved by the UK Research Ethics Committee (Reference 17/SC/0541) and
the R&D department of NHS Greater Glasgow and Clyde Health Board (Reference GN17OD401).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data are unavailable due to privacy or ethical restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. House, J.; Brackmann, D. Facial nerve grading system. Otolaryngol. Head Neck Surg. 1985, 93, 146. [CrossRef] [PubMed]
2. Ross, B.; Fradet, G.; Nedzelski, J. Development of a sensitive clinical facial grading system. Otolaryngol. Head Neck Surg. 1996, 114,

380–386. [CrossRef] [PubMed]
3. Yanagihara, N. Grading of facial palsy. In Facial Nerve Surgery, Proceedings of the Third International Symposium on Facial Nerve

Surgery, Zurich, Switzerland, 9–12 August 1976; Fisch, U., Ed.; Kugler Medical Publications: Amstelveen, The Netherlands;
Aesculapius Publishing Co.: Birmingham, AL, USA, 1976; pp. 533–535.

4. Fattah, A.; Gurusinghe, A.; Gavilan, J.; Hadlock, T.; Marcus, J.; Marres, H.; Nduka, C.; Slattery, W.; Snyder-Warwick, A. Facial
nerve grading instruments: Systematic review of the literature and suggestion for uniformity. Plast. Reconstr. Surg. 2015, 135,
569–579. [CrossRef] [PubMed]

5. Pourmomeny, A.; Zadmehr, H.; Hossaini, M. Measurement of facial movements with Photoshop software during treatment of
facial nerve palsy. J. Res. Med. Sci. 2011, 16, 1313–1318.

6. Modersohn, L.; Denzler, J. Facial Paresis Index Prediction by Exploiting Active Appearance Models for Compact Discriminative
Features. In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications–Volume 4 VISAPP: VISAPP, Rome, Italy, 27–29 February 2016; pp. 271–278. [CrossRef]

7. Wang, T.; Zhang, S.; Liu, L.; Wu, G.; Dong, J. Automatic Facial Paralysis Evaluation Augmented by a Cascaded Encoder Network
Structure. IEEE Access 2019, 7, 135621–135631. [CrossRef]

8. Wang, T.; Zhang, S.; Dong, J.; Liu, L.; Yu, H. Automatic evaluation of the degree of facial nerve paralysis. Multimed Tools Appl.
2016, 75, 11893–11908. [CrossRef]

https://doi.org/10.1177/019459988509300202
https://www.ncbi.nlm.nih.gov/pubmed/3921901
https://doi.org/10.1016/S0194-59989670206-1
https://www.ncbi.nlm.nih.gov/pubmed/8649870
https://doi.org/10.1097/PRS.0000000000000905
https://www.ncbi.nlm.nih.gov/pubmed/25357164
https://doi.org/10.5220/0005787602710278
https://doi.org/10.1109/ACCESS.2019.2942143
https://doi.org/10.1007/s11042-015-2696-0


Sensors 2025, 25, 3264 9 of 10

9. Veeravalli, S.; Bodapati, P. Evaluation of Asymmetry in Facial Palsy Images by Generating Facial Key Points and Contours. Electr.
Syst. 2024, 20, 2134–2145.

10. Knoedler, L.; Miragall, M.; Kauke-Navarro, M.; Obed, D.; Bauer, M.; Tißler, P.; Prantl, L.; Machens, H.; Broer, P.; Baecher, H.; et al.
A Ready-to-Use Grading Tool for Facial Palsy Examiners-Automated Grading System in Facial Palsy Patients Made Easy. J. Pers.
Med. 2022, 12, 1739. [CrossRef] [PubMed] [PubMed Central]

11. Mishima, K.; Sugahara, T. Review article: Analysis methods for facial motion. Jpn. Dent. Sci. Rev. 2009, 45, 4–13. [CrossRef]
12. McGrenary, S.; O’Reilly, B.; Soraghan, J. Objective grading of facial paralysis using artificial intelligence analysis of video data. In

Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems [CBMS’05], Dublin, Ireland, 23–24 June 2005;
pp. 587–592. [CrossRef]

13. Xu, P.; Xie, F.; Su, T.; Wan, Z.; Zhou, Z.; Xin, X.; Guan, Z. Automatic Evaluation of Facial Nerve Paralysis by Dual-Path LSTM with
Deep Differentiated Network. Neurocomputing 2020, 388, 70–77. [CrossRef]

14. Arora, A.; Zaeem, J.; Garg, V.; Jayal, A.; Akhtar, Z. A Deep Learning Approach for Early Detection of Facial Palsy in Video Using
Convolutional Neural Networks: A Computational Study. Computers 2024, 13, 200. [CrossRef]

15. Tzou, C.; Pona, I.; Placheta, E.; Hold, A.; Michaelidou, M.; Artner, N.; Kropatsch, W.; Gerber, H.; Frey, M. Evolution of the
3-dimensional video system for facial motion analysis. Ann. Plast. Surg. 2012, 69, 173–185. [CrossRef] [PubMed]

16. Lanz, C.; Olgay, B.; Denzl, J.; Gross, H. Automated classification of therapeutic face exercises using the Kinect. In Proceedings of
the 8th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Barcelona,
Spain, 21–24 February 2013.

17. Desrosiers, P.; Bennis, Y.; Daoudi, M.; Amor, B.; Guerreschi, P. Analyzing of facial paralysis by shape analysis of 3D face sequences.
Image Vis. Comput. 2017, 67, 67–88. [CrossRef]

18. Gaber, A.; Taher, M.; Wahed, M. Quantifying facial paralysis using the kinect v2. In Proceedings of the 37th IEEE Annual
International Conference on Engineering in Medicine and Biology Society (EMBS), Milan, Italy, 25–29 August 2015; pp. 2497–2501.

19. Katsumi, S.; Esaki, S.; Hattori, K.; Yamano, K.; Umezaki, T.; Murakami, S. Quantitative analysis of facial palsy using a
three-dimensional facial motion measurement system. Auris Nasus Larynx 2015, 42, 275–283. [CrossRef]

20. Alagha, M.; Ju, X.; Morley, S.; Ayoub, A. Reproducibility of the dynamics of facial expressions in unilateral facial palsy. Int. J. Oral
Maxillofac. Surg. 2018, 47, 268–275. [CrossRef]

21. Hasebe, K.; Kojima, T.; Okanoue, Y.; Yuki, R.; Yamamoto, H.; Otsuki, S.; Fujimura, S.; Hori, R. Novel evaluation method for facial
nerve palsy using 3D facial recognition system in iPhone. Auris Nasus Larynx 2024, 51, 460–464. [CrossRef] [PubMed]

22. Alagha, M.; Ayoub, A.; Morley, S.; Ju, X. Objective grading facial paralysis severity using a dynamic 3D stereo photogrammetry
imaging system. Opt. Lasers Eng. 2022, 150, 106876. [CrossRef]

23. Gaber, A.; Taher, M.; Nevin, M.W.; Shalaby, M.; Gaber, S. Classification of facial paralysis based on machine learning techniques.
BioMed Eng. OnLine 2022, 21, 65. [CrossRef]

24. Storey, G.; Jiang, R.; Keogh, S.; Bouridane, A.; Li, C.-T. 3DPalsyNet: A Facial Palsy Grading and Motion Recognition Framework
Using Fully 3D Convolutional Neural Networks. IEEE Access 2019, 7, 121655–121664. [CrossRef]

25. Koji, Y.; Manabu, M.; Inokuchi, I.; Kawakami, S.; Masuda, Y. Dynamic evaluation of facial palsy by moire topography video:
Second report. In Proceedings of the BiOS Europe ‘95, Barcelona, Spain, 12–16 September 1995; Medical Applications of Lasers III.
Volume 2623. [CrossRef]

26. Jiang, C.; Wu, J.; Zhong, W.; Wei, M.; Tong, J.; Yu, H.; Wang, L. Automatic Facial Paralysis Assessment via Computational Image
Analysis. J. Healthc. Eng. 2020, 2398542. [CrossRef]

27. Colon, R.; Park, J.; Boczar, D.; Diep, G.; Berman, Z.; Trilles, J.; Chaya, B.; Rodriguez, E. Evaluating Functional Outcomes in
Reanimation Surgery for Chronic Facial Paralysis: A Systematic Review. Plast. Reconstr. Surg.-Glob. Open 2021, 9, e3492. [CrossRef]

28. Lou, J.; Yu, H.; Wang, F. A Review on Automated Facial Nerve Function Assessment from Visual Face Capture. IEEE Trans. Neural
Syst. Rehabil. Eng. 2020, 28, 488–497. [CrossRef] [PubMed]
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