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Abstract

This work describes the development and implementation of a large-deformation solver with ther-

momechanical friction contact for numerical simulation in applications such as friction welding

processes. A finite strain associative coupled thermoplasticity model is used: this resolves the

viscoplastic deformations in the thermomechanically affected zone as well as the elastic stresses

in the parent material. An arbitrary Lagrangian-Eulerian (ALE) formulation for coupled finite

strain thermoplasticity is developed and incorporated into the solver, in which the motion of the

reference configuration is represented incrementally through a reference velocity field. Thus, the

deformation from the material configuration is required neither explicitly in terms of a deforma-

tion field, nor implicitly in terms of the deformation gradient. A range of benchmark examples

serves to elucidate features of the model and computational procedure, also through compar-

ison with a fully Lagrangian approach. Simulation of a direct drive friction welding problem

illustrates the robustness and reliability of the new numerical approach.

1 Introduction

Computational simulations of complex manufacturing and related processes are now routinely

adopted, often alongside experimental approaches, in the design and manufacture of components

in an industrial context. The underlying models are generally highly coupled and nonlinear, and

so represent non-trivial challenges in the development of robust and accurate computational
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models and associated algorithms. A typical example, and one which motivates the work pre-

sented here, concerns friction welding, a family of solid-state joining processes where friction is

used to generate the heat necessary for welding. Friction welds are formed in three stages: first,

mechanical friction at the contact surface between the workpieces and the tool, if one is present,

produces heat, raising the temperature around the interface. In the second stage, the combined

effect of the elevated temperature and compressive and shear stresses plasticises the material in

the vicinity of the friction region. In the third stage, the frictional force is removed and a forging

force is maintained so that the plasticised material solidifies in the presence of compressive stress

to form the weld. Modelling of such a process therefore requires taking account of material be-

haviour that would be modelled as thermoviscoplastic, with heat generation and transfer; and

contact, which might be modelled as frictional or frictionless. In particular, it is essential to

take proper account of the interaction between frictional contact forces and viscoplastic stresses

in a thermomechanically affected zone. The family of friction welding processes includes friction

stir welding (FSW) [32], linear friction welding (LFW)[21], and rotary friction welding (RFW)

[8, 35].

Numerical simulation of friction stir welding has been the subject of much research: see for

example the reviews [12, 24]. Computational approaches to LFW and RFW have also been the

subject of numerical approaches, with some examples being the studies reported in [33, 9, 18, 19].

A literature review of strategies for numerical simulation of linear friction welding was presented

in [6], while reviews of the literature on FSW and LFW are presented in [12, 6, 20].

Many of the early numerical approaches to RFW were based on CFD models. A coupled

thermomechanical model of IFW was developed in [22], where the material was modelled by

an incompressible temperature-dependent viscoplastic Norton–Hoff law. The model in [5] on

the other hand was based on the Navier-Stokes equations with a non-Newtonian viscosity. A

3D rigid viscoplastic simulation of direct drive friction welding was carried out in [38], while

numerical simulation of direct drive friction welding using a modified Carreau fluid constitutive

model was reported in [26]. Other numerical work includes simulations of IFW and FHPP

[10, 37, 15].

In processes such as friction welding the challenges in numerical simulation of the interaction

between frictional contact forces and viscoplastic stresses stem from the large deformations in
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the thermomechanically affected zone (TMAZ), as well as the large range of strain rate values.

The extent of deformations in the TMAZ would result in excessive mesh distortions in the case

of finite element-based simulations, which would necessitate frequent remeshing or the adoption

of an Arbitrary Lagrangian Eulerian (ALE) formulation [12, 6].

The two main formulations of ALE for finite strain plasticity in the literature [25, 3] are not

suited to addressing these challenges. First, they both rely on keeping track of the significant

deformation from the initial material configuration, either explicitly by representing the initial

material configuration as a variable, or implicitly by keeping track of the deformation gradient.

Second, both formulations rely on a split step approach, which comprises a Lagrangian step

where the deformed configuration is computed with the mesh velocity kept constant, and an

Eulerian step where the mesh is updated keeping the deformation fixed. The large range of

deformation rate values within the weld is such that updating the deformation in a Lagrangian

step without excessive mesh distortion would require a very small time step, which may increase

the required simulation time to prohibitive durations.

The aim of this work is to address these challenges by implementing a novel Arbitrary La-

grangian Eulerian (ALE) procedure for numerical simulation of thermomechanical processes in-

volving viscoplastic materials undergoing large deformations, with thermomechanical frictional

contact, in which the motion is represented in terms of an intermediate reference configuration

by a combination of the deformation and the reference velocity. The deformation from the

material configuration is required neither explicitly – through the material configuration field

– nor implicitly by tracking the deformation gradient. Instead, the material configuration is

referenced in terms of the reference velocity, so that excessive deformation in the TMAZ does

not cause numerical difficulties. Also, the stresses are resolved by simultaneously updating the

deformation and the reference velocity, so that the number of time steps required to simulate the

weld remains reasonably small, preventing excessive computational expense. The finite strain

plasticity and finite deformation thermomechanical frictional contact formulations are extended

by including the contribution of the reference velocity. A Newton-Raphson procedure, with the

use of consistent tangent moduli, is adopted, in this way ensuring the second-order convergence

properties of the method.

The model is implemented in C++, leveraging deal.II [4], an object-oriented library that enables
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rapid development of numerical simulation codes inter alia by providing classes that compute el-

ement degrees of freedom and element shape functions. The model is set up to run on distributed

memory parallel computing systems.

The structure of the rest of this work is as follows. Section 2 is concerned with the relevant

kinematics, including that required for the ALE formulation and for multibody frictional contact.

Section 3 comprises an overview of the balance equations, and the constitutive relations for finite

strain thermoviscoplasticity and for thermomechanical frictional contact. The weak formulation

of the problem is developed in Section 4, and the time- and spatially discrete versions follow.

Details of the predictor-corrector approach adopted for updating plastic behaviour are given here,

as are details of the mechanical-thermal operator split proces and the ALE iteration procedure.

In Section 5 a range of benchmark problems is presented so as to elucidate key features of the

model and the computational procedure. The latter includes a comparison between the current

ALE procedure with a fully Lagrangian approach. Then, in Section 6 the approach is applied

to a friction welding problem. These examples illustrate the reliability and robustness of the

new numerical approach. The work concludes with summarizing remarks and an indication of

avenues for further work on this topic.

2 Kinematics, the ALE formulation, and contact

2.1 Configurations and fields of a deformable body

We consider two deformable bodies undergoing thermomechanical frictional contact. We des-

ignate one the contactor and the other the target and index them, respectively, by ‘con’ and

‘tar’, see Figure 1. They are denoted in the material configuration by ΩB
0 ⊂ R3, B ∈ {con, tar}.

The motion is defined by x = φ0 (X0, t), which is invertible with respect to the first pa-

rameter and which maps the material configuration ΩB
0 to the current configuration Ω̃B :=

{x = φ0(X0, t)|X0 ∈ ΩB
0 }. The local deformation state from the reference configuration is de-

scribed by the deformation gradient F = ∂φ0/∂X0 . A field q := q0(X0, t) has the spatial form

q = q̃(x, t) = q0(φ
−1
0 (x, t), t). The spatial and material gradients of q are denoted, respectively,
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Figure 1: Configurations of contacting bodies

by

∇q := grad q :=
∂q̃

∂x
, and Grad0 q :=

∂q0
∂X0

. (2.1)

The first and second partial time derivatives of the motion at a fixed material point are, respec-

tively, the material velocity v and acceleration a:

v := ẋ :=
∂

∂t
φ0(X0, t) , a := ẍ :=

∂2

∂t2
φ0(X0, t) . (2.2)

In general, we adopt the notations

q̇ :=
Dq

Dt
:=

∂q0
∂t

. (2.3)

Continuity and material impenetrability conditions require throughout the motion that the

Jacobian determinant J of the deformation gradient satisfy J := det (F ) > 0 .

In an Arbitrary Lagrangian Eulerian (ALE) configuration, fields are given as functions of position

in an arbitrary reference configuration ΩB given by the reference motion Υ0 : Ω
B
0 × R+ → R3,

which is continuous and invertible with respect to the first parameter, with ΩB := {X =

Υ0(X0, t)|X0 ∈ ΩB
0 }.
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A field q = q0(X0, t) is given in the reference configuration by q = q(X, t) = q0(Υ
−1
0 (X, t), t).

The gradient of a scalar field q and the gradient and divergence of a tensor field q in the reference

configuration are denoted, respectively, by

Grad q :=
∂

∂X
q(X, t) , Grad q :=

∂

∂X
q(X, t) , Div q := (Grad q) : 1.

In particular, the gradient of the motion φ in the reference configuration is denoted by

F c :=
∂

∂X
φ(X, t) =

∂

∂X
φ0(Υ

−1
0 (X, t), t) , (2.4)

where the subscript c refers to the current configuration. It is related to the deformation gradient

through the chain rule, by

F = F cF r , (2.5)

where F r is the reference motion gradient defined by F r := Grad0Υ0 .

Gradients in the reference and current configurations are related, through the chain rule, by

∂ •̃
∂x

=
∂ •
∂X

(
∂x

∂X

)−1

; (2.6)

that is,

∇• = (Grad •)F−1
c . (2.7)

The material time derivative of the reference motion is the reference velocity

V :=
∂

∂t
Υ0(X0, t). (2.8)

It gives the material time derivative in the reference configuration of a field q(X, t) as

q̇(X, t) =

(
∂q

∂t
+ (Grad q) · V

)∣∣∣∣
(X,t)

. (2.9)

The velocity is then given in the reference configuration by

v =
∂φ

∂t
+ F cV . (2.10)
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Similarly, the acceleration is given by

a =
∂2φ

∂t2
+ 2

(
∂F c

∂t

)
V + F c

(
∂V

∂t
+ (Grad V )V

)
+ ((Grad F c)V )V . (2.11)

The velocity gradient in the reference configuration is defined by

L := GradV = Ḟ rF
−1
r . (2.12)

Its symmetric and skew symmetric parts are, respectively,D = 1
2

(
L+Lt

)
, andW = 1

2

(
L−Lt

)
.

2.1.1 Material remapping operator

Let □ be any scalar or tensor field given as a function of position in the reference configuration

and time as □ = □(X, t) and as a function of position in the material configuration and time

as □ = □0(X0, t). Then, for a point X in the reference configuration, and two time instants

t, τ > 0, we define the material remapping operator M by

Mt
τ{□}

∣∣
X

:= M(□,X, τ, t) := □0

(
Υ−1

0 (X, t), τ
)
. (2.13)

The operator M remaps the material configuration such that any point X0 is identified by its

position X in the reference configuration at time t: X = Υ0(X0, t). Position in the reference

configuration is itself a valid input to the operator M, since it is given as a function of position

in the reference configuration and time by the identity function, and is given as a function of

position in the material configuration and time by the reference motion Υ0. Thus,

Mt
τ{X} = Υ0

(
Υ−1

0 (X, t), τ
)
. (2.14)

Since □(X, τ) = □0(Υ
−1
0 (X, τ), τ), we get

□(Mt
τ{X}, τ) = □0(Υ

−1
0 (Mt

τ{X}, τ), τ)

= □0(Υ
−1
0 (Υ0

(
Υ−1

0 (X, t), τ
)
, τ), τ) = □0

(
Υ−1

0 (X, t), τ
)
, (2.15)

which, by definition (2.13), gives

Mt
τ{□}

∣∣
X

= □
(
Mt

τ{X}, τ
)
. (2.16)

This obviates the requirement of keeping track of the material configuration for evaluating

Mt
τ{□}

∣∣
X
, as long as Mt

τ{X} is known, which is the position in the reference configuration at

time τ of the material point whose position in the reference configuration at time t is X.
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Figure 2: Contact target surface configurations

2.2 Multibody frictional contact

Frictional contact occurs between two deformable bodies, a contactor and a target, which are

given in the reference configuration, respectively, by Ωcon and Ωtar ⊂ R3. The subset of the

boundary of each body that may potentially come into contact with the other is denoted, in the

reference configuration, by ΓB
c ⊆ ∂ΩB, B ∈ {con, tar}.

The target surface in the reference configuration Γtar
c ⊂ R3 is parameterised by a region Γ̂tar ⊂ R2

through a continuous bijective mapping η̂ : Γ̂tar → Γtar
c such that Y = η̂(Ŷ ). For each contactor

point X ∈ Γcon
c , a corresponding target point Y = η(X, t) ∈ Γtar

c is considered such that the

distance in the current configuration is minimized between the two points x = φ(X, t) and y =

φ(Y , t). Thus, the contactor point X is related to Ŷ by Ŷ = Ŷ (X, t) := η̂−1 (η(X, t)) ∈ Γ̂tar,

and for any Ŷ
′ ∈ Γ̂tar, by∥∥∥φcon(X, t)−φtar

(
η̂
(
Ŷ (X, t)

)
, t
)∥∥∥ = min

Ŷ
′

∥∥∥φcon(X, t)−φtar
(
η̂
(
Ŷ

′)
, t
)∥∥∥ , (2.17)
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which implies

[
φcon(X, t)−φtar (η(X, t), t)

]
·

{[
∂

∂Y

∣∣∣∣
Y =η(X,t)

φtar(Y , t)

]
∂η̂

∂Ŷ

∣∣∣∣
Ŷ =Ŷ (X,t)

}
= 0 . (2.18)

The contact geometry is represented in Figure 2.

The partial time derivative of the position y = φtar (η (X, t) , t) of the target point in the current

configuration is given by

∂

∂t
φtar
i (η(X, t), t) =

∂

∂t
φtar
i (Y , t)

∣∣∣∣
Y =η(X,t)

+

[
∂

∂Yj
φtar
i (Y , t)

∣∣∣∣
Y =η(X,t)

]
∂

∂t
ηj(X, t) . (2.19)

We denote the gradients with respect to Ŷ of the target position in the reference and current

configurations, respectively, by

Ξ = Ξ(Ŷ ) :=
∂η̂

∂Ŷ
, (2.20)

G = G(Y , t) :=

[
∂

∂Y
φtar(Y , t)

]
∂η̂

∂Ŷ

∣∣∣∣
Ŷ =η̂−1(Y )

. (2.21)

Then equation (2.18) becomes

[
φcon(X, t)−φtar (η(X, t), t)

]
·G (η(X, t), t) = 0 . (2.22)

For a fixed contactor point X ∈ Γcon
c and a target point Y = η(X, t) ∈ Γtar

c , the partial time

derivative of G(η(X, t), t) is, using the chain rule,

∂

∂t
Gij (η(X, t), t) =

(
∂

∂t
[φi,k (Y , t)]

∣∣∣∣
Y =η(X,t)

)
Ξkj

(
Ŷ (X, t)

)
+

(
∂

∂Ŷl

[
Gij

(
η̂(Ŷ ), t

)]∣∣∣∣
Ŷ =Ŷ (X,t)

)
∂

∂t
Ŷl (X, t) , (2.23)

where

∂

∂Ŷl
Gij

(
η̂(Ŷ ), t

)
=φi,km

(
η̂(Ŷ ), t

)
Ξml

(
Ŷ
)
Ξkj

(
Ŷ
)

+ φi,k

(
η̂(Ŷ ), t

)
η̂k,jl

(
Ŷ
)
. (2.24)

9



Γ̃tar
c

Γ̃con
c

g = −(x− y) · n

n

x =
φ (c)(X

, t)

y =
φ
(t) (η

(X
, t)
, t)

c

m w

Figure 3: Normal contact penetration

Similarly, the partial time derivative of η (X, t) = η̂
(
Ŷ (X, t)

)
is

∂

∂t
η(X, t) =

(
∂

∂Ŷ
η̂(Ŷ )

∣∣∣∣
Ŷ =Ŷ (X,t)

)
∂

∂t
Ŷ (X, t)

= Ξ
(
Ŷ (X, t)

) ∂

∂t
Ŷ (X, t) . (2.25)

In turn, the partial time derivative of Ŷ (X, t) is obtained by differentiating both sides of (2.22)and

making use of (2.23) to get

∂

∂t
Ŷk (X, t) = [Ajk (X, t)]−1 Vj (X, t) , (2.26)

where

Ajk (X, t) = Gij(η(X, t), t) Gik(η(X, t), t)

−
[
φcon
i (X, t)− φtar

i (η(X, t), t)
] ∂

∂Ŷk

[
Gij

(
η̂(Ŷ ), t

)]∣∣∣∣
Ŷ =Ŷ (X,t)

, (2.27)

and

Vj (X, t) =
[
φcon
i (X, t)− φtar

i (η(X, t), t)
]( ∂

∂t

[
φtar
i,k (Y , t)

]∣∣∣∣
Y =η(X,t)

)
Ξkj

(
Ŷ (X, t)

)
+

[
∂

∂t
φcon
i (X, t)− ∂

∂t
φtar
i (Y , t)

∣∣∣∣
Y =η(X,t)

]
Gij(η(X, t), t) . (2.28)

Normal contact. The penetration g is defined by (Figure 3)

g(X, t) := −
[
φcon(X, t)−φtar(η(X, t), t)

]
· n (η(X, t), t) ≤ 0 , (2.29)
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where n = n (Y , t) is the outward unit normal of the target surface in the current configuration

φtar(Γtar
c , t) at y = φtar(Y , t) with Y = η(X, t) ∈ Γtar

c .

The partial time derivative of the unit normal

∂n

∂t
= −

(
G
(
GtG

)−1 ∂G
t

∂t

)
n . (2.30)

Slip velocity. The contact slip velocity, which is defined as the projection of the difference

between the contactor and target velocities onto the plane tangent to the target surface, is

vs := G
(
GtG

)−1
Gt
(
vcon − vtar

)
,

=G
(
GtG

)−1
Gt

(
∂φcon

∂t
− ∂φtar

∂t

∣∣∣∣
Y =η(X,t)

)
+G

(
GtG

)−1
Gt
(
(Gradφcon)V con −

(
Gradφtar

)
V tar

)
, (2.31)

using (2.10). The use of equation (2.30) with

Gij
∂Ŷj
∂t

= φi,kΞkj
∂Ŷj
∂t

= φi,j
∂ηj
∂t

, (2.32)

(
φcon
m − φtar

m

)
= −gnm , (2.33)

and substitution in (2.31) gives the slip velocity

vs =
(
Gradφtar

) ∂η
∂t

− g
∂n

∂t
+G

(
GtG

)−1
Gt
(
(Gradφcon)V con −

(
Gradφtar

)
V tar

)
. (2.34)

3 Governing equations and constitutive models

3.1 Governing balance equations

Balance of momentum. We denote by σ the symmetric Cauchy stress tensor, and by P the

first Piola-Kirchhoff stress which is related to σ by

P = JσF−t . (3.1)
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We will also require the Kirchhoff stress

τ = Jσ . (3.2)

With these definitions the equation of balance of linear momentum is, in the current configura-

tion,

ρ
Dv

Dt
− divσ = ρf . (3.3)

The corresponding equation in the reference configuration is

ρm
Dv

Dt
−DivP = f b , (3.4)

where f b is the external force per unit volume in the reference configuration and ρm is the mass

density per unit volume in the reference configuration.

Mechanical boundary conditions. Boundary conditions corresponding to the momentum

equation are as follows:

φ(X, t) = φpre(X, t) on ΓB
Dµ

⊂ ΓB , (3.5a)

V (X, t) = V pre(X, t) on ΓB
V ⊂ ΓB , (3.5b)

σ n = f s on ΓB
Nµ

⊂ ΓB . (3.5c)

Here, ΓB
Dµ

is the subset of ΓB where an essential boundary condition is given on the deformation,

ΓB
V is the subset where an essential boundary condition on the velocity is given, and ΓB

Nµ
is that

where a natural boundary condition on the boundary traction is given.

Furthermore, on each contact boundary pair Γcon
c and Γtar

c , contact boundary conditions are

given by

σconncon = f c on Γcon
c , (3.6a)

σtarntar = −f c on Γtar
c (3.6b)

where f c is the contact force.

Initial conditions. At time t0, the initial deformation and reference velocity are prescribed:

φ(X, t0) = xinitial(X) , (3.7a)

V (X, t0) = V initial(X) . (3.7b)
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Balance of energy. The local form of balance of energy is [29]

−J div

[
1

J
q

]
+Rb = ė− τ : d , (3.8)

where Rb is the heat source per unit volume in the reference configuration and e is the internal

energy.

3.2 Finite strain thermoplasticity

An appropriate model for plastic behaviour is the coupled thermomechanical J2-flow theory

for associative thermoplasticity at finite strains [29]. The model is based on a multiplicative

decomposition of the deformation gradient into its elastic and plastic parts; that is,

F = F eF p . (3.9)

We define in addition the elastic left and plastic right Cauchy-Green deformation tensors re-

spectively by

be = F eF et , Cp = F ptF p , Gp = (Cp)−1 . (3.10)

Plastic deformation is assumed volume preserving, so that det F p = 1 . As a consequence, the

Jacobian is equal to that for the elastic part of the deformation gradient: that is, J = detF =

detF e .

One may decompose be into a volume-preserving part b̄
e
and a volumetric part J according to

be = J2/3b̄
e
, det b̄

e
= 1 . (3.11)

The total time derivative of be is given by

ḃ
e
= ḞGpF t + FGpḞ t + FĠ

p
F t

= lbe + belt + Lvb
e, (3.12)

where

Lvb
e := FĠ

p
F t (3.13)
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is the Lie derivative of be.

Multiplicative split in the reference configuration. We start by defining

Be := F rG
pF t

r , (3.14)

so that be can be expressed in the form

be = F cB
eF t

c . (3.15)

Then, the elastic strain rate (3.12) can be written as

ḃ
e
= Ḟ cB

eF t
c + F cB

eḞ
t
c + F c

[
LBe +BeLt

]
F t

c + Lvb
e (3.16)

=
[
Ḟ cF

−1
c + F cLF−1

c

]
be + be

[
Ḟ cF

−1
c + F cLF−1

c

]t
+ Lvb

e . (3.17)

Balance of energy. For thermoplastic bodies the total entropy η is assumed to be additively

decomposable into elastic and plastic parts [29] so that

η = ηe + ηp . (3.18)

The internal energy, introduced in (3.8), is then related to the free energy ψ through ψ = e−ηeθ .

Elastic and thermal behaviour are defined through a free energy function

ψ = ψ̂
(
J, b̄

e
, θ, α

)
. (3.19)

We define the dissipation

D := θη̇ + τ : d− ė ≥ 0 . (3.20)

Application of the now-standard Coleman-Noll procedure to (3.20), using also (3.19), gives

τ = 2
∂ψ̂

∂be
be, ηe = −∂ψ̂

∂θ
, β = −∂ψ̂

∂α
. (3.21)

The use of these expressions in the dissipation then leads to the expression

D := τ : [−1
2(Lvb

e)(be)−1 + βα̇︸ ︷︷ ︸
Dmech

+ θη̇p︸︷︷︸
Dtherm

, (3.22)

in which the mechanical and thermal contributions Dmech and Dtherm are also made explicit.

The equation of balance of energy can then be written in the form

−J div

[
1

J
q

]
+Rb = θη̇e −Dmech . (3.23)
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Furthermore the evolution equation for the temperature becomes [29]

cθ̇ = (Dmech −H) +
[
Rb −Div

(
F−1

c q
)]
, (3.24)

in which the structural heating H is defined by

H = −θ ∂
∂θ

(τ : d−Dmech) , (3.25)

and the specific heat capacity c per unit volume in the reference configuration is given by

c = −θ∂
2ψ̂

∂θ2
.

Thermal boundary conditions. The thermal boundary conditions are

θ(X, t) = θ̄(X, t) on ΓB
Dθ

⊂ ΓB , (3.26a)

q · n = Rs on ΓB
Nθ

⊂ ΓB , (3.26b)

where ΓB
Dθ

and ΓB
Nθ

are complementary subsets of ΓB such that ΓB
Dθ

∩ ΓB
Nθ

= ∅. In addition,

on each contact boundary pair Γcon
c and Γtar

c , thermal contact boundary conditions are given in

terms of the contact heat flux qhc and the frictional heat generation DB
fric by

qcon · ncon = Dcon
fric + qhc on Γtar

c , (3.27a)

qtar · ntar = Dtar
fric − qhc on Γtar

c . (3.27b)

The thermal initial condition is given by

θ(X, t0) = θinitial(X) . (3.28)

The free energy function. We adopt a free energy function of the form [29]

ψ̂ = T̂ (θ) + M̂(J, θ) + Û(J) + Ŵ (b̄
e
) + K̂(α), (3.29)

with

Û(J) = κ

[
1

2

(
J2 − 1

)
− ln J

]
and Ŵ (b̄

e
) =

∫
µ

2

(
log b̄

e) (
b̄
e)−1

: db̄
e
, (3.30)

and where µ and κ are the elastic shear and bulk moduli.

From (3.21)1 and taking account of the volumetric-deviatoric split, the Kirchhoff stress tensor

τ = Jσ is then given by

τ = J

(
∂ψ̂

∂J

)
1+ 2

∂ψ̂

∂b̄
e b̄

e
, (3.31)
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so that the elastic relation is given in terms of the deviatoric and spherical parts of the stress,

respectively dev τ and p, by

dev τ = µ log b̄
e
, (3.32a)

p = κ
(
J2 − 1

)
. (3.32b)

The yield criterion and flow relation[29]. The yield function is defined by

ϕ = ϕ̂(τ , β, θ), (3.33)

The flow relations corresponding to associative plasticity with a normality law are then

Lvb
e = −2γ[∂τ ϕ̂]b

e , α̇ = γ∂βϕ̂ , η̇p = γ∂θϕ̂ , (3.34)

where ηp as before is the plastic entropy, together with the complementarity conditions

ϕ ≤ 0, γ ≥ 0, γϕ = 0 , (3.35)

where γ is a non-negative scalar multiplier.

Viscoplastic behaviour. We extend the plasticity model to accommodate viscoplastic be-

haviour, by prescribing the viscoplastic yield stress σy = σy(α, α̇, θ), together with the von

Mises yield criterion:

ϕ = |dev τ |
√

2
3σ

y(α, α̇, θ) ≤ 0 . (3.36)

One of the most commonly used among these constitutive models is the Johnson-Cook model [13],

which has been used in several works on simulation of FSW [27, 11, 34]:

σy = [A+B(α)n]

[
1 + C ln

(
α̇

ε̇vp0

)][
1−

(
θ − θR
θM − θR

)m]
. (3.37)

Here A, B, C, m and n are model parameters, θR and θM are respectively the reference and

melting temperatures, and ε̇vp0 is the reference strain rate.

A further form for the yield stress that will also be used in computations is that adapted from the

constitutive law described in [26]. Specifically, the constitutive law is modified so that strain rate

dependence only takes effect when the strain rate exceeds a temperature-dependent minimum

value ε̇min given by

ε̇min =

(
1−

(
θ − θR
θM − θR

)m)
ε̇0 . (3.38)
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The strain rate value used in the constitutive law is then taken to be the greater of the two

values: the equivalent plastic strain rate α̇ and this minimum value ε̇min:

ε̇ = max(α̇, ε̇min) . (3.39)

The flow stress is then given as a function of a strain-rate independent yield strength σys and

the modified strain rate ε̇ as

σy = 3


1 +(( σys

3ε̇0µ0

) 1
d−1 ε̇

ε̇0

)2
 d−1

2

(µ0 − µ∞) + µ∞

 ε̇ , (3.40)

σys = (A+Bαn)

(
1−

(
θ − θR
θM − θR

)m)
. (3.41)

Finally, the expressions for the mechanical dissipation, structural heating and heat flux are

Dmech =
√

2
3γσ

y, H = −θJ̇ ∂2ψ̂

∂θ∂J
, q = −k grad θ, (3.42)

where k is the thermal conductivity in Fourier’s heat conduction law.

3.3 Thermomechanical frictional contact

Mechanical contact. The contact conditions are concisely expressed as the complementarity

conditions

g ≤ 0 fN ≥ 0 , fN · g = 0 , (3.43)

in which g is the gap (see (2.29)), and fN := −n · f c is the normal traction. The stick-slip

condition of the tangential contact tractions is given in terms of the tangential component of

the contact traction fT := f c− (n · f c)n, the stick limit Φ (fT , fN ), and a Lagrange multiplier

ν, by the complementarity conditions [30]

Φ (fT , fN ) ≤ 0 , ν ≥ 0 , νΦ = 0 , (3.44)

and the evolution law

vs = ν
∂Φ

∂fT

, (3.45)
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where the slip velocity vs, given by (2.34), is the tangential component of the relative velocity

between the contactor and the target in the current configuration.

Thermal contact. The heat flux through the contact interface is given by [1]

qhc = ĥ(tN , θG)gθ(X, t) (3.46)

where gθ(X, t) := θcon(X, t)− θtar(η(X, t), t) is the temperature difference across the interface.

The heat transfer coefficient ĥ is a function of the normal contact force tN and the mean gas

temperature, which is given in terms of the relative thermal effusivities hBϵ , i ∈ {c, t}, and the

temperatures at the contact interface by

θG(X, t) = hconϵ θcon(X, t) + htarϵ θtar(η(X, t), t) . (3.47)

Frictional heat generation due to tangential slip against frictional forces is modelled as a bound-

ary heat source given by

DB
fric = hBϵ vs · fT , i ∈ {c, t} . (3.48)

4 Weak continuous and discrete formulations

4.1 Weak formulations

We take the inner product of equation (3.4) with an arbitrary test function δu that is sufficiently

smooth and which satisfies the homogeneous form of the essential boundary conditions (3.5a)

and (3.5b), and integrate over the reference configuration ΩB. This gives∫
ΩB
δu ·DivP dΩ +

∫
ΩB
δu · f b dΩ =

∫
ΩB
δu · ρmadΩ . (4.1)

Integration by parts and use of the identity

Grad δu : τF−t
c = (Grad δu)F−1

c : τ

= ∇δu : τ , (4.2)
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gives the equation in the form∫
ΩB
δu ·DivP dΩ =−

∫
ΩB

∇δu : τ dΩ +

∫
ΓB
Nµ

δu · f s JΓ dΓ +

∫
ΓB
c

sBδu · f c JΓ dΓ , (4.3)

where we have used JΓ := dΓ̃/dΓ = J∥F−tN∥ and also substituted the surface forces from the

boundary conditions (3.5c) and (3.6). The contact surface sign function sB, B ∈ {con, tar} is

defined as

scon := 1 , star := −1 . (4.4)

By substitution of (4.3) and following the convention of integrating the contribution of the target

surface on the contactor surface instead [16], equation (4.1) becomes∫
ΩB

∇δu : τ dΩ +

∫
ΩB
δu · ρma dΩ−

∫
ΩB
δu · f b dΩ

−
∫
ΓB
Nµ

δu · f s JΓ dΓ−
∫
Γcon
c

sBδu · f c JΓ dΓ = 0 . (4.5)

The inertial force term can be expanded by substitution of equation (2.11) to obtain∫
ΩB
δu · ρma dΩ =

∫
ΩB
δu · ρm

[
∂2φ

∂t2
+ 2

(
∂F c

∂t

)
V + F c

(
∂V

∂t
+ (GradV )V

)
+((GradF c)V )V ] dΩ . (4.6)

The term involving GradF c can be simplified using integration by parts, to give eventually∫
ΩB
δu · ρma dΩ =

∫
ΩB
δu · ρm

[
∂2φ

∂t2
+ 2

(
∂F c

∂t

)
V + F c

(
∂V

∂t

)]
dΩ

−
∫
ΩB
δu ·Div(ρmV )F cV dΩ−

∫
ΩB

((Grad δu)V ) · ρm (F cV ) dΩ

+

∫
ΓB
δu · ρm (F cV ) (V ·N) dΓ . (4.7)

For the thermal balance equation, the weak formulation is derived similarly by first multiplying

equation (3.24) by an arbitrary test function δϑ that is sufficiently smooth and which satisfies the

homogeneous form of the essential boundary conditions (3.26a). Integration over the reference

configuration ΩB gives∫
ΩB
δϑ cθ̇ dΩ =

∫
ΩB
δϑ (Dmech −H) dΩ +

∫
ΩB
δϑ
(
Rb −Div

(
F−1

c q
))

dΩ . (4.8)
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Integration by parts with the use of the chain rule, substitution of the boundary conditions 3.26b

and 3.27, the use of 4.4 and finally substitution into (4.8) give∫
ΩB

∇δϑ · q dΩ +

∫
ΩB
δϑ cθ̇ dΩ−

∫
ΩB
δϑ (Rb +Dmech −H) dΩ

−
∫
ΓB
Nθ

δϑ Rs
JΓ
J

dΓ−
∫
Γcon
c

δϑ
(
DB

fric + sBqhc
) JΓ
J

dΓ = 0 . (4.9)

The problem statement is as follows:

Problem 4.1. Find the deformation φ, the reference velocity V , and the temperature θ, in

functional spaces defined on ΩB×R+, i ∈ {con, tar} which satisfy the weak forms (4.5) and (4.9),

and the essential boundary conditions (3.5a), (3.5b) and (3.26a) and initial conditions (3.7)

and (3.28).

The stress τ is given by (3.32) and satisfies the yield criterion (3.36), where the elastic left

Cauchy-Green deformation tensor be evolves according to (3.34). The normal and tangential

components of the contact force f c in (4.5) are given by (3.43) and 3.3), and the specific heat

capacity c, the mechanical dissipation Dmech, the structural heating H, and the heat flux q are

given by (3.2)

4.2 The discrete problem

4.2.1 Time discretization

First, time is discretized into N time steps 1, ..., N , with each time step n corresponding to

a time interval [tn−1, tn]. Temporal derivatives are approximated by finite differences given in

terms of the time increment ∆t = tn − tn−1 and of the values at tn and tn−1. The coupled

thermomechanical problem corresponding to each time step is then approximated by a sequence

of three smaller problems: a mechanical one, followed by a thermal one, and finally another

mechanical problem.

Denoting the motion from the reference configuration, and its first and second partial time

derivatives, by

φn := φ|t=tn
,

(
∂φ

∂t

)
n

:=

(
∂φ

∂t

)∣∣∣∣
t=tn

,

(
∂2φ

∂t2

)
n

:=

(
∂2φ

∂t2

)∣∣∣∣
t=tn

, (4.10)
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the updated first and second partial time derivatives at time step tn+1 are approximated using

the updated motion φn+1 through Newmark’s method by(
∂2φ

∂t2

)
n+1

=
1

β∆t2

[
φn+1 −φn −∆t

(
∂φ

∂t

)
n

]
−
(

1

2β
− 1

)(
∂2φ

∂t2

)
n

, (4.11a)(
∂φ

∂t

)
n+1

=

(
∂φ

∂t

)
n

+∆t

[
(1− γ)

(
∂2φ

∂t2

)
n

+ γ

(
∂2φ

∂t2

)
n+1

]
, (4.11b)

where the Newmark parameters β and γ are computed using the generalized-α method [7]:

γ =
1

2
− αm + αf , β =

1

4
(1− αm + αf)

2 , (4.12)

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

, ρ∞ ∈ [0, 1] . (4.13)

The partial time derivative of the reference velocity ∂V /∂t is approximated in a similar fashion

to those of the motion (4.11). With the reference velocity V and its partial time derivative

known at time t = tn, the updated partial time derivative for a given updated reference velocity

V n+1 is approximated by(
∂V

∂t

)
n+1

=
1

γ∆t
(V n+1 − V n)−

1− γ

γ

(
∂V

∂t

)
n

. (4.14)

The thermal field is treated similarly. For a known temperature at time tn θn ≈ θ|t=tn
, the

updated partial time derivative of the temperature is approximated by the backward difference(
∂θ

∂t

)
n+1

=
1

∆t
(θn+1 − θn) . (4.15)

The generalized midpoints αm and αf are used to define the generalized intermediate values

•n+1−αm and •n+1−αf
as

•n+1−α = (1− α) (•n) + α (•n+1) , •n+1−α = (1− α) (•n) + α (•n+1) , α = αf or αm .

(4.16)

Stress update. The stress τn+1 is given in terms of the deformation Jacobian Jn+1 and the

volume preserving part b̄
e
n+1 of the elastic left Cauchy-Green tensor by (3.29) and (3.31) as

τn+1 = dev τn+1 + pn+11 , (4.17)

pn+1 = Jn+1

{
∂J

[
M̂(Jn+1, θn+1) + Û(Jn+1)

]}
, (4.18)

dev τn+1 = 2dev
{[
∂b̄eŴ (b̄

e
n+1)

]
b̄
e
n+1

}
, (4.19)
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where the deformation Jacobian is given in terms of the gradient of the motion in the reference

configuration and the reference motion Jacobian by

Jn+1 = det
[
Gradφn+1

]
Jr,n+1 . (4.20)

The elastic left Cauchy-Green tensor ben+1 = J
2/3
n+1b̄

e
n+1 and its volume-preserving part are given

by

ben+1 = F n+1G
p
n+1F

t
n+1 , b̄

e
n+1 = J

− 2/3
n+1 ben+1 . (4.21)

The material time derivative of the plastic tensor Gp
n+1 is given by (3.13) as

Ġ
p
n+1 = F−1

n+1Lvb
e
n+1F

−t
n+1 , (4.22)

where the Lie derivative Lvb
e
n+1 is defined in (3.34) and evaluated at time tn+1. Here, the

consistency parameter γn+1 is governed by the KKT conditions (3.35): and the time derivative

of the equivalent plastic strain is

α̇n+1 =
√

2
3γn+1 . (4.23)

From (3.34) and (3.36),

Lvb
e
n+1 = −2γn+1

dev τn+1

∥dev τn+1∥
ben+1 . (4.24)

A return mapping approach is used: this comprises a predictor step followed, if necessary, by a

corrector step. In the predictor step, a trial solution is computed with γtrialn+1: thus

Lvb
e,trial
n+1 = 0 , αtrial

n+1 = αn , ϕtrialn+1 :=
∥∥∥dev τ trial

n+1

∥∥∥−√2
3σ

y(αn, 0, θn+1) . (4.25)

Here, the trial stress deviator dev τ trial
n+1 is computed using the trial left Cauchy-Green elastic

tensor be,trialn+1 , which is given by

be,trialn+1 = F n+1G
p,trial
n+1 F t

n+1 , (4.26)

and noting that the material time derivative of the trial value of the plastic tensor Gp,trial
n+1

vanishes due to (3.13) and (4.25). Next we need to relate the left Cauchy-Green elastic tensor

ben+1 to its trial value be,trialn+1 and the consistency parameter γn+1. Equation (4.24) is satisfied if
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the corrected left Cauchy-Green elastic tensor be at a time t ∈ (tn, tn+1] relates to its trial value

by

be = exp

(
−2γn+1 (t− tn)

dev τn+1

∥dev τn+1∥

)
be,trial , (4.27)

where exp is the tensor exponential. Then, the use of Gp = F−1beF−t gives

Ġ
p
= F−1

(
−2γn+1

dev τn+1

∥dev τn+1∥

)
exp

(
−2γn+1 (t− tn)

dev τn+1

∥dev τn+1∥

)
FGp,trial , (4.28)

so that, using also (4.26),

Lvb
e
n+1 := FĠ

p
F t = −2γn+1

dev τn+1

∥dev τn+1∥
be . (4.29)

Trial elastic deformation tensor. Let X be the position in the reference configuration

at time step n + 1 of a material point X0 = Υ−1
0,n+1

∣∣∣
X
. The trial elastic left Cauchy-Green

deformation be,trialn+1

∣∣∣
X

is obtained by assuming that the plastic right Cauchy-Green deformation

corresponding to the material point X0 remains unchanged from the previous time step:

G
p(trial)
0,n

∣∣∣
X0

= Gp
0,n

∣∣∣
X0

. (4.30)

In general, this is different from the plastic deformation at the previous time step at the same po-

sition in the reference configuration Gp
n|X , because the latter corresponds to a possibly different

material point X ′
0 = Υ−1

0,n

∣∣∣
X
. To write (4.30) in terms of position in the reference configuration,

we use the operator Mtn+1

tn (see (2.13) to keep the material point fixed:

Gp,trial
n+1

∣∣∣
X

= Mtn+1

tn {Gp}
∣∣∣
X
. (4.31)

Equation (3.15) then gives

be,trialn+1 = F c(n+1)
F r(n+1)

(
Mtn+1

tn {Gp}
)
F t

r(n+1)
F t

c(n+1)
. (4.32)

The reference motion gradient F r in (4.32) requires keeping track of the material configuration

as presented in [3]. There, besides the motion φ, the material configuration is tracked as an addi-

tional variableX0 = Υ−1
0 (X), which gives the reference motion gradient as F r =

(
GradΥ−1

0

)−1
.

This is achieved by discretization of both the motion as well as the material configuration as

node variables on a mesh of the reference configuration. Following this approach, however, would

limit the total reference motion possible, because large reference motion deformations may cause
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excessive distortion between the material and reference configurations, causing the mesh of the

material configuration to become degenerate.

To avoid this limitation on the reference motion, we seek a representation of be,trialn+1 where motion

of the reference configuration enters only in terms of the reference velocity V , such that the

total reference motion Υ0 and the reference motion gradient F r are not needed.

The definition (3.14) of Be and equation (4.31) give

Mtn+1

tn {Gp} =
(
Mtn+1

tn

{
F−1

r

})(
Mtn+1

tn {Be}
)(

Mtn+1

tn

{
F−1

r

})t
. (4.33)

This then leads to the relation

Mtn+1

tn

{
F−1

r

}
=
(
Grad0Mtn+1

tn {X}
)−1

= F−1
r

(
GradMtn+1

tn {X}
)−1

, (4.34)

so that equation (4.33) becomes

Mtn+1

tn {Gp} = F−1
r

(
GradMtn+1

tn {X}
)−1 (

Mtn+1

tn {Be}
)(

GradMtn+1

tn {X}
)−t

F−t
r . (4.35)

Substitution into (4.32) then gives

be,trialn+1 = F c(n+1)
Be,trial

n+1 F t
c(n+1)

, (4.36)

where

Be,trial
n+1 =

(
GradMtn+1

tn {X}
)−1 (

Mtn+1

tn {Be}
)(

GradMtn+1

tn {X}
)−t

. (4.37)

With equation (2.16) this becomes

Be,trial
n+1 =

(
Grad X̂n+1

)−1 (
Be

n|X̂n+1

)(
Grad X̂n+1

)−t
, (4.38)

X̂n+1 := Mtn+1

tn {X} = X −
∫ tn+1

tn

Mtn+1
τ {V } dτ . (4.39)

4.3 Semi-discrete problem

The generalized-α method [7] is used to approximate Problem 4.1 as follows:
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Problem 4.2. For each time step tn+1, given the deformation φn, the reference velocity V n,

and the temperature θn from the previous time step tn, find the deformation φn+1, the reference

velocity V n+1, and the temperature θn+1, in functional spaces defined on ΩB, B ∈ {con, tar},

such that for all admissible test functions δu defined on ΩB,∫
ΩB

∇δu : τnf
dΩ +Ginertial −

∫
ΩB
δu · f bnf

dΩ

−
∫
ΓB
Nµ

δu · f s,nf
JΓ dΓ−

∫
Γcon
c

sBδu · f cnf)
JΓ dΓ = 0 , (4.40)

where nf = n+1−αf , nm = n+1−αm, the inertial term Ginertial =
∫
ΩB δu · ρmanm dΩ is given

from (4.7) by

Ginertial =

∫
ΩB
δu · ρm

{(
∂2φ

∂t2

)
nm

+

[
F c

(
∂V

∂t

)]
nm

}
dΩ

+ 2

∫
ΩB
δu · ρm

[(
∂F c

∂t

)
V

]
nf

dΩ−
∫
ΩB
δu · [Div(ρmV )F cV ]nf

dΩ

−
∫
ΩB

[(Grad δu)V nf
] · ρm (F cV )nf

dΩ +

∫
ΓB
δu · [ρm (F cV ) (V ·N)]nf

dΓ ,

(4.41)

and such that for all admissible test functions δϑ defined on ΩB,∫
ΩB

∇δϑ · qn+1 dΩ−
∫
ΩB
δϑ
[
Rb(n+1) +Dmech(n+1) −Hn+1

]
dΩ

+

∫
ΩB
δϑ cθ̇n+1 dΩ−

∫
ΓB
Nθ

δϑ Rs(n+1)
JΓ
J

dΓ

−
∫
Γcon
c

δϑ
(
Dfric(n+1) + sBqhc(n+1)

) JΓ
J

dΓ = 0 . (4.42)

4.4 Mechanical-thermal operator splitting

Following [29], an operator splitting approach is used to approximate the coupled thermome-

chanical Problem 4.2. At each time step, three smaller problems are solved. The first problem,

a mechanical one, is solved for a motion field φ
(pre)
n+1 and a reference velocity field V

(pre)
n+1 with

the temperature field kept fixed at θn. The middle problem is solved for the updated thermal

field θn+1 with the deformation and reference velocity fixed, respectively, as φ
(pre)
n+1 and V

(pre)
n+1 .

The time step is then completed by solving the third problem for the updated motion φn+1 and

reference velocity V n+1 with the thermal field fixed as θn+1.
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The first and third problems are as follows.

Problem 4.3. For each time step n+1, given the deformation φn, the reference velocity V n, and

the temperature θn from the previous time step tn, assuming the updated temperature remains

unchanged (at θn in the first mechanical sub-step, and at θn+1 after the thermal sub-step is

solved), find the deformation φ
(pre)
n+1 and the reference velocity V

(pre)
n+1 such that, for all admissible

test functions δu defined on ΩB, B ∈ {con, tar},∫
ΩB

∇δu : τnf
dΩ +Ginertial −

∫
ΩB
δu · f b,nf

dΩ

−
∫
ΓB
Nµ

δu · f s,nf
JΓdΓ−

∫
Γcon
c

sBδu · f c,nf
JΓdΓ = 0 , (4.43)

where the inertial term Ginertial is given y (4.41).

The second problem is as follows.

Problem 4.4. For each time step tn+1, given the deformation φn, the reference velocity V n, and

the temperature θn from the previous time step tn, and given an updated deformation φ
(pre)
n+1 and

reference velocity V
(pre)
n+1 , find the temperature θn+1 such that, for all admissible test functions

δϑ defined on ΩB, B ∈ {con, tar},∫
ΩB

∇δϑ · qn+1 dΩ−
∫
ΩB
δϑ
[
Rb(n+1)

+Dmech(n+1)
−Hn+1

]
dΩ

+

∫
ΩB
δϑ cθ̇n+1 dΩ−

∫
ΓB
Nθ

δϑ Rs(n+1)

JΓ
J

dΓ−
∫
Γcon
c

δϑ
(
Dfric(n+1) + sBqhc(n+1)

) JΓ
J

dΓ = 0 .

(4.44)

4.5 Regularization and Augmented-Lagrangian iteration

The term in (4.43) involving contact traction must satisfy the complementarity conditions (3.43)

and (3.3). An augmented Lagrangian approach is adopted, as described in [28], and which

involves iteratively updating an approximate value of the contact force.

The contact force f c is given by its normal and tangential components, fN and fT ; that is,

f c(n+1)
= −fN(n+1)

n+ fT(n+1)
, fN(n+1)

= −f c(n+1)
· n , fT(n+1)

= (1− n⊗ n)f c(n+1)
.

(4.45)
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At each augmented Lagrangian iteration l + 1, the updated normal contact force is given by

f
(l+1)
N(n+1)

=


f
(l)
N(n+1)

+ ϵNg if g > 0 ,

f
(l)
N(n+1)

otherwise .

(4.46)

The updated tangential contact force is computed by first assuming that contact satisfies the

slip condition, and computing a trial value:

f
(l+1)(trial)
T(n+1)

= f
(l)
T(n+1)

+ ϵTvs . (4.47)

The friction stick limit Φ (fT , fN ) is then evaluated from (3.44)1, correcting the trial value if

necessary:

f
(l+1)
T(n+1)

=


f
(l+1)(trial)
T(n+1)

if Φ
(
f
(l+1)(trial)
T(n+1)

, f
(l+1)
N(n+1)

)
≤ 0 ,

fslipvs/ [∥vs∥+ ϵreg] otherwise .

(4.48)

Here fslip is the stick limit, and ϵreg is a small positive regularization factor used to avoid

numerical errors at small slip velocities.

The augmented Lagrangian iteration is continued until the contact constraints are met, that

is, the penetration is smaller than a predefined threshold, g ≤ εpenetration, and the tangential

contact constraint is satisfied in that either slip occurs and Φ
(
f
(l+1)
T(n+1)

, f
(l+1)
N(n+1)

)
= 0; or the slip

velocity is smaller than a predefined threshold: ∥vs∥ < εslip.

4.6 Finite element discretization

The approximate solution
(
φh,V h, θh

)
is sought in finite dimensional subspaces of the function

spaces on which the exact solution (φ,V , θ) is defined. These finite dimensional subspaces have

bases
{
ϕφ
i

}Nφ

i=1
,
{
ϕV
i

}NV

i=1
, and

{
ϕθi
}Nθ

i=1
, where ϕφ

i and ϕV
i are vector-valued while ϕθi are scalar-

valued, and where Nφ, NV and Nθ are the dimensions of the respective function subspaces.

A mixed finite element approach is used to include the Jacobian and pressure as additional

unknown variables to avoid volumetric locking. The scalar shape functions are chosen to be

discontinuous across element boundaries and to have lower polynomial order than the motion
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basis functions ϕφ
i . The lower order discretised deformation Jacobian J̄h is obtained by least-

squares projection of the discretised deformation Jacobian Jh = det
(
Gradφh

)
onto the discrete

subspace; that is,

J̄h|Ωe = ϕpi

(∫
Ωe

ϕpi ϕ
p
j dΩ

)−1 ∫
Ωe

ϕpj J
h dΩ . (4.49)

Furthermore, the mixed basis functions ϕpi are chosen such that the support of each is completely

contained in one cell, such that (4.49) can be solved in each cell independently of the rest of the

mesh. The pressure is then given, using (3.32b), by

p̄h|Ωe = ϕpi

(∫
Ωe

ϕpi ϕ
p
j dΩ

)−1 ∫
Ωe

ϕpj κ
(
(J̄h)2 − 1

)
dΩ . (4.50)

The finite element mechanical and thermal problems are as follows.

Problem 4.5. For each time step tn+1, given the deformation φh
n, the reference velocity V h

n,

and the temperature θhn from the previous time step tn, and given an updated temperature θhn+1,

find the deformation φh
n+1 and the reference velocity V h

n+1 such that, for any test function δuh,∫
ΩB

h

∇δuh : (dev τ h
nf

+ p̄hnf
1) dΩ +Gh

inertial −
∫
ΩB

h

δuh · fb,nf
dΩ

−
∫
ΓB
hNµ

δuh · f s,nf
Jh
Γ dΓ−

∫
Γcon
hc

sBδuh · fh
c,nf

Jh
Γ dΓ = 0 , (4.51)

where τnf
is the stress computed from the discretised mechanical and thermal fields, and

Gh
inertial =

∫
ΩB

h

δuh · ρm

{(
∂2φh

∂t2

)
nm

+

[
F c

(
∂V h

∂t

)]
nm

}
dΩ

+ 2

∫
ΩB

h

δuh · ρm
[(

∂F h
c

∂t

)
V h

]
nf

dΩ−
∫
ΩB

h

δuh ·
[
Div(ρmV

h)F h
cV

h
]
nf

dΩ

−
∫
ΩB

h

((
Grad δuh

)
V h

nf

)
· ρm

(
F h

cV
h
)
nf

dΩ +

∫
ΓB
h

δuh ·
[
ρm

(
F h

cV
h
)(

V h ·Nh
)]

nf

dΓ .

(4.52)

Problem 4.6. For each time step tn+1, given the deformation φh
n, the reference velocity V h

n,

and the temperature θhn =
∑Nθ

i=1 ϕ
θ
i (Θi)n from the previous time step tn, and given an updated

deformation φh
n+1 and reference velocity V h

n+1, find the temperature θhn+1 =
∑Nθ

i=1 ϕ
θ
i (Θi)n+1

such that, for any test function δϑh,∫
ΩB

h

∇δϑh · qhn+1 dΩ−
∫
ΩB

h

δϑh
[
Rh

b(n+1)
+Dh

mech(n+1)
−Hh

n+1

]
dΩ +

∫
ΩB

h

δϑh cθ̇hn+1 dΩ

−
∫
ΓB
hNθ

δϑh Rh
s(n+1)

Jh
Γ

Jh
dΓ−

∫
Γcon
hc

δϑh
(
Dh

fric(n+1)
+ sBqhhc(n+1)

) Jh
Γ

Jh
dΓ = 0 , (4.53)
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where the thermal flux qhn+1 is computed in terms of the discrete thermal field θhn+1.

5 Benchmark problems and application to friction welding

The various features of the plasticity solver are now validated using a series of benchmark

problems and then applied to the problem of friction welding to elucidate important features

relevant to thermomechanical problems undergoing large deformations and subject to contact

constraints.

5.1 Thermally-triggered necking of a circular bar

The problem of the necking of a circular bar has been used to validate both finite strain elasto-

plasticity [2] and thermoplasticity solvers [23, 36, 29, 17]. The thermomechanical problem in-

volves a tensile test of a circular bar with an initial radius of 6.4mm and a height of 106.7mm

elongated by 16mm, as shown in Figure 4(a). A thermal convection boundary condition is ap-

plied to the mechanically unconstrained boundaries where the ambient temperature is 293K and

the convection coefficient is given as 17.5× 10−6 Jmm−2 s−1K−1. The thermal initial condition

is a homogeneous temperature of 293K. The exponential hardening law is used, which is given

by

σy = y0f0(θ) + hfh(θ)α+ y0,∞fh(θ) [1− exp(−δα)] , (5.1a)

f0(θ) = [1− ω0 (θ − θ0)] , fh(θ) = [1− ωh (θ − θ0)] , (5.1b)

and the material parameters used are specified in Table 1. The dissipation factor χ is an em-

pirical quantity that represents mechanical dissipation as a proportion of the total plastic power

[29]. Rotational symmetry is used to reduce the three-dimensional problem to an axisymmetric

one. Mirror symmetry is used to further reduce the problem so that it is only necessary to

simulate one quadrant of the bar.

Localised heat generation occurs at the center of the bar due to plastic dissipation. This results

in a reduction in the yield strength associated with thermoplastic softening and the localisation
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(a) (b) (c)

Figure 4: The problem of thermally triggered necking of a circular bar: (a) the problem setup,

(b) the deformed domain after an elongation of 14.08mm from [29], and (c) the Lagrangian

formulation.

of the deformation. A comparison of the outline of the deformed body after an elongation by

14.08mm predicted by the Lagrangian approach of [29] and the Lagrangian solver developed

here are shown in Figure 4(b) and (c), respectively.

Figure 5 shows the predicted increase in surface temperature at the midpoint (point A in Fig-

ure 4), along with the results reported in [29]. The temperature distribution at different elon-

gation values is shown in Figure 6. The deformed configuration, the temperature distributions,

and the elongation at the onset of necking are all in good agreement with the benchmark re-

sults [17, 29].

The performance of the ALE formulation is now assessed. The evolution of the temperature at

point A is also shown in Figure 5 together with the Lagrangian results. The results compare
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Parameter Value Parameter Value

Bulk modulus κ 164 206Nmm−2 Density ρ 7.8× 10−9Nmm−4s2

Shear modulus µ 801 938Nmm−2 Thermal expansion coeff. α 1× 10−5K−1

Flow stress y0 450Nmm−2 Thermal conductivity k 4.5× 10−2 Jmm−1s−1K−1

Linear hardening h 129.24Nmm−2 Volumetric heat capacity c 3.588× 10−3 Jmm−3K−1

Saturation hardening y0,∞ 715Nmm−2 Flow stress softening ω0 0.002K−1

Hardening exponent δ 16.93 Hardening softening ωh 0.002K−1

Dissipation factor χ 0.9

Table 1: Material parameters for the thermally triggered necking benchmark
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Figure 5: Comparison of the evolution of the temperature at point A for the thermally triggered

necking problem using the ALE and Lagrangian approaches as well as the results from [29]

well with only a small deviation occurring after 7 s. The deformed configurations obtained using

the ALE and Lagrangian formulations at an elongation of 14.08mm are shown on either side

of the symmetry axis in Figure 7. In the fully Lagrangian simulation, the elements within the

necking region undergo significant elongation. In the ALE simulation, by contrast, the mesh
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(a) (b) (c) (d)1.92 6.08 6.72 14.08

Figure 6: Thermally triggered necking of a circular bar: Temperature distribution at four elon-

gation values.

quality within the necking region remains high throughout the weld.

Figure 8 shows the distribution of the temperature, equivalent plastic strain and the von Mises

stress obtained using the ALE and Lagragian formulations and compares them to a Lagrangian

solution produced with a fine mesh. For all these comparisons, the ALE simulation produces as

accurate or more accurate results than the Lagrangian simulation with the same initial mesh,

where accuracy is evaluated against the results of the simulation run with a fine mesh. In par-

ticular, the von Mises stress distribution obtained using the ALE formulation appears smoother

and less chequered.

Of the total computation time to complete the ALE simulation, 34.2% was spent on the solution

of the mesh motion problem and the remapping of the nodal and quadrature point fields, 61.6%

was spent on the solution of the mechanical sub-steps, and 4.2% was spent on the thermal

sub-step. The total computation time for the ALE solver was 60% longer than the Lagrangian

solver, in which 93.9% of the total computation time was spent on the mechanical sub-steps and

6.1% was spent on the thermal sub-steps. There is no significant difference in the number of

Newton steps required to solve the mechanical sub-steps between the different approaches.
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Figure 7: A comparison of the Lagrangian and ALE solutions after an elongation of 14.08mm

is shown in (a). A comparison with the results from [29] is shown in (b).

5.2 Dynamic Impact of a Circular Bar

The Taylor anvil on rod impact test [31] is commonly used to characterise the dynamic behaviour

of metals at elevated temperatures and high strain rates. It is also a useful test to evaluate

dynamic solvers and hydrocodes [see e.g. 14]. The problem involves a cylindrical rod with a

radius of 3.81mm and a height of 25.4mm which is subjected to an impact load by collision

with a rigid obstacle at an initial velocity of 1.9×105mm/s. The convective boundary condition

at the surface is omitted as the duration of the impact is so short that convection heat transfer

is negligible. The Johnson-Cook model (3.37) is used to describe the rod material, with the

material parameters listed in Table 2.

The deformed body at the end of the simulation using the Lagrangian approach detailed here is

shown in Figure 9(a). The final deformation is nearly identical to that obtained by the hydrocode

reported in [14].

In addition to the standard benchmark simulation, which considers impact with a rigid obstacle,

the simulation is also performed with a deformable obstacle with the same material properties
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Figure 8: Comparison of (a) the temperature, (b) the equivalent plastic strain and (c) the

von Mises stress distribution obtained using the ALE and Lagrangian approaches. A fine-mesh

Lagrangian solution provides the reference solution.

as the rod. This additional test case assesses the various formulations abilities to resolve contact

at high strain rates. The resulting deformed cylindrical rod and obstacle at the end of the

simulation obtained using the Lagrangian approach are shown in Figure 9(b).

The Taylor impact benchmark is now used to test the ALE formulation. Figure 10 shows, on

either side of the midline, the final deformed configuration that result when the simulation is

run with or without the ALE steps, as well as the temperature, the pressure, and the von Mises

stress distributions. As expected, the mesh distortion near the impact region is higher in the

Lagrangian simulation than the ALE one. The results of the Lagrangian and ALE simulations

of the problem are otherwise similar.
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Parameter Value Parameter Value

Bulk modulus κ 103 300Nmm−2 Reference temperature θR 293.15K

Shear modulus µ 47 690Nmm−2 Melting temperature θM 1356K

Johnson-Cook A 89.7Nmm−2 Density ρ 8.96× 10−9Nmm−4 s2

Johnson-Cook B 291.87Nmm−2 Thermal expansion coefficient α 1× 10−5K−1

Johnson-Cook C 0.025 Thermal conductivity k 4.5× 10−2 Jmm−1 s−1K−1

Johnson-Cook m 1.09 Volumetric heat capacity c 3.588× 10−3 Jmm−3K−1

Johnson-Cook n 0.31 Dissipation factor χ 0.9

Reference strain rate ε̇0 1 s−1

Table 2: Material parameters for the dynamic impact of a circular bar problem
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Figure 9: In (a), a comparison of the deformed domains obtained using a Lagrangian approach

developed in the current work with a hydrocode and experiment [14] for a rigid obstacle. The

final configuration obtained using the Lagrangian approach and a deformable body with the

temperature field superimposed is shown in (b).
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Figure 10: Comparison of the Lagrangian and ALE approaches for the problem of dynamic

impact of a circular bar. The deformed mesh, the temperature, the pressure and the von Mises

stress distribution are shown in (a), (b), (c) and (d), respectively.
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5.3 Friction welding problem

The simulation of a direct drive friction weld between two similar hollow bars with an outer

diameter of 50mm and an inner diameter of 25mm is now described. The workpiece geometry

and weld process parameters are based on the weld presented by Schmicker et al. [26].

Based on the weld process parameters [26], the mechanical boundary conditions are a constant

rotational speed of 800 rpm and a constant downward pressure of 40N/mm2 throughout the

weld. The friction coefficient is set to 0.3. The only thermal boundary condition imposed is

a convection boundary condition with a convection coefficient of 20 × 10−6 J/mm2sK on the

boundaries of the two workpieces and an ambient temperature of 293K, which is also set as the

thermal initial condition.

During the weld simulation, the downward force is primarily balanced by the normal contact

force. As described in Section 2.2, the normal contact force at each augmented Lagrangian

step is made up of two components: the penalty component and the accumulated augmented

Lagrangian component from the previous steps. The penalty component, in turn, is modified

at each Newton step according to the penetration and the normal contact penalty factor. If

the contact penalty factor is sufficiently large, then the magnitude of the total normal contact

force may overshoot that of the applied downward force in some intermediate iterations of the

Newton-Raphson loop. If the resulting incremental displacement is such that the gap between

the contactor and target surfaces is positive, then the Newton-Raphson method may fail to

converge, because the force balance would require, at least as an intermediate measure, the

application of a tensile contact force, which would violate the normal contact constraints. To

address this issue without incurring a large change in the number of augmented Lagrangian

steps or the time increment, a unidirectional spring boundary condition in combination with

the downward force boundary condition is applied. At each point on the upper surface of the

contactor, if the displacement is in the opposite direction to the applied downward force, then

a small downward force proportional to the displacement is added. If the displacement is in the

same direction as the downward force, then no additional force is applied.

Following [26], the material response is approximated using the modified Johnson-Cook model

(3.40-3.41. The material is assumed to be a perfectly viscoplastic solid, with the stress vanishing
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as the strain rate approaches zero and the elastic behaviour of the material is approximated by

using a very large viscosity value in the stress range below the yield strength. By contrast, in the

return-mapping approach employed here, the material remains elastic when the stress is below

the yield strength of the material. With this modification, the flow rule only applies at stresses

above the yield strength. The material parameter values used are listed in Table 3.

Parameter Value Parameter Value

Bulk modulus κ 158 700N/mm2 Reference strain rate ε̇0 1 s−1

Shear modulus µ 77 520N/mm2 Density ρ 7.87× 10−6 kg/mm−3

A 235N/mm Thermal expansion coefficient α 1× 10−5K−1

B 0N/mm2 Thermal conductivity k 3.5× 10−2 J/mmsK

d 0.2 Volumetric heat capacity c 6.445× 10−3 J/mm3K

m 1.5 Dissipation factor χ 0.9

n 1 Upper saturation viscosity µ0 1× 1022Ns/mm2

Reference temp. θR 293.15K Lower saturation viscosity µ∞ 1× 10−4Ns/mm2

Melting temp. θM 1693.15K

Table 3: Material parameters for the direct drive welding of a hollow bars problem

Adaptive Time Stepping. During the weld, where plastic deformation takes place at high

strain rates, the time increment required to accurately resolve the material response is orders of

magnitude smaller than that required during the conditioning stage, where the deformation is

primarily elastic. For this reason, an adaptive time stepping procedure is implemented. In this

procedure, the time increment size in increased by a small percentage each time step up to a

predetermined maximum value. When a convergence failure is detected, the time increment size

is halved and computation of that time step is restarted. This approach saves computational

time during the early stages of the weld by using a larger time increment value, and a sufficiently

small time increment value is used later in the weld when it is necessary.

Simulation Results. The deformation and temperature distributions at various stages of the

weld, obtained using the ALE formulation, are shown in Figure 11. A comparison with [26]

of the temperature distribution superimposed upon the deformed shape at the end of the weld

is shown in Figure 12. It shows good qualitative agreement at the weld interface, with the
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temperature in both simulations approaching, but not exceeding, the melting temperature of

1420 °C.

0.5 s 1.0 s 1.5 s 2.0 s 2.5 s 3.0 s 3.5 s 4.0 s

4.5 s 5.0 s 5.5 s 6.0 s 6.5 s 7.0 s

[K]

Figure 11: The evolution of the weld obtained using the ALE formulation with the temperature

field superimposed.
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Figure 12: Comparison of the deformed shape at the end of the weld with the temperature

distribution superimposed from (a) [26] and (b) the ALE formulation.
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A fully Lagrangian simulation of the weld is now performed to assess its performance. Severe

mesh distortion occurs around the weld interface, causing caused large deviations from the ex-

perimentally observed results, followed by failure in convergence of the solution steps. Figure 13

shows a comparison between the Lagrangian and ALE simulations at different stages of the weld.

Early in the process, the differences between the Lagrangian and ALE simulations are small.

As the mesh distortion in the Lagrangian simulation increases, however, the results deviate

considerably. Since the ALE results correlate well with the experimental and numerical results

from [26], this deviation confirms that excessive distortions limit the reliability of a fully La-

grangian formulation in simulation of friction welding processes, and shows the ALE formulation

is effective in addressing this limitation.

Lagrangian

ALE

t = 2.0 s t = 2.8 s t = 3.5 s t = 4.2 s t = 7.0 s

Figure 13: Comparison of the Lagrangian and ALE formulations at various point during the

friction welding process.

6 Conclusions

This work has described the development and implementation of a large-deformation thermo-

elastoviscoplasticity solver with thermomechanical friction contact, a key application being the

numerical simulation of friction welding processes. A novel Arbitrary Lagrangian-Eulerian

40



(ALE) has been developed, validated with benchmark problems, used to simulate a friction

welding process.

The novelty of the developed ALE formulation lies in that the deformation gradient between the

current and material configurations is not required; the motion of the material configuration is

represented only incrementally in terms of the reference velocity.

The ALE formulation presented and used improves on the state of the art of ALE approaches

for finite strain plasticity, in that there is no need to keep track of the material configuration

mesh, thus enabling simulation of more severe deformations. Furthermore, it is not necessary to

use a Godunov-like technique for convection of the left Cauchy-Green deformation tensor, the

equivalent plastic strain, and the deformation Jacobian. Rather, these are evaluated directly at

the quadrature point positions before the incremental mesh motion. This alleviates convection

accuracy considerations when choosing the mesh motion step size. This also makes it possible to

use the developed remapping procedure unchanged for adaptive mesh refinement and coarsening,

or for remeshing.

The implemented solver makes use of the rotational symmetry in rotary friction welding pro-

cesses, with the reference motion decomposed into an in-plane component and a circumferential

component. The in-plane component is updated in a split-step approach, and the circumferential

component simultaneously with the deformation field.

The formulation and algorithms implemented in this work can be extended in a number of ways in

order to simulate a broader range of friction welding and general metal- working processes. First,

the rotational symmetry assumed in this work would have to be generalized to a fully three-

dimensional implementation to accommodate friction stir welding and linear friction welding

simulations. Another possible extension pertains to modelling, implementation and validation

of self-contact, which is also relevant in some rotational friction welding applications.

The prediction of solid bonding in numerical simulation of friction welding processes remains

an open problem [6]. The model developed in this work serves as a basis for modelling solid

bonding, and predicting the transitional behaviour at the welding interface from contact between

two bodies to deformation of one bonded body.
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[25] A. Rodŕıguez-Ferran, A. Pérez-Foguet, and A. Huerta. Arbitrary Lagrangian–Eulerian

(ALE) formulation for hyperelastoplasticity. International Journal for Numerical Methods

in Engineering, 53(8):1831–1851, 2002.

[26] D. Schmicker, K. Naumenko, and J. Strackeljan. A robust simulation of direct drive friction

welding with a modified carreau fluid constitutive model. Computer Methods in Applied

Mechanics and Engineering, 265(1):186–194, 2013.

[27] H. Schmidt and J. Hattel. A local model for the thermomechanical conditions in friction

stir welding. Modelling and Simulation in Materials Science and Engineering, 13(1):77–93,

2005.

[28] J. Simo and T. Laursen. An augmented Lagrangian treatment of contact problems involving

friction. Computers & Structures, 42(1):97–116, 1992.

44



[29] J. Simo and C. Miehe. Associative coupled thermoplasticity at finite strains: Formula-

tion, numerical analysis and implementation. Computer Methods in Applied Mechanics and

Engineering, 98(1):41–104, 1992.

[30] J. C. Simo and T. A. Laursen. An augmented Lagrangian treatment of contact problems

involving friction. Computers & Structures, 42(1):97–116, 1992.

[31] G. I. Taylor. The use of flat-ended projectiles for determining dynamic yield stress I. theo-

retical considerations. Proceedings of the Royal Society of London. Series A. Mathematical

and Physical Sciences, 194(1038):289–299, 1948.

[32] W. Thomas, E. Nicholas, J. Needham, M. Murch, P. Temple-Smith, and C. Dawes.

Friction stir welding, international patent application, 1991. GB Patent Application

PCT/GB92/02203.

[33] A. Vairis and M. Frost. Modelling the linear friction welding of titanium blocks. Materials

Science and Engineering: A, 292(1):8–17, 2000.

[34] D. Veljic, M. Rakin, M. Perovic, B. Medjo, Z. Radakovic, P. Todorovic, and M. Pavisic. Heat

generation during plunge stage in friction stir welding. Thermal Science, 17(2):489–496,

2013.

[35] V. I. Vill. Friction Welding of Metals, volume 1. American Welding Society; Trade Dis-

tributor: Reinhold Pub. Co., 1962.

[36] P. Wriggers, C. Miehe, M. Kleiber, and J. Simo. On the coupled thermomechanical treat-

ment of necking problems via finite element methods. International Journal for Numerical

Methods in Engineering, 33(4):869–883, 1992.

[37] Y. Xu, H. Jing, Y. Han, and L. Xu. Numerical simulation of the effects of various stud and

hole configurations on friction hydro-pillar processing. International Journal of Mechanical

Sciences, 90:44–52, 2015.

[38] Q. Zhang, L. Zhang, W. Liu, X. Zhang, W. Zhu, and S. Qu. 3D rigid viscoplastic fe

modelling of continuous drive friction welding process. Science and Technology of Welding

and Joining, 11(6):737–743, 2006.

45


	coversheet_article1
	291180
	Introduction
	Kinematics, the ALE formulation, and contact
	Configurations and fields of a deformable body
	Material remapping operator

	Multibody frictional contact

	Governing equations and constitutive models
	Governing balance equations
	Finite strain thermoplasticity
	Thermomechanical frictional contact

	Weak continuous and discrete formulations
	Weak formulations
	The discrete problem
	Time discretization

	Semi-discrete problem
	Mechanical-thermal operator splitting
	Regularization and Augmented-Lagrangian iteration
	Finite element discretization

	Benchmark problems and application to friction welding
	Thermally-triggered necking of a circular bar
	Dynamic Impact of a Circular Bar
	Friction welding problem

	Conclusions


