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Mitochondria and cell death signalling
Ella Hall-Younger'# and Stephen WG. Tait'

Mitochondria are essential organelles in the life and death of a
cell. During apoptosis, mitochondrial outer membrane perme-
abilisation (MOMP) engages caspase activation and cell
death. Under nonlethal apoptotic stress, some mitochondria
undergo permeabilisation, termed minority MOMP. Nonlethal
apoptotic signalling impacts processes including genome sta-
bility, senescence and innate immunity. Recent studies have
shown that upon MOMP, mitochondria and consequent
signalling can trigger inflammation. We discuss how this
occurs, and how mitochondrial inflammation might be targeted
to increase tumour immunogenicity. Finally, we highlight how
mitochondria contribute to other types of cell death including
pyroptosis and ferroptosis. Collectively, these studies reveal
critical new insights into how mitochondria regulate cell death,
highlighting that mitochondrial signals engaged under nonle-
thal apoptotic stress have wide-ranging biological functions.
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Introduction

Mitochondria have a central role in apoptosis-the best
understood form of regulated cell death (RCD). It has
recently become evident that mitochondria also
contribute, often in a context-dependent manner, to
other forms of RCD including pyroptosis and ferroptosis
[1,2]. During apoptosis, mitochondria undergo mito-
chondrial outer membrane permeabilisation (MOMP),
leading—via the mitochondrial release of cytochrome ¢
through mitochondrial pores—to caspase activation and
cell death (Figure 1) [3]. Due to its pervasive nature
(often occurring in all mitochondria), MOMP was until
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recently considered a cellular death knell. However,
accumulating evidence demonstrates that cells in
response to sublethal stress cells can undergo a process
called minority MOMP —whereby some mitochondria
in a cell selectively permeabilise in the absence of cell
death [4,5]. As we will discuss, sublethal stress via mi-
nority MOMP can have wide-ranging biological func-
tions. Focusing on apoptosis, we centre our review on
recent, novel insights into mitochondrial regulation of
cell death, its biological functions, and how this may
provide new approaches for therapeutic exploitation.

Mitochondrial regulation of apoptosis

The mitochondrial pathway of apoptosis is regulated by
members of the B-cell lymphoma 2 (BCL-2) protein
family. BCL-2 proteins are broadly grouped into proap-
optotic BH3-only proteins, proapoptotic pore-forming
proteins (BAX, BAK and BOK) and antiapoptotic
BCL-2 proteins [6]. Protein—protein interactions un-
derpin how BCL-2 proteins regulate apoptosis
(Figure 1). Antiapoptotic BCL-2 proteins bind to pro-
apoptotic BH3-only proteins or activated BAX or BAK,
blocking pore formation and thereby blocking MOMP.
By sensitising cancer cells to apoptosis, drugs that target
antiapoptotic BCL-2 proteins (called BH3 mimetics)
hold great promise in oncology. The BH3-mimetic
venetoclax that specifically targets BCL-2 is clinically
approved to treat acute myeloid leukaemia and chronic
lymphocytic leukaemia [7,8]. However, venetoclax fails
to inhibit antiapoptotic MCL-1—one of the most highly
expressed BCL-2 proteins in cancer [9]. Secondly,
targeting MCL-1 has been associated with on-target
cardiotoxicity, consistent with an essential role for
MCL-1 in maintaining heart function [10,11]. Recently,
a novel, potent and selective MCL-1 inhibitor has been
reported, that has a short half-life, this is potentially
beneficial to prevent potential cardiotoxicity [12].
MCL-1 also has roles in mitochondrial metabolism and
signalling independent of cell death. Wright et al.
recently found that MCL-1 promotes fatty acid oxida-
tion and the disruption of this by MCL-1-inhibiting
BH3 mimetics could help explain toxicity in cardio-
myocytes, which are notably resistant to apoptosis [13].
Furthermore, MCL-1 inhibition can also cause DNA
damage independent of BAX/BAK-mediated apoptosis
[14]. Understanding noncanonical roles of MCL-1, and
undoubtably other BCL-2 proteins, may offer new
therapeutic strategies to both improve efficacy and
limit toxicity.
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Mitochondrial regulation of apoptosis. The intrinsic apoptotic pathway is tightly regulated by BCL-2 family proteins. Upon an intrinsic lethal stimulus, BH3-
only proapoptotic proteins are activated, upon which BAX is activated and accumulates at the mitochondrial membrane and associates with BAK to
enable pore formation and ultimately MOMP. BOK, which shares structural homology with BAX and BAK, and truncated BID (tBID), a BH3-only protein,
have also been implicated in pore formation in MOMP. During MOMP, intermembrane space proteins are released, including cytochrome cc and SMAC,
into the cytosol. Cytochrome c interacts with APAF1 and pro-caspase-9 to form the apoptosome, leading to caspase-9 activation and consequently
caspase-3 and caspase-7 activation, which go on to ultimately drive cell death. SMAC/DIABLO release inhibits the X-linked inhibitor of apoptosis protein
(XIAP) releasing its inhibition on caspase-3 and caspase-7. BCL-2, B-cell lymphoma 2; MOMP, mitochondrial outer membrane permeabilisation.

The multi-BH domain effectors of apoptosis, BAX and
BAK are activated through BCL-2 protein interactions;
either by direct activation by the binding of BH3
“activator” proteins BID (in its active, truncated form),
BIM and PUMA, which lead to conformational change
and pore formation, or the binding of the prosurvival
proteins, which keep BAX and BAK in an inactive state,
by BH3 proteins [6]. Recently, the GTPase that regu-
lates mitochondrial fission, Dynamin-related protein 1
(Drp1), has been described as a noncanonical activator
of BAX that promotes apoptosis, demonstrating that
BAX activity can occur independent of canonical BH3-
only proteins [15]. Expanding on this theme, a new
mechanism was identified by which the E3 ubiquitin
ligase MARCHFS5 regulates apoptotic cell death through
control of BAK conformation. The authors found that
the deletion of MARCHFS5 resulted in constitutive BAK
activation independent of canonical BH3-only activators
[16]. Moreover, mitochondrial outer membrane (MOM)
pore-forming capability isn’t just restricted to the
multidomain apoptosis effectors since the cleaved,
activated form of BID (tBID) can permeabilise the

MOM and independent of BAX, BAK and BOK. tBID-
mediated MOMP releases SMAC from the mitochon-
dria and can dampen X-linked inhibitor of apoptosis
protein—mediated immune response [17]. The addi-
tional loss of BID layered on top of loss of BAX, BAK and
BOK in an embryonic # vivo setting also exacerbates
birth defects, suggesting a parallel physiological role of
BID-mediated MOMP [18]. Collectively, these data
suggest significant additional complexity in the regula-
tion of MOMP, expanding the repertoire of proteins that
can both signal to and execute MOMP.

Mitochondria, MOMP and signalling

Accumulating evidence demonstrates that MOMP can
occur without a cell committing to die, in a process
termed minority MOMP [4]. Minority MOMP can have
a variety of cellular effects, not least through its ability
to trigger limited caspase activity (Figure 2) [19]. Cells
can tolerate direct low-level activation of executioner
caspases, with, as yet, undefined cellular determinants
regulating whether a cell lives in response to given
caspase activity [20]. MOMP of selected mitochondria
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Consequences of nonlethal mitochondrial signalling. Under nonlethal stresses, cytochrome ¢ can be released from the mitochondrial that can lead to the
formation of the apoptosome, caspase-9 cleavage and activation and caspase-3 activation. Caspase-3 activation has a multitude of substrates, many still
to be determined, but one of note in minority MOMP is the inhibitor of caspase-activated DNAse (ICAD), which is then cleaved, permitting CAD to enter
the nucleus and promote CAD-dependent DNA damage, which can induce genomic instability and oncogenic transformation. Alternatively, cytochrome ¢
release in miIMOMP has recently been shown to engage the integrated stress response (ISR) and promote drug-tolerant persister cell generation through
the activation of haem-regulated inhibitor (HRI) kinase and ultimately elF2a phosphorylation and ATF4 synthesis. Furthermore, under nonlethal stress,
the release of mtDNA acts as a damage-associated molecular pattern (DAMP) to activate the cGAS-STING pathway to promote a proinflammatory
response, which has been shown to have a role in senescence associated secretory phenotype (SASP). BCL-2, B-cell lymphoma 2; CAD, caspase-

activated DNase; MOMP, mitochondrial outer membrane permeabilisation.

is driven, in part, through mitochondrial heterogeneity
in apoptotic priming, as well as mitochondrial dynamics,
where mitochondrial fission promotes miMOMP,
whereas fusion suppresses it [5]. One consequence of
engaging nonlethal caspase activity is the promotion of
DNA damage through caspase-activated DNase (CAD).
Cleavage of the inhibitor of CAD enables CAD to
migrate to the nucleus causing genome instability that
can promote oncogenic transformation [4]. Within
established cancers, Haimovici et al. identified that
CAD activity contributes to the accumulation of
micronuclei and the deletion of CAD-reduced metas-
tasis in xenograft models [21]. The same group also
defined a novel role of CAD in the promotion of cellular
senescence [22].

Importantly, MOMP-dependent DNA damage may also
present a therapeutic vulnerability for cancer cells, by
creating a dependence on the ataxia telangiectasia
mutated (ATM) Kkinase, a central mediator of the DNA
damage responses. Indeed, Ali et al. found that a variety
of targeted therapies (such as EGFR inhibitors) syner-
gise with ATM inhibitors, slowing tumorigenesis in
mouse models of non—small cell lung cancer [23].
Nonlethal MOMP has also been shown to drive drug
persistence through its ability to engage the integrated
stress response (ISR) [24]. Cytosolic cytochrome ¢,
displaying a novel function, activates haem-regulated
inhibitor (HRI) kinase, phosphorylating elF2a, which
leads to ATF4 synthesis and drug persistence (Figure 2)
[24]. Importantly, persister cells display increased
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sensitivity to ferroptosis [24—26]. Thus, targeting the
ISR and/or ferroptosis along with apoptosis inducing
therapies may help eradicate cancer.

While caspases are dispensable for cell death during
mitochondrial apoptosis, they act to silence inflamma-
tion. Perhaps stemming from their bacterial ancestry,
permeabilised mitochondria are potent inducers of
inflammation [27]. For instance, upon MOMP, forma-
tion of BAX/BAK pores enables the herniation of the
mitochondrial inner membrane and release of mtDNA
[19,28]. While largely considered redundant for cell
death, BAK appears to be more effective than BAX in
the formation of macropores and the release of mtDNA
than BAX following apoptotic stress [29]. Importantly,
triggering mitochondrial apoptosis under caspase-
inhibited conditions engages immunogenic cell death
due—at least in partto—inflammation in the dying cell.
Killarney et al. [30] recently demonstrated that, ds mt
dsRNA (generated as a by-product of bidirectional
mtDNA transcription) is released during MOMP, under
caspase-inhibited conditions, activating MDAS5/MAVS/
IRF3 pathway to drive a type I interferon response and
immunogenic cell death. From a therapeutic perspec-
tive, this suggests that caspase inhibition could enhance
the immunogenicity of chemotherapy-induced
apoptosis in immune cold cancers that lack a func-
tional cGAS-STING pathway. Permeabilised mitochon-
dria also activate inflammation independent of nucleic
acid release. For instance, upon MOMP, permeabilised
mitochondria are extensively ubiquitinated, and mito-
chondrial ubiquitination serves to recruit the NF-kB
adaptor molecule NEMO to drive inflammation [31,32].

It is not fully clear what the physiological roles of
miMOMP are, and whether it is an accidental by-prod-
uct or a form of regulated cell signalling. One example is
that mitochondrial fission promotion of miMOMP me-
diates mtDNA release and coordinates the senescence-
associated secretory phenotype, which as senescence is
a natural part of the aging process, this suggests at least
one physiological role of miMOMP [33]. Interestingly,
functional p53 is also required for optimised BH3
mimetic efficiency, and defective p53 can render both
leukaemia and lymphoma resistant to BH3 mimetics
[34]. Minority MOMP in sublethally stressed cells has
recently been found to activate p53, which feeds for-
ward into the induction of proapoptotic BH3-only pro-
teins engaging full-blown MOMP and cell death [35].
How MOMP engages p53 activation remains uncertain,
yet it occurs independent of caspase-dependent DNA
damage. Importantly, minority MOMP was also found to
activate cGAS-STING signalling dependent on release
of mtDNA. Exploiting this knowledge, the authors
found that STING agonists enhanced the ability of
venetoclax to kill leukaemia cells—highlighting a po-
tential new combinatorial approach [35].

Mitochondrial and nonapoptotic cell death

Pyroptosis is an inflammatory form of RCD mediated
through gasdermin D (GSDMD), which is cleaved and
activated by the inflammatory caspases 1,4 and 5,
forming pores in the plasma membrane leading to
cytolysis and release of mature proinflammatory inter-
leukin 1 (IL-1) [36]. However, gasdermins can also
permeabilise intracellular membranes, including the
MOM and mitochondrial inner membrane (MIM),
promoting inflammatory signalling through release of
intermembrane space content, promoting pyroptosis
[37,38]. The N-terminal pore-forming fragment of
GSDMD (GSDMD-NT) has recently been found to
target the inner and outer mitochondrial membranes
dependent on its interaction with the inner mitochon-
drial lipid [38]. Normally, present on the MIM, during
pyroptosis, cardiolipin translocates to the outer mem-
brane. Cleaved GSDMD induces mitochondrial
permeabilisation independent of BAX and BAK enabling
the release of intermembrane space proteins and
mtDNA, an example of which, exo-RNase PNPT1, en-
hances pyroptosis through global mRNA decay [38].
Cleaved gasdermins E(GSDME) and A (GSDMA) have
also been shown to permeabilise the MOM and MIM,
with GSDMA even preferentially localising to the
mitochondria [39]. Along with GSDMD, GSDME can
clevate caspase-3 activity through mitochondrial
disruption and cytochrome ¢ release, partaking in a
signalling feedback loop promoting mitochondrial
damage and axon degeneration and neuron loss in
amyotrophic lateral sclerosis mouse models [40,41].

Ferroptosis is an iron-dependent death driven by lipid
peroxidation [42]. Although, mitochondria do not un-
dergo MOMP during ferroptosis, metabolic changes and
decreased ATP production, as well as being sensitive to
lipid peroxidation, can regulate ferroptosis [42].
Depletion of mitochondria confirmed their role in
cysteine depletion-mediated ferroptosis but not GPX4-
mediated ferroptosis [43]. Glutathione peroxidase 4
(GPX4) is a master regulator of ferroptosis through
inhibiting membrane lipid peroxidation, and although
mitochondria may not be required for its role in
ferroptosis, recent studies have linked mitochondrial
regulation to the integrated stress response and GPX4
accumulation through the Oma-1-Dele-1-Atf4 signalling
axis [44—47]. OMA-1 is an inner membrane protease
that when activated upon mitochondrial stress can
cleave Opal GTPase resulting in inhibition of mito-
chondrial fusion and fragmentation of the mitochondrial
network [48]. Recentlyy, DELE1 (DAP3-binding cell
death enhancer 1) was found to associate with the IMS
and was recognised as a substrate of OMA-1 upon stress;
cleavage of which activated the HRI kinase to induce
the ISR [49,50]. However, whether MOMP enables
DELET! release potentially promoting the ISR under
sublethal apoptotic stress remains unexplored.
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Conclusions and perspectives

Mitochondria sit at a hub of cellular signalling and are
critical in how a cell responds to lethal or sublethal cues.
We have discussed how BCL-2 family member proteins
can moonlight in other signalling pathways beyond their
canonical roles. For instance, MCL-1 can promote fatty
acid oxidation, whilst its absence can cause DNA
damage independent of apoptotic signalling. In addition
to this, BID, a BH3 “activator” also has pore-forming
ability, and BAX and BAK have been shown to be regu-
lated by proteins other than BH3 proteins, including the
mitochondrial GTPase, Drpl, and the E3 ubiquitin
ligase, MARCHF5. This demonstrates increased
complexity in the control of apoptotic signalling opening
new options for therapeutic targeting such as demon-
strated by Diepstaten et al. in combining BH3 mimetics
with STING agonists. Whether MOMP can be inflam-
matory under physiological conditions such as in cells
with reduced caspase activity or the extent of the
occurrence of nonlethal MOMP /# vivo remains an open
question. Nonetheless, our understanding is increasing
as miMOMP appears to have a role in cellular senes-
cence, an integral part of aging, as well as in cancer and
therapy resistance. Further understanding of RCD
signalling networks, such as how apoptosis interacts with
other cell death modalities, under physiological and
disease states could have huge therapeutic benefit, as
well as understanding of aging and longevity.
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