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Pathogen genomic surveillance and the AI revolution
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ABSTRACT The unprecedented sequencing efforts during the COVID-19 pandemic 
paved the way for genomic surveillance to become a powerful tool for monitoring 
the evolution of circulating viruses. Herein, we discuss how a state-of-the-art artificial 
intelligence approach called protein language models (pLMs) can be used for effectively 
analyzing pathogen genomic data. We highlight examples of pLMs applied to predicting 
viral properties and evolution and lay out a framework for integrating pLMs into genomic 
surveillance pipelines.
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G enomic pathogen sequencing during the COVID-19 pandemic highlighted the 
critical role of surveillance in understanding the persistence of SARS-CoV-2 in the 

human population despite high levels of protective immunity and the effect of the 
changing circulating variants on public health, advising policymakers and informing 
vaccine design. With nearly 20 million SARS-CoV-2 genomes currently available in the 
GISAID database, the sequencing effort since 2020 has surpassed those of other viruses, 
followed by less than half a million influenza virus genomes (GISAID) and less than 
50,000 HIV-1 genomes (GenBank) all collected over several decades. The almost real-time 
resolution of circulating SARS-CoV-2 variants allowed scientists to readily detect and 
characterize genome changes corresponding to the virus’s functional and antigenic 
evolution in humans and anthroponosis events to other animals. This phenotypic change 
was apparent from the outset of the pandemic, with genomic surveillance revealing 
the first “functional” substitution, D614G (1, 2), and first significant antigenic substitu
tion, N439K (3), both changes in the virus’s Spike entry glycoprotein. In addition to 
such point mutations creating variants with altered phenotypic properties, the global 
sequencing effort uncovered several mechanisms this new human virus used to maintain 
its circulation in the population: recurring indel mutations generating new variants, e.g., 
deletion H69/V70 (4); independent occurrence of the same amino acid substitutions at 
the same site in different variants (convergence) (5, 6); the emergence of variants of 
concern associated with multiple beneficial mutations through saltation-like evolution 
linked to chronic infections (7, 8); and bringing novel sets of mutations together in one 
variant (recombination) (9, 10), which can have a combinatory beneficial effect for the 
virus (positive epistasis) (11).

The scientific and public health communities’ response to the COVID-19 pandemic 
has been an unprecedented effort to track a novel virus’s evolution in near real time. 
However, SARS-CoV-2 surveillance was fragmentary with global disparities in coverage 
(12), and as the COVID-19 pandemic is now deemed over, sequencing has been 
downscaled. Given the general failure to learn the importance of sufficient levels of 
widespread sequencing to understand novel viruses, it is thus optimistic to expect that 
the same amount of effort will be put into understanding the next virus that spills 
over into humans. In fact, many viruses that have a high potential for impacting global 
health—but primarily affect resource-limited countries, such as the six priority virus 
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pathogens causing human disease (MERS, Lassa, Nipah, Rift Valley Fever, Chikungunya, 
and Ebola) defined by the Coalition for Epidemic Preparedness Innovations—are largely 
under-surveilled. In addition to sequencing efforts, insights on pathogen evolution are 
further powered by time- and resource-consuming computational analyses, as well as 
validation with experimental approaches, such as in vitro deep mutational scanning 
(DMS) (13, 14). Advocating for more funding for pathogen genomic surveillance is 
undeniably the best approach forward; however, other priorities and resource limitations 
have made this approach disappointingly underwhelming so far (15). This leaves us with 
the need to develop enhanced computational approaches for answering the following 
questions: how do we monitor SARS-CoV-2 evolution and that of other endemic viruses 
when surveillance is diminished? How do we characterize the evolutionary landscape of 
neglected pathogens without knowing their underlying diversity? And can we predict 
which viruses have the highest zoonotic potential and prepare ourselves for an outbreak 
of a truly novel so-called “disease X” pathogen?

The field of artificial intelligence (AI) has recently experienced a boom in popularity 
and commercial applications, particularly in the form of large language models (LLMs). 
LLMs are state-of-the-art deep learning models trained on a large text corpus (set of 
words in the context of sentences) that identify fundamental properties of grammar 
and meaning (16). As such, the models can predict how changing a word can alter the 
meaning of a sentence given its understanding of these words in the specified context. 
In the same way, LLMs can be trained in any other corpus of contextualized characters, 
for example, amino acids in protein sequences, i.e., a protein language model (pLM) (17). 
Hie et al. (18) proposed that language models trained on protein sequences, instead 
of words, can be used to represent biological and biochemical properties of viruses. 
By introducing or “embedding” a new sequence into the model’s latent representation 
space, the potential effect of amino acid substitutions in a given peptide sequence 
can be predicted (19). Applied in the context of virus entry glycoproteins, the authors 
suggest that the changes in the “meaning” of a protein correspond to antigenic change, 
while changes in the “grammar” of the protein reflect changes in viral fitness. A number 
of pLMs have been developed recently (20), a popular example being Evolutionary 
Scale Modeling (ESM), trained, in the case of ESM-2, on over 60 million unique protein 
sequences covering all known biological diversity (21, 22). The key merit is that these 
models have a generalized and transferable “understanding” of proteins and, therefore, 
can be used to analyze completely novel sequences without the need for a multiple 
sequence alignment as required by, e.g., AlphaFold models (23). So far, the ESM family of 
models has proven revolutionary for quick and efficient predictions of proteins’ tertiary 
structure and protein design (22, 24, 25). But can the AI techniques be used for effective 
pathogen genomic surveillance?

Two of our recent studies have combined ESM-2 with the available SARS-CoV-2 
genomic surveillance data to make inferences and predictions about the virus’s 
biological properties and evolution. First, on the premises of the protein “meaning” 
and “grammar” scores proposed by Hie et al. (18), Lamb and colleagues (26) use an in 
silico deep mutational scanning approach where each site in the Spike glycoprotein is 
iteratively changed to each possible amino acid residue. The model can then predict 
which sites are likely to accommodate substitutions and which changes are likely to 
be beneficial or deleterious for the virus, providing a high-level understanding of the 
effect substitutions may have on the protein function and structure. This information is 
engraved in protein evolution but may not be captured by high-throughput in vitro DMS 
methods, such as combinatorial antigenic changes and epistatic substitutions. Second, 
Ito and colleagues (27) adapt the ESM-2 architecture on three layers of information: (i) 
the reproductive number associated with each SARS-CoV-2 variant that has circulated 
in the past, (ii) antibody evasion in vitro DMS data, and (iii) Spike sequences represent
ing the wider diversity of the Coronaviridae. This process allows the model to learn 
about the properties of variants that encode distinct Spike proteins and the effect that 
substitutions on these proteins have on evading immunity. Combining this knowledge 
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on SARS-CoV-2 evolution with ESM-2’s understanding of protein language, the authors 
create a model that can accurately predict the reproductive number of past and future 
SARS-CoV-2 variants, simply based on the virus’s Spike protein sequence. Hence, models 
like ESM-2, which need little to no input on the circulating sequence diversity or the 
mechanisms behind virus evolution, can provide rapid valuable insights into pathogen 
biology.

Another innovative new method for viral escape forecasting has shown how using 
the known diversity of related viruses can largely improve the predictive power of 
such models (28, 29). Along the same lines, pLMs can be fine-tuned on specific groups 
of peptides to improve the model’s understanding of that group’s unique biological 
properties (30). We can imagine a starting model such as ESM-2, pretrained on all 
known proteins, that is subsequently fine-tuned on the proteome of a virus group with 
members affecting global health, or even all known virus receptor-binding proteins. 
Embedding a single protein sequence of a new virus genome into such a model would 
produce actionable predictions on viral fitness and antigenicity, as well as identify 
substitutions that may drive these functional changes. This process does not require 
an alignment and is essentially agnostic to the unsampled diversity of the circulating 
pathogen. Even though genomic surveillance is still necessary, only a fraction of the 
circulating diversity needs to be sampled for these models to provide predictive insights 
into the pathogen’s function and potential evolutionary trajectories. The current AI 
models’ usefulness does not extend to epidemiological insights, but sequencing is not 
required for this, with multiple cheaper and more widely available diagnostic tools 
existing for most viral pathogens.

It is clear that AI and protein language models hold great and mostly untapped 
potential for making genomic pathogen surveillance more effective, responsive, and 
less costly. The COVID-19 pandemic has ignited the development of extensive genomic 
surveillance infrastructure globally, which will likely be applied in future public health 
emergencies. Now, as part of ongoing preparedness efforts, is the right time to 
urge scientists developing the computational side of such infrastructure to consider 
implementing pLM methods in their pipelines (Fig. 1). Of course, improvements can 
be made to the methods themselves, for example, expanding and balancing the 
data sets these models are trained on (31). A better understanding of overall protein 
diversity—and specifically virus diversity—can largely aid the predictive ability of these 
models; thus, we note the paramount importance of animal virus discovery in pandemic 
preparedness. Not only for finding where viruses with zoonotic potential reside but also 
for improving the predictive models’ understanding of virus biology and for rational 
design of drug and vaccine interventions.

The inherent caveat of machine learning approaches, being restricted by the diversity 
of the data sets they are trained on, means that predictiveness can reach an “out-of-
distribution” problem. That is, genuine inferences about a protein sequence can only be 
made if it falls within the distribution of sequence contexts the model was trained on. 
Metagenomic virus discovery and high-throughput reanalysis of existing sequencing 
read data sets can largely aid in diversifying training data beyond the formally annotated 
viral protein diversity and expanding the models’ context distribution (32–34). In 
addition to diversity in the sequence training data set, the same caveat applies to 
functional data used for model training. Hence, aside from continuous virus surveillance 
and discovery, experimental molecular virology and phenotypic virus characterization—
potentially driven by initial AI model predictions—should be regularly performed, and 
the resulting data used for training models (Fig. 1). The need for updating training data 
sets should naturally come hand-in-hand with frequently updating the models them
selves. Even though training a pLM from scratch can be very computationally intensive, 
updating existing pLMs with specialized tasks on new data is substantially easier, making 
this technology extremely fitting for dynamically updating data sets (27).

In the presence of comprehensive epidemiological, sequencing, and phenotypic data 
for a virus, combinatorial predictive models can be developed that perform well for 
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variant prediction (35). However, this breadth of data is rarely available. Despite the “out-
of-distribution” problem described above, AI models do have the extrapolative capacity 
to make accurate predictions in the absence of comprehensive data. The future of 
pathogen preparedness should focus on efficiency and effectiveness in translating data 
to successful public health policies and decisions. Integrating AI-driven methods into our 
routine preparedness pipelines will pave the way for making fast and informative risk 
assessments about novel pathogens. This approach reduces the need for comprehensive 
sequencing or immediate experimental validation, which can become targeted and 
frequently feedback to the models (Fig. 1).

When discussing the need for data to train AI models, we should also highlight the 
importance of effectively acknowledging data contributors. Acknowledging sequence 
submitters has been an important discussion throughout the COVID-19 pandemic where 
global availability of SARS-CoV-2 sequences was critical for public health decisions (36). 
For effective and equitable use of the AI-based technologies discussed here, we believe 
that all published models should have full transparency of their training data sets, 
including acknowledging all parties that led to the data collection. Notably, much of 
the sampling and sequencing takes place in resource-limited areas. Acknowledging 
these efforts is essential, but it must be accompanied by guarantees that data submit
ters can also benefit from the models trained on their contributions. Simply making 
model weights and code available is insufficient. In many regions, local computing 
resources are prohibitively expensive, while technical expertise is lacking, and neces
sary infrastructure may be unavailable. To address this, investment in AI development 
should include technical training for data contributors and establishing models available 
through cloud computing where only internet access is required for using the models 
instead of costly local infrastructure. This should apply to academia, but also—perhaps 
even more importantly—to industry since most “foundational” models to date have 
been developed by tech companies that hold the necessary resources and capital to 
support such projects. In these settings, ethics committees should be in place to enforce 
equitable AI model development. Ensuring that data providers are acknowledged and 
have full access to the resulting models is the only way to sustain continuous updating 
and, subsequently, the predictive performance of these models.

So far, genomic surveillance has complemented public policy after a viral outbreak 
has already occurred. The generalizable nature of pLMs has the potential to help us 
create transformative tools where a single genome sequence allows us to predict and 
respond to spillovers, understand variant effects (26), predict functional interactions 
(37), and what interventions are required before widespread transmission takes off in 

FIG 1 Overview of integrating pLMs to pathogen genomic surveillance pipelines to more effectively inform public health decisions on potential outbreaks.
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the human population, enabling truly actionable preparedness strategies. The compute 
capacity required to build such models will require access to intensive GPU resources 
and expertise not usually available to academic biologists. Interdisciplinary partnerships, 
know-how, and training will need to be in place in preparation for the next virus 
outbreak. Without a doubt, viruses will continue to spill over and cause outbreaks that 
we can prevent if we are equipped with the right tools; the time for action is now.
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