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Abstract

This work describes the development and implementation of a large-deformation solver with ther-
momechanical friction contact for numerical simulation in applications such as friction welding
processes. A finite strain associative coupled thermoplasticity model is used: this resolves the
viscoplastic deformations in the thermomechanically affected zone as well as the elastic stresses
in the parent material. An arbitrary Lagrangian-Eulerian (ALE) formulation for coupled finite
strain thermoplasticity is developed and incorporated into the solver, in which the motion of the
reference configuration is represented incrementally through a reference velocity field. Thus, the
deformation from the material configuration is required neither explicitly in terms of a deforma-
tion field, nor implicitly in terms of the deformation gradient. A range of benchmark examples
serves to elucidate features of the model and computational procedure, also through compar-
ison with a fully Lagrangian approach. Simulation of a direct drive friction welding problem

illustrates the robustness and reliability of the new numerical approach.

1 Introduction

Computational simulations of complex manufacturing and related processes are now routinely
adopted, often alongside experimental approaches, in the design and manufacture of components
in an industrial context. The underlying models are generally highly coupled and nonlinear, and

so represent non-trivial challenges in the development of robust and accurate computational



models and associated algorithms. A typical example, and one which motivates the work pre-
sented here, concerns friction welding, a family of solid-state joining processes where friction is
used to generate the heat necessary for welding. Friction welds are formed in three stages: first,
mechanical friction at the contact surface between the workpieces and the tool, if one is present,
produces heat, raising the temperature around the interface. In the second stage, the combined
effect of the elevated temperature and compressive and shear stresses plasticises the material in
the vicinity of the friction region. In the third stage, the frictional force is removed and a forging
force is maintained so that the plasticised material solidifies in the presence of compressive stress
to form the weld. Modelling of such a process therefore requires taking account of material be-
haviour that would be modelled as thermoviscoplastic, with heat generation and transfer; and
contact, which might be modelled as frictional or frictionless. In particular, it is essential to
take proper account of the interaction between frictional contact forces and viscoplastic stresses
in a thermomechanically affected zone. The family of friction welding processes includes friction
stir welding (FSW) [32], linear friction welding (LFW)[21], and rotary friction welding (RFW)
18, 35].

Numerical simulation of friction stir welding has been the subject of much research: see for
example the reviews [12] 24]. Computational approaches to LFW and RFW have also been the
subject of numerical approaches, with some examples being the studies reported in [33] 9, [18],[19].
A literature review of strategies for numerical simulation of linear friction welding was presented

in [6], while reviews of the literature on FSW and LFW are presented in [12 [6l, 20].

Many of the early numerical approaches to RFW were based on CFD models. A coupled
thermomechanical model of IFW was developed in [22], where the material was modelled by
an incompressible temperature-dependent viscoplastic Norton—Hoff law. The model in [5] on
the other hand was based on the Navier-Stokes equations with a non-Newtonian viscosity. A
3D rigid viscoplastic simulation of direct drive friction welding was carried out in [38], while
numerical simulation of direct drive friction welding using a modified Carreau fluid constitutive
model was reported in [26]. Other numerical work includes simulations of IFW and FHPP

[10, 137, [15].

In processes such as friction welding the challenges in numerical simulation of the interaction

between frictional contact forces and viscoplastic stresses stem from the large deformations in



the thermomechanically affected zone (TMAZ), as well as the large range of strain rate values.
The extent of deformations in the TMAZ would result in excessive mesh distortions in the case
of finite element-based simulations, which would necessitate frequent remeshing or the adoption

of an Arbitrary Lagrangian Eulerian (ALE) formulation [12] [6].

The two main formulations of ALE for finite strain plasticity in the literature [25, 3] are not
suited to addressing these challenges. First, they both rely on keeping track of the significant
deformation from the initial material configuration, either explicitly by representing the initial
material configuration as a variable, or implicitly by keeping track of the deformation gradient.
Second, both formulations rely on a split step approach, which comprises a Lagrangian step
where the deformed configuration is computed with the mesh velocity kept constant, and an
Eulerian step where the mesh is updated keeping the deformation fixed. The large range of
deformation rate values within the weld is such that updating the deformation in a Lagrangian
step without excessive mesh distortion would require a very small time step, which may increase

the required simulation time to prohibitive durations.

The aim of this work is to address these challenges by implementing a novel Arbitrary La-
grangian Eulerian (ALE) procedure for numerical simulation of thermomechanical processes in-
volving viscoplastic materials undergoing large deformations, with thermomechanical frictional
contact, in which the motion is represented in terms of an intermediate reference configuration
by a combination of the deformation and the reference velocity. The deformation from the
material configuration is required neither explicitly — through the material configuration field
— nor implicitly by tracking the deformation gradient. Instead, the material configuration is
referenced in terms of the reference velocity, so that excessive deformation in the TMAZ does
not cause numerical difficulties. Also, the stresses are resolved by simultaneously updating the
deformation and the reference velocity, so that the number of time steps required to simulate the
weld remains reasonably small, preventing excessive computational expense. The finite strain
plasticity and finite deformation thermomechanical frictional contact formulations are extended
by including the contribution of the reference velocity. A Newton-Raphson procedure, with the
use of consistent tangent moduli, is adopted, in this way ensuring the second-order convergence

properties of the method.

The model is implemented in C++, leveraging deal.II [4], an object-oriented library that enables



rapid development of numerical simulation codes inter alia by providing classes that compute el-
ement degrees of freedom and element shape functions. The model is set up to run on distributed

memory parallel computing systems.

The structure of the rest of this work is as follows. Section 2 is concerned with the relevant
kinematics, including that required for the ALE formulation and for multibody frictional contact.
Section 3 comprises an overview of the balance equations, and the constitutive relations for finite
strain thermoviscoplasticity and for thermomechanical frictional contact. The weak formulation
of the problem is developed in Section 4, and the time- and spatially discrete versions follow.
Details of the predictor-corrector approach adopted for updating plastic behaviour are given here,
as are details of the mechanical-thermal operator split proces and the ALE iteration procedure.
In Section 5 a range of benchmark problems is presented so as to elucidate key features of the
model and the computational procedure. The latter includes a comparison between the current
ALE procedure with a fully Lagrangian approach. Then, in Section 6 the approach is applied
to a friction welding problem. These examples illustrate the reliability and robustness of the
new numerical approach. The work concludes with summarizing remarks and an indication of

avenues for further work on this topic.

2 Kinematics, the ALE formulation, and contact

2.1 Configurations and fields of a deformable body

We consider two deformable bodies undergoing thermomechanical frictional contact. We des-
ignate one the contactor and the other the target and index them, respectively, by ‘con’ and
‘tar’, see Figure [1} They are denoted in the material configuration by QOB C R3, B € {con, tar}.
The motion is defined by & = ¢, (Xo,t), which is invertible with respect to the first pa-
rameter and which maps the material configuration QOB to the current configuration OB =
{x = ¢y(X0,1)| X0 € Q5}. The local deformation state from the reference configuration is de-
scribed by the deformation gradient F' = 0¢p,/0X . A field ¢ .= qo(Xo,t) has the spatial form

q=q(x,t) = qoley Y(x,t),t). The spatial and material gradients of ¢ are denoted, respectively,
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Figure 1: Configurations of contacting bodies
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VQ = grad q = 87:13 : and Grado q =

X (2.1)

The first and second partial time derivatives of the motion at a fixed material point are, respec-
tively, the material velocity v and acceleration a:
2

: 0 .0
vi= = agoo(Xo,t), a=3a:= @cpo(Xo,t). (2.2)

In general, we adopt the notations

.. Dqg  Oqo
gi= =2

=gt = (2.3)

Continuity and material impenetrability conditions require throughout the motion that the

Jacobian determinant J of the deformation gradient satisfy J := det (F') > 0.

In an Arbitrary Lagrangian Eulerian (ALE) configuration, fields are given as functions of position
in an arbitrary reference configuration Q8 given by the reference motion Y : QOB x Rt — R3,

which is continuous and invertible with respect to the first parameter, with QF = {X =

To(Xo,t)|X0 € QOB}



A field ¢ = qo(Xy,t) is given in the reference configuration by ¢ = ¢(X,t) = qo(T(;l(X,t),t).
The gradient of a scalar field ¢ and the gradient and divergence of a tensor field q in the reference

configuration are denoted, respectively, by

Grad ¢ == O%Q(X’t) , Grad q = ain(X,t) , Div g := (Grad q) : 1.

In particular, the gradient of the motion ¢ in the reference configuration is denoted by

— 8 _ a —1
FC = aix‘P(th) - 87X900(T0 (Xat)’t)7 (24)

where the subscript c refers to the current configuration. It is related to the deformation gradient

through the chain rule, by
F=F.F,, (2.5)

where F'; is the reference motion gradient defined by F'. := Gradg Yy .

Gradients in the reference and current configurations are related, through the chain rule, by

de De [z "

max@m) ! (26)
that is,

Ve = (Grad e) F_ 1. (2.7)

The material time derivative of the reference motion is the reference velocity

)
V= 2 T0(Xo.). (2.8)

It gives the material time derivative in the reference configuration of a field ¢(X,t) as

00 = (G + @ g V)| 29)

The velocity is then given in the reference configuration by

_ ¢
v= o+ FV. (2.10)



Similarly, the acceleration is given by

2
_8cp+2<8Fc

o2 ot

a=—3 ) V 4+ F. <%‘tf + (Grad V) V) + ((Grad Fo) V) V. (2.11)

The velocity gradient in the reference configuration is defined by
L:=GradV = F,.F!. (2.12)

Its symmetric and skew symmetric parts are, respectively, D = % (L + Lt), and W = % (L — Lt).

2.1.1 Material remapping operator

Let [0 be any scalar or tensor field given as a function of position in the reference configuration
and time as 0 = [J(X,¢) and as a function of position in the material configuration and time
as 0 = Oy(Xo,t). Then, for a point X in the reference configuration, and two time instants

t, 7 > 0, we define the material remapping operator M by
MO} = M(O, X, 7,t) = 0o (X (X, 1),7) . (2.13)

The operator M remaps the material configuration such that any point X is identified by its
position X in the reference configuration at time ¢: X = Y(Xy,t). Position in the reference
configuration is itself a valid input to the operator M, since it is given as a function of position
in the reference configuration and time by the identity function, and is given as a function of

position in the material configuration and time by the reference motion Yg. Thus,
MU{X Y = Yo (Yo H(X 1), 7) . (2.14)
Since O(X, 1) = Oo(Y (X, 7),7), we get
OMA{X},7) = Oo(¥g (MAX D, 7). 7)
=0o(YX ' (Yo (Yo '(X,1),7),7),7) =00 (X5 (X, 1), 7) , (2.15)
which, by definition (2.13)), gives
MO} =0 (MH{X},7) . (2.16)

This obviates the requirement of keeping track of the material configuration for evaluating
ME{O} ., as long as ME{X} is known, which is the position in the reference configuration at

time 7 of the material point whose position in the reference configuration at time ¢ is X.



Figure 2: Contact target surface configurations

2.2 Multibody frictional contact

Frictional contact occurs between two deformable bodies, a contactor and a target, which are
given in the reference configuration, respectively, by Q* and Q' C R3. The subset of the
boundary of each body that may potentially come into contact with the other is denoted, in the

reference configuration, by T'5 C 905, B € {con, tar}.

The target surface in the reference configuration I''® C R? is parameterised by a region [tar « R2
through a continuous bijective mapping 7 : I — I3 such that Y = #(Y). For each contactor
point X € I’ a corresponding target point Y = n(X,t) € I'**" is considered such that the
distance in the current configuration is minimized between the two points @ = (X, t) and y =
(Y, t). Thus, the contactor point X is related to Y by Y = Y(X,t) == 7~ (n(X,t)) € Tt
and for any V' € [ by

. (2.17)




which implies

[cpw“(X,t)—sotarm(X,t),t)}-{[g,]y . )sataw,w] gg'y e )}:o. (2.18)
=n(X,t = ,t

The contact geometry is represented in Figure

The partial time derivative of the position y = @' (1 (X, t),t) of the target point in the current

configuration is given by

9 (X0, (2.19)

T a ar
(X, 1),1) : (Y,t)‘ + p

tar
ena = i (Y, 1) ‘
at at Y:ﬂ(xﬂf)

aT,j%‘

Y=’I’[(X,t)]

We denote the gradients with respect to Y of the target position in the reference and current

configurations, respectively, by

. on
2=8(Y) =1, 2.20
() =22 (2.20
0 on

G=G(Y,t)=|— taijt} K ) 2.21
.0 = | pper.o) o B (221)

Then equation (2.18)) becomes
(™™ (X 1) — ™ (n(X,1),1)] - G (p(X,1),t) =0. (2.22)

For a fixed contactor point X € ' and a target point Y = n(X,t) € I'*™ the partial time

derivative of G(n(X,t),t) is, using the chain rule,

thz‘j (n(X,1),t) = (8815 [©ik (Y’t)]'yzn(x,t) Ekj (Y(Xﬂf)>
T (8; [eZ (ﬁ(YLt)]'Y:m@) VX, )
where
a(;G” (ff](Y),t) _¢,7km( (Y),t) = (Y) ks (Y)

7
+ ik (A(Y),t) Tk, j1 Y) : (2.24)



Figure 3: Normal contact penetration

Similarly, the partial time derivative of n (X,t) =0 (Y(X, t)) is

0 0 .« 0 -
—n(X,t) = - f)(Y)’ =Y (X,1)

oY

== <Y(X,t)> ;Y(X,t) . (2.25)

In turn, the partial time derivative of Y(X ,1) is obtained by differentiating both sides of 1} and
making use of (2.23)) to get

V(X0 = A (X0 (X 0) (2.26)

where

Aji (X, 1) = Gij(n(X, 1), 1) Gip(n(X , t), 1)

— (65X, 1) — i (n(X ), 1)) ?, [Gz‘j (ﬁ(Y),tﬂ

‘ (2.27)
Yy, V=Y (X))

)

and

) Sk <Y(X,t)>

Gij(n(X, t), t) . (2.28)

V; (X, 1) = [0 (X, 1) — ol (n(X, 1), 1)] (gt [ei% (th)]‘y o
=n(X,t

0 0
| 2 geonix ) - taracw\

ot oY

Y=n(X,t)

Normal contact. The penetration g is defined by (Figure [3))

g(X, t) = [‘PCOH(Xv t) - Qotar(n(Xv t)v t)] 'n (n(Xv t), t) < 07 (2'29)

10



where n = n (Y, t) is the outward unit normal of the target surface in the current configuration

PR ¢) at y = (Y, t) with Y = n(X,t) € [,

The partial time derivative of the unit normal

on
ot

(2.30)

= - <G (G'a)™" 8Gt) n

ot

Slip velocity. The contact slip velocity, which is defined as the projection of the difference

between the contactor and target velocities onto the plane tangent to the target surface, is

v = G (GtG)_l Gt (,Ucon _ ,Utar) ,

_ OHpcon o tar
=G (GtG) 1 Gt P _ ¥
ot oM ly_nixi
+G(G'G) ™ G* ((Grad ¢*) Ve — (Grad ') Vo) | (2.31)
using (2.10). The use of equation (2.30]) with
aY; aY; on;
Gij—=L = i kBrj—=L = pij—=2 2.32
J ot Pik=kj ot Pi,j ot ) ( )
(o = om') = —gnum, (2.33)

and substitution in (2.31)) gives the slip velocity

@ on

S+ G(G'G) G ((Grad ™) Ve — (Grad ™) V) L (234)

vs = (Grad ')

3 Governing equations and constitutive models

3.1 Governing balance equations

Balance of momentum. We denote by o the symmetric Cauchy stress tensor, and by P the

first Piola-Kirchhoff stress which is related to o by

P=JoF". (3.1)

11



We will also require the Kirchhoff stress
T=Jo. (3.2)

With these definitions the equation of balance of linear momentum is, in the current configura-
tion,

Dv .
PDr dive = pf. (3.3)

The corresponding equation in the reference configuration is

Do .

where f; is the external force per unit volume in the reference configuration and py, is the mass

density per unit volume in the reference configuration.

Mechanical boundary conditions. Boundary conditions corresponding to the momentum

equation are as follows:

P(X,1) = pe( X, 1) on T3, CT?, (3.5)
V(X,t) = V(X 1) onT8 cT5, (3.5b)
on=f, on F%ﬂ crB. (3.5¢)

Here, F%H is the subset of I'® where an essential boundary condition is given on the deformation,
I’g is the subset where an essential boundary condition on the velocity is given, and F%ﬂ is that

where a natural boundary condition on the boundary traction is given.

Furthermore, on each contact boundary pair T and T, contact boundary conditions are

given by

con,,con __ con
oMt = f on I'c”", (3.6a)

ot = f on Tt (3.6D)

where f, is the contact force.

Initial conditions. At time t(, the initial deformation and reference velocity are prescribed:

P(X,t0) = Tinitial (X ) , (3.7a)

V(X to) = Vinitial (X) . (3.7b)

12



Balance of energy. The local form of balance of energy is [29]
|1 A
—Jdiv [Jq} +Ry=€é—71:4d, (3.8)

where Ry is the heat source per unit volume in the reference configuration and e is the internal

energy.

3.2 Finite strain thermoplasticity

An appropriate model for plastic behaviour is the coupled thermomechanical Jo-flow theory
for associative thermoplasticity at finite strains [29]. The model is based on a multiplicative

decomposition of the deformation gradient into its elastic and plastic parts; that is,
F = F°F?. (3.9)

We define in addition the elastic left and plastic right Cauchy-Green deformation tensors re-
spectively by
b =F°F", C’'=F'FP, G'=(CP)"'. (3.10)

Plastic deformation is assumed volume preserving, so that det F” = 1. As a consequence, the
Jacobian is equal to that for the elastic part of the deformation gradient: that is, J = det F' =
det F¢ .

One may decompose b® into a volume-preserving part b° and a volumetric part J according to

b = J23b°, detb® =1. (3.11)

The total time derivative of b® is given by

b = FG'F' + FGPF' + FG'F*

=1b° + b°l" + Z,b°, (3.12)
where

Z,b° = FG'F* (3.13)

13



is the Lie derivative of b°.

Multiplicative split in the reference configuration. We start by defining
B¢ = F.G'F", (3.14)
so that b° can be expressed in the form
b° = F.B°F". (3.15)
Then, the elastic strain rate can be written as
b° = F.B°F. + F.B°F, + F,[LB® + B°L'| F! + £,b° (3.16)

. . t
_ [FCF(jl v FCLFgl} be + b° [FCFgl + FCLF;1] +.Lb° (3.17)

Balance of energy. For thermoplastic bodies the total entropy 7 is assumed to be additively

decomposable into elastic and plastic parts [29] so that
n=n°+n". (3.18)

The internal energy, introduced in (3.8]), is then related to the free energy ¢ through 1) = e—n°f.
Elastic and thermal behaviour are defined through a free energy function

b =1 (J,b°,0,a) . (3.19)

We define the dissipation
D=0+71:d—¢>0. (3.20)

Application of the now-standard Coleman-Noll procedure to (3.20]), using also (3.19)), gives

0 00 Y
=92 b° € — _ = — . 21
=2 T =5 P 5 (3:21)
The use of these expressions in the dissipation then leads to the expression
D=1 [—5(L,b)(b°) " + Ba+ Onf (3.22)
~—~

Dmcch Dtherm
in which the mechanical and thermal contributions Dyech and Diperm are also made explicit.

The equation of balance of energy can then be written in the form

1
—J div |:Jq:| + Ry = 07’;5 — Dmech - (3.23)

14



Furthermore the evolution equation for the temperature becomes [29]
) = (Dmech — H) + [Ry — Div (F'q)] . (3.24)

in which the structural heating H is defined by

0
e —97 . d — Dmec , 2
M= (7 ) (3.25)
and the specific heat capacity ¢ per unit volume in the reference configuration is given by
024
C = *ew .

Thermal boundary conditions. The thermal boundary conditions are

0(X,t)=0(X,t) onTH cTI¥, (3.26a)
q- n="~R, on T}, cT?, (3.26b)
where F%g and Fﬁo are complementary subsets of I'8 such that F%G N I‘ﬁe = (). In addition,

on each contact boundary pair T'¢® and I'%®", thermal contact boundary conditions are given in

terms of the contact heat flux ¢n. and the frictional heat generation Dflfic by

G - n = DL | g on T (3.27a)
tar , tar __ Dtar _ Ftar 27b
q n = Vpic — Ghe onleg.. (3 )

The thermal initial condition is given by
0(X,t0) = Onitiar (X) - (3.28)
The free energy function. We adopt a free energy function of the form [29]
O =T0)+M(J,0)+ U(J) + W(B°) + K(), (3.29)
with

1

0(J) = ;(ﬁ_u_m} and W) = [ B 10g87) (5) s b (3.30)

and where i and k are the elastic shear and bulk moduli.

From ({3.21)); and taking account of the volumetric-deviatoric split, the Kirchhoff stress tensor

T = Jo is then given by

_ (% O 2
T—J<8J>1+28Eeb, (3.31)

15



so that the elastic relation is given in terms of the deviatoric and spherical parts of the stress,

respectively dev T and p, by

devT = pulogb®, (3.32a)

p=r(J*—1). (3.32b)

The yield criterion and flow relation[29]. The yield function is defined by

¢ = o(r,8,0), (3.33)

The flow relations corresponding to associative plasticity with a normality law are then
L6 = =29[0:0)b°, & =703h, " =0sd, (3.34)

where nP as before is the plastic entropy, together with the complementarity conditions
<0, v>0, v¢=0, (3.35)

where 7 is a non-negative scalar multiplier.

Viscoplastic behaviour. We extend the plasticity model to accommodate viscoplastic be-
haviour, by prescribing the viscoplastic yield stress o¥ = o¥(«, &, 0), together with the von

Mises yield criterion:
6= |devr| \/20%(0,,6) < 0. (3.36)

One of the most commonly used among these constitutive models is the Johnson-Cook model [13],
which has been used in several works on simulation of FSW [27, [11] [34]:
o = [A + B(a)"] [1 +Chn (O‘p)] [1 _ (M‘ﬂ . (3.37)
£o On — Or
Here A, B, C, m and n are model parameters, fg and 8y are respectively the reference and

melting temperatures, and ¢;" is the reference strain rate.

A further form for the yield stress that will also be used in computations is that adapted from the
constitutive law described in [26]. Specifically, the constitutive law is modified so that strain rate

dependence only takes effect when the strain rate exceeds a temperature-dependent minimum

. 6—0r \"™\ .
Emin — (1 <01\/I—0R) > o . (338)

16

value £ given by



The strain rate value used in the constitutive law is then taken to be the greater of the two

values: the equivalent plastic strain rate & and this minimum value €,:

¢ = max(d, émin) - (3.39)

The flow stress is then given as a function of a strain-rate independent yield strength o3 and
the modified strain rate ¢ as

1 2 %
Ug a1 ¢ )
o¥ =3¢ 1+ (( > ) (10 = Hoo) + Hoo €, (3.40)

3eo0ko0 €0

ol = (A pan) 1~ <9—9R)m> . (3.41)

vt — Or

Finally, the expressions for the mechanical dissipation, structural heating and heat flux are

. 0%
=/ 2~gY - _
Dunech \/;70- ) H HjaeaJa

q = —k grad 6, (3.42)

where k is the thermal conductivity in Fourier’s heat conduction law.

3.3 Thermomechanical frictional contact

Mechanical contact. The contact conditions are concisely expressed as the complementarity
conditions

g<0 fn=20, fn-9g=0, (3.43)

in which g is the gap (see (2.29)), and fy := —n - f_ is the normal traction. The stick-slip
condition of the tangential contact tractions is given in terms of the tangential component of
the contact traction fr = f.— (n- f.)n, the stick limit ® (f, fn), and a Lagrange multiplier

v, by the complementarity conditions [30]

®(fr.fn) <0, v>0, v®=0, (3.44)
and the evolution law
od
Vs =V;7, 3.45
ofr (345)



where the slip velocity v, given by (2.34)), is the tangential component of the relative velocity

between the contactor and the target in the current configuration.

Thermal contact. The heat flux through the contact interface is given by [I]
ahe = h(tn,0c)g0(X 1) (3.46)

where gg(X,t) == 0°°"(X,t) — 0" (n(X,t),t) is the temperature difference across the interface.
The heat transfer coefficient k is a function of the normal contact force ¢y and the mean gas

temperature, which is given in terms of the relative thermal effusivities h5, i € {c,t}, and the

€

temperatures at the contact interface by

0c(X,t) = hePgeon (X, t) + R0 (n( X, 1), 1) . (3.47)

Frictional heat generation due to tangential slip against frictional forces is modelled as a bound-

ary heat source given by

Dgic = h?’l)s : fT ) XS {C> t} . (348)

4 Weak continuous and discrete formulations

4.1 Weak formulations

We take the inner product of equation ({3.4)) with an arbitrary test function du that is sufficiently
smooth and which satisfies the homogeneous form of the essential boundary conditions ([3.5al)

and 1’ and integrate over the reference configuration Q8. This gives

/5u-DideQ+/ 5u~fbdQ:/ ou - ppadQ). (4.1)
0B 0B 0B

Integration by parts and use of the identity

Graddu: 7F_" = (Gradéu) F;': 7

=Véu: 1, (4.2)
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gives the equation in the form

ou-Div PdQ) = — Vdu:TdQ—i—/

B B B
Q ) rs,

5u-fstdF+/ Bou- foJpdl,  (4.3)
r8

where we have used Jp := dI'/dl’ = J||F~*N|| and also substituted the surface forces from the
boundary conditions and . The contact surface sign function s®, B € {con, tar} is
defined as

s =1, s = 1. (4.4)

By substitution of (4.3)) and following the convention of integrating the contribution of the target

surface on the contactor surface instead [16], equation (4.1) becomes

Vou: 7 dQ + (5u-pmadQ—/ ou - f, dQ
OB OB OB

)

The inertial force term can be expanded by substitution of equation (2.11]) to obtain

2o _ (OF. ov
/QB<5U~pmadQ/QB(5u-pm [(9752+2< 5 >V—i—FC (m—k((}radV)V)

+((Grad Fo) V) V] dQ. (4.6)

6u-fSdeF—/ Pou- f.Jrdl =0. (4.5)

B con
Ny e

The term involving Grad F'. can be simplified using integration by parts, to give eventually

0%p OF, ov
- pma dQ) = pm | = +2 F.|— Q
935u pma d QB(Su p [(,%2—1- <8t>v+ <8t>}d

— du - Div(pn V) F .V dQ — / ((Grad du) V) - py (F V) dQ
OB OB

+ [ Su-pm(FV)(V-N)dT. (4.7)
B

For the thermal balance equation, the weak formulation is derived similarly by first multiplying
equation ([3.24]) by an arbitrary test function 69 that is sufficiently smooth and which satisfies the
homogeneous form of the essential boundary conditions (3.26a)). Integration over the reference

configuration Q8 gives

/ 59 cf ) = / 0 Dy —#) 42+ [ 50 (Ry—Div (Fr'q)) a0 (49
0B OB OB
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Integration by parts with the use of the chain rule, substitution of the boundary conditions
and the use of and finally substitution into (4.8)) give

VoY -qdQ+ | 9cdQ— [ 59 (R + Dmeen — H) dQ
OB OB OB

_ 59 R % dr —/ 50 (DEie + 55 ane) ‘LJF ar=0. (4.9)
l“gon

FB
Ng

The problem statement is as follows:

Problem 4.1. Find the deformation ¢, the reference velocity V', and the temperature 0, in
functional spaces defined on QB xR, i € {con, tar} which satisfy the weak forms and ,

and the essential boundary conditions (3.5d), and and initial conditions
and .

The stress T is given by and satisfies the yield criterion , where the elastic left
Cauchy-Green deformation tensor b° evolves according to . The normal and tangential

components of the contact force f. in are given by and , and the specific heat

capacity c, the mechanical dissipation Dpecp, the structural heating H, and the heat flux q are

given by

4.2 The discrete problem
4.2.1 Time discretization

First, time is discretized into N time steps 1,..., N, with each time step n corresponding to
a time interval [t,_1,t,]. Temporal derivatives are approximated by finite differences given in
terms of the time increment At = t, — t,_1 and of the values at ¢, and t,_1. The coupled
thermomechanical problem corresponding to each time step is then approximated by a sequence
of three smaller problems: a mechanical one, followed by a thermal one, and finally another

mechanical problem.

Denoting the motion from the reference configuration, and its first and second partial time
derivatives, by

_ 9\ _ (0p P\ _ (P
#n = Pt (m)‘ <at> —_ (atz L\
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the updated first and second partial time derivatives at time step t,+1 are approximated using

the updated motion ¢,,,; through Newmark’s method by

0%p 1 Op 1 0%
(atz>n+l = gaw e e () (1) (GF)

() ()l (3) (), e

where the Newmark parameters 5 and v are computed using the generalized-o method [7]:

1 1
7=5 —omtor, Bzz(l—aeraf)Q, (4.12)
2000 — 1 Poo
Qp = ————, Qf = , € 10,1]. 4.13
m poo+1 f poo+1 Poo [ ] ( )

The partial time derivative of the reference velocity 0V /0t is approximated in a similar fashion
to those of the motion (4.11)). With the reference velocity V' and its partial time derivative
known at time ¢t = t,,, the updated partial time derivative for a given updated reference velocity

V 41 is approximated by

ov 1 1—~ [OV
ovy 1 vy (9 414
(at)nﬂ Sag Ve = V) = <8t>n (4.14)

The thermal field is treated similarly. For a known temperature at time ¢, 6, =~ 0|t:tn , the

updated partial time derivative of the temperature is approximated by the backward difference

00 1
<6t>n+1 = = (Busr —0) - (4.15)

The generalized midpoints oy, and af are used to define the generalized intermediate values

®i1-ay, and ®n+1—ap AS

i1 a=(1—a)(e,) +a(enr1), ei1a=(1—0a)(e,) +a(e,11), a=aforay.

(4.16)

Stress update. The stress 7,11 is given in terms of the deformation Jacobian J,+; and the

volume preserving part b;, 11 of the elastic left Cauchy-Green tensor by {D and 1 as

Tn+1l = dev Tn+1 + pn-l—l]- s (417)
Pn+1 = Jn-i—l {a] [M(Jn-i-lv 9n+1) + U(Jn-i-l)} } ’ (4'18)
dev 1,41 = 2dev { [BBeW(l_)ZH)} EZH} , (4.19)

21



where the deformation Jacobian is given in terms of the gradient of the motion in the reference

configuration and the reference motion Jacobian by

Jnr1 = det [Grad can] Jrnt1 - (4.20)

The elastic left Cauchy-Green tensor by, = J, Q/Jill;Z 41 and its volume-preserving part are given

by

- -2
b2+1 = Fn+1GE+1Fatz+1 ) bZH - Jn+1/3 %H : (421)

The material time derivative of the plastic tensor G}, is given by (3.13) as
P 1 _
Gn—‘,—l == Fn—}—l"iﬂvb%-i-an—t&—l 5 (422)

where the Lie derivative .Z,bj, | is defined in (3.34) and evaluated at time t,,;. Here, the

consistency parameter v, is governed by the KKT conditions (3.35)): and the time derivative

of the equivalent plastic strain is

één+1 = \/g’)/n—l-l . (423)

From (3.34)) and (3.36]),

dev 1,11

b = 2y b (4.24)

|dev 741 ntl:

A return mapping approach is used: this comprises a predictor step followed, if necessary, by a

corrector step. In the predictor step, a trial solution is computed with yflrfll thus

e,trial trial __ trial .__ trial
g’ubn_{_l - 07 an+1 = Qn, ¢n+l i Hdev Tn-i—l

- \/gay(an,O,HnH). (4.25)

Here, the trial stress deviator dev Tﬁffll is computed using the trial left Cauchy-Green elastic

il ..
tensor bfl’_tﬁa , which is given by

e,trial p,trial gt
bn+1 - Fn+1Gn+1 FnJrlv (426)

p,trial
n+1

vanishes due to (3.13) and (4.25). Next we need to relate the left Cauchy-Green elastic tensor

bS ., to its trial value b and the consistenc parameter v,.1. Equation (4.24) is satisfied if
n+1 n+1 Yy Yn+

and noting that the material time derivative of the trial value of the plastic tensor G
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the corrected left Cauchy-Green elastic tensor b® at a time ¢ € (., t,+1] relates to its trial value

by

dev T ;
be = exp <_2’77L+1 (t — tn) ”dev‘[ﬁi”) be7trla1 s (427)
n

where exp is the tensor exponential. Then, the use of GP = F~1b°F ! gives

: _ dev Tp41 dev 7,11 .
G =F -2y 41— —2 t—t,) — ) pGPitial 4.28
(et famriny) o (e 0 2y o
so that, using also (4.26)),
. dev 741
Lbe ., =FG F'= —2v,, 1 — "L pe. 4.29
vYn+1 Tn+1 HdeV Tn_i_lH ( )

Trial elastic deformation tensor. Let X be the position in the reference configuration
at time step n + 1 of a material point Xog = Y 711 H‘X' The trial elastic left Cauchy-Green
deformation bfl’_t:ial < is obtained by assuming that the plastic right Cauchy-Green deformation

corresponding to the material point X remains unchanged from the previous time step:

p(trial)
0,n

(4.30)

0

In general, this is different from the plastic deformation at the previous time step at the same po-

sition in the reference configuration G|, because the latter corresponds to a possibly different

. . 1
material point Xg = Y,

we use the operator MiZ“ (see (2.13]) to keep the material point fixed:

5 To write (4.30]) in terms of position in the reference configuration,

G| = My (4.31)
Equation (3.15)) then gives
jtrial tn t
b2+1a o FC<7L+1>Fr<n+1> (Mtn“ {Gp}> F§<n+1>FC(n+1) ’ (4'32)

The reference motion gradient F'; in (4.32)) requires keeping track of the material configuration
as presented in [3]. There, besides the motion ¢, the material configuration is tracked as an addi-

tional variable X = Y, !

(X), which gives the reference motion gradient as F, = (Grad X, 1) -
This is achieved by discretization of both the motion as well as the material configuration as
node variables on a mesh of the reference configuration. Following this approach, however, would

limit the total reference motion possible, because large reference motion deformations may cause
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excessive distortion between the material and reference configurations, causing the mesh of the

material configuration to become degenerate.

e e e . . trial
To avoid this limitation on the reference motion, we seek a representation of by"\"*

where motion

of the reference configuration enters only in terms of the reference velocity V', such that the

total reference motion Y and the reference motion gradient F', are not needed.

The definition (3.14) of B¢ and equation (4.31]) give
t
Mizﬂ (Gry = <Miz+1 {Fr—l}> (Mi:ﬂ {Be}> (Mind {Fr_l})
This then leads to the relation

M {1} = (Gradg My (X))

—F! (Grad Ml {X}>_1 :

so that equation (4.33)) becomes

M q@ry = Bt (Graa My (X)) (Me (B%Y) (Grad My (X)) By

Substitution into (4.32) then gives
be,trial - F Be,trial t

n+1 C(n+1) " n+l Clnt1)

where
. -1
By = (Grad My (X)) (M (BFY) (Grad M2 (X))
With equation (2.16)) this becomes

. A _1 u _t
B = (Grad Xpi1)  (Bilx,,,) (Grad Xaa)
. tn+1
X =M X} =X — M {V}dr.

tn
4.3 Semi-discrete problem

The generalized-a method [7] is used to approximate Problem as follows:
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Problem 4.2. For each time step tn4+1, given the deformation ,,, the reference velocity V ,,
and the temperature 0,, from the previous time step t,, find the deformation @, 1, the reference
velocity V11, and the temperature 0,41, in functional spaces defined on QB, B € {con, tar},
such that for all admissible test functions du defined on Q5

- Véu: 7y, dQ + Ginertial — /QB ou - fbnf dQ

— / L 0w fo Jrdl = / sP0u - fe, Jodl' =0, (4.40)
F]\] (CIOn

where ng =n+1—af,nm = n+ 1 — amy, the inertial term Gipertial = fQB 0U - PGy, dS2 is given

from by

o= [ e {(22) <[ ()] }en

F. .
+2 U - pm [(8 > V] dQ — du - [Div(pnV)F. V], dQ
0B 8t ng OB f

- /QB [(Grad 6u) V] - pm (F V), dQ+ ou - [pm (FV)(V-N)|, dI',

B
(4.41)
and such that for all admissible test functions 69 defined on QF,
- Vo - gy, A2 — /Q 80 [Ri(n+1) + Pmech(n+1) — Hnt1] dQ2
Jr
(5%9 09n+1 dQ — 0 R s(n+1) 7 dr’
B Jr
— /Con o (Dfric(n+1) + s th(n—i—l)) 7 dI' =0. (442)

4.4 Mechanical-thermal operator splitting

Following [29], an operator splitting approach is used to approximate the coupled thermome-

chanical Problem At each time step, three smaller problems are solved. The first problem,

(pre)

ni1 and a reference velocity field V! +1) with

a mechanical one, is solved for a motion field ¢

the temperature field kept fixed at 6,,. The middle problem is solved for the updated thermal
(p

field 6,,+1 with the deformation and reference velocity fixed, respectively, as cpnﬁ) and Vglpﬁ).

The time step is then completed by solving the third problem for the updated motion ¢, and

reference velocity V11 with the thermal field fixed as 6,,1.
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The first and third problems are as follows.

Problem 4.3. For each time step n+1, given the deformation ,,, the reference velocity V,,, and
the temperature 0, from the previous time step t,, assuming the updated temperature remains
unchanged (at 6, in the first mechanical sub-step, and at 0,1 after the thermal sub-step is
solved), find the deformation Lpgﬁ) and the reference velocity Vgﬁ) such that, for all admissible

test functions du defined on QB, B € {con, tar},

Vou: T dQ + Gmertial - / ou - .fb,nf dQ
0B

»/I‘]%H

where the inertial term Gipertiar 1 given y (4.41)).

OB
ou- f, Jrdl — / sBou- fo, Jrdl =0, (4.43)
]_"(C:On

The second problem is as follows.

Problem 4.4. For each time step t 11, given the deformation ,,, the reference velocity V ,,, and

the temperature 6,, from the previous time step t,, and given an updated deformation Lpgiel) and

reference velocity ngl)), find the temperature 0,41 such that, for all admissible test functions

69 defined on QF, B € {con, tar},

V60 - q,4q A0 — /Q 00 [Rogyy + Doy = Har] A2

; Jr B Jr
+ [ 89 cbd2— | IR, T dl- /F 09 (Piricquin) + P heginy) 5 A0 =0

QB IR,

OB

(4.44)

4.5 Regularization and Augmented-Lagrangian iteration

The term in (4.43)) involving contact traction must satisfy the complementarity conditions (3.43])
and (3.3). An augmented Lagrangian approach is adopted, as described in [2§8], and which

involves iteratively updating an approximate value of the contact force.

The contact force f. is given by its normal and tangential components, fy and fp; that is,

fC(n+1) = _fN(n+1)n + 'fT(n+1) ) fN(n+1) = _fC(n+1) ‘n, fT(n+1) =1-ne n)fc(n+1) :

(4.45)
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At each augmented Lagrangian iteration [ + 1, the updated normal contact force is given by

1) )
f( +eng ifg>0
I+1) N ’
f](V(n-H) - Y (4.46)
fN( o otherwise .

The updated tangential contact force is computed by first assuming that contact satisfies the

slip condition, and computing a trial value:

f (I41)(trial)

0]
Tiny1) - fT(n+1) + €TV . (447)

The friction stick limit ® (f,, fx) is then evaluated from (3.44));, correcting the trial value if

necessary:

(I41)(trial) I4+1)(trial) ,(I4+1)
! it © (£ ) <
l 1 Tn Tn 9 Nn
Foi) =g 1) () (4.48)
fslipvs/ [|lvs]| + ereg] otherwise .

Here fqip, is the stick limit, and € is a small positive regularization factor used to avoid

numerical errors at small slip velocities.

The augmented Lagrangian iteration is continued until the contact constraints are met, that
is, the penetration is smaller than a predefined threshold, g < epenetration, and the tangential
contact constraint is satisfied in that either slip occurs and ® ( f%:ril) f]\i:;il)) = 0; or the slip
velocity is smaller than a predefined threshold: |lvs|| < eglip.

4.6 Finite element discretization

The approximate solution (goh, v, 0") is sought in finite dimensional subspaces of the function
spaces on which the exact solution (cp, V', 0) is defined. These finite dimensional subspaces have
bases {q’)‘P}l B {¢)ZV }l 1 and { d>9 i 1, where ¢f and qblv are vector-valued while gzﬁf are scalar-
valued, and where N,, Ny and Ny are the dimensions of the respective function subspaces.
A mixed finite element approach is used to include the Jacobian and pressure as additional
unknown variables to avoid volumetric locking. The scalar shape functions are chosen to be

discontinuous across element boundaries and to have lower polynomial order than the motion
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basis functions ¢f. The lower order discretised deformation Jacobian J” is obtained by least-
squares projection of the discretised deformation Jacobian J" = det (Grad cph) onto the discrete

subspace; that is,

o, = o} ( /Q o ¢ dﬂ) 1 /Q @b J"dQ. (4.49)
Furthermore, the mixed basis functions <Z>f are chosen such that the support of each is completely
contained in one cell, such that can be solved in each cell independently of the rest of the
mesh. The pressure is then given, using , by

o, = ¢ ( /Q B dsz)_l /Q o (12 -1) de. (4.50)

The finite element mechanical and thermal problems are as follows.

Problem 4.5. For each time step ty,i1, given the deformation <pZ, the reference velocity VZ,
and the temperature 92 from the previous time step t,, and given an updated temperature 62 1)

find the deformation ‘PZ+1 and the reference velocity VZH such that, for any test function éu”,

Vou': (dev Tzf + ﬁiif 1)dQ + G?nertial - /QB su’ - fb,nf dQ
h

B
Qh

— / sul - fy . Jidl — / sBoul . flh Jfdl =0, (4.51)
3% ri

where Ty, is the stress computed from the discretised mechanical and thermal fields, and

8290h avh
h _ h .
Gmertial - /QB ou Pm {( o2 >nm + |:Fc < ot >:| - dQ2

h

OFh
+2 oul - pm [( £
o

ot
. /Q g ((Grad 5uh) Vi;f)  pm (F?Vh>nf o + /F E Sul [pm (ngh) (Vh : Nhﬂnf dr.

(4.52)

ng

)Vh] an — 5uh~[Div(pth)FQVh] )
ot op

Problem 4.6. For each time step t,11, given the deformation cpZ, the reference velocity VZ,
and the temperature O = vazgl qbf (©4),, from the previous time step t,, and given an updated
deformation <p2+1 and reference velocity VZH, find the temperature HQH = Zf\fl qﬁf (©i)ps1

such that, for any test function 59",

h h h h h h h .ph
y Vooh - gt dQ — /Q E 59 [R%l) + Dl Hn+1] o+ y 0" el Ao
- sovre ar o [ s <’Dh B ) T ar —o (4.53)
- S(n+1) Jh [eon frica41 The (i) Jh ) .
hNg he
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where the thermal flux qZH 18 computed in terms of the discrete thermal field 9Z+1'

5 Benchmark problems and application to friction welding

The various features of the plasticity solver are now validated using a series of benchmark
problems and then applied to the problem of friction welding to elucidate important features
relevant to thermomechanical problems undergoing large deformations and subject to contact

constraints.

5.1 Thermally-triggered necking of a circular bar

The problem of the necking of a circular bar has been used to validate both finite strain elasto-
plasticity [2] and thermoplasticity solvers [23, B0, 29 [17]. The thermomechanical problem in-
volves a tensile test of a circular bar with an initial radius of 6.4 mm and a height of 106.7 mm
elongated by 16 mm, as shown in Figure (a). A thermal convection boundary condition is ap-
plied to the mechanically unconstrained boundaries where the ambient temperature is 293 K and
the convection coefficient is given as 17.5 x 1076 Jmm =2 s~ K~!. The thermal initial condition
is a homogeneous temperature of 293 K. The exponential hardening law is used, which is given

by

o’ =y0fo(0) + hfn(0)o + yo,00 fn(0) [L — exp(—da)] , (5.1a)

fo(0) = [1 —wo (6 —60)] , fn(0) = [1 —wn (0 — 6)] , (5.1b)

and the material parameters used are specified in Table [T The dissipation factor y is an em-
pirical quantity that represents mechanical dissipation as a proportion of the total plastic power
[29]. Rotational symmetry is used to reduce the three-dimensional problem to an axisymmetric
one. Mirror symmetry is used to further reduce the problem so that it is only necessary to

simulate one quadrant of the bar.

Localised heat generation occurs at the center of the bar due to plastic dissipation. This results

in a reduction in the yield strength associated with thermoplastic softening and the localisation
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6.4

106.7

T
T

(a) (b) (©)

Figure 4: The problem of thermally triggered necking of a circular bar: (a) the problem setup,
(b) the deformed domain after an elongation of 14.08 mm from [29], and (c) the Lagrangian

formulation.

of the deformation. A comparison of the outline of the deformed body after an elongation by
14.08 mm predicted by the Lagrangian approach of [29] and the Lagrangian solver developed
here are shown in Figure [fb) and (c), respectively.

Figure [5 shows the predicted increase in surface temperature at the midpoint (point A in Fig-
ure 4)), along with the results reported in [29]. The temperature distribution at different elon-
gation values is shown in Figure[6] The deformed configuration, the temperature distributions,

and the elongation at the onset of necking are all in good agreement with the benchmark re-

sults [17), 29].

The performance of the ALE formulation is now assessed. The evolution of the temperature at

point A is also shown in Figure [5] together with the Lagrangian results. The results compare
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Parameter Value Parameter Value

Bulk modulus x 164206 Nmm~2 Density p 7.8 x 1079 Nmm ™~ *s?
Shear modulus u 801938 Nmm ™2 Thermal expansion coeff. & 1 x 107°K~!

Flow stress yo 450 Nmm 2 Thermal conductivity k 4.5 x 1072 Jmm s~ 1K !
Linear hardening h 129.24Nmm~2  Volumetric heat capacity ¢ = 3.588 x 1073 Jmm 3K~!
Saturation hardening yo o 715 Nmm 2 Flow stress softening wy 0.002K~!

Hardening exponent § 1693 Hardening softening wy, 0.002 K1

Dissipation factor x 0.9

Table 1: Material parameters for the thermally triggered necking benchmark

120 F—————— T e —
| | ALE 1
10| |- 29] ]
[ |—=— Lagrangian ]

100 |-

90|
80|
70|

60|

Temperature [K]

50§
40§
30§
20§

10

Figure 5: Comparison of the evolution of the temperature at point A for the thermally triggered

necking problem using the ALE and Lagrangian approaches as well as the results from [29]

well with only a small deviation occurring after 7s. The deformed configurations obtained using
the ALE and Lagrangian formulations at an elongation of 14.08 mm are shown on either side
of the symmetry axis in Figure |7} In the fully Lagrangian simulation, the elements within the

necking region undergo significant elongation. In the ALE simulation, by contrast, the mesh
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Figure 6: Thermally triggered necking of a circular bar: Temperature distribution at four elon-

gation values.

quality within the necking region remains high throughout the weld.

Figure [§| shows the distribution of the temperature, equivalent plastic strain and the von Mises
stress obtained using the ALE and Lagragian formulations and compares them to a Lagrangian
solution produced with a fine mesh. For all these comparisons, the ALE simulation produces as
accurate or more accurate results than the Lagrangian simulation with the same initial mesh,
where accuracy is evaluated against the results of the simulation run with a fine mesh. In par-
ticular, the von Mises stress distribution obtained using the ALE formulation appears smoother

and less chequered.

Of the total computation time to complete the ALE simulation, 34.2% was spent on the solution
of the mesh motion problem and the remapping of the nodal and quadrature point fields, 61.6%
was spent on the solution of the mechanical sub-steps, and 4.2% was spent on the thermal
sub-step. The total computation time for the ALE solver was 60% longer than the Lagrangian
solver, in which 93.9% of the total computation time was spent on the mechanical sub-steps and
6.1% was spent on the thermal sub-steps. There is no significant difference in the number of

Newton steps required to solve the mechanical sub-steps between the different approaches.
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Figure 7: A comparison of the Lagrangian and ALE solutions after an elongation of 14.08 mm

is shown in (a). A comparison with the results from [29] is shown in (b).

5.2 Dynamic Impact of a Circular Bar

The Taylor anvil on rod impact test [31] is commonly used to characterise the dynamic behaviour
of metals at elevated temperatures and high strain rates. It is also a useful test to evaluate
dynamic solvers and hydrocodes [see e.g. [14]. The problem involves a cylindrical rod with a
radius of 3.81 mm and a height of 25.4 mm which is subjected to an impact load by collision
with a rigid obstacle at an initial velocity of 1.9 x 10° mm/s. The convective boundary condition
at the surface is omitted as the duration of the impact is so short that convection heat transfer
is negligible. The Johnson-Cook model is used to describe the rod material, with the

material parameters listed in Table

The deformed body at the end of the simulation using the Lagrangian approach detailed here is
shown in Figure @(a). The final deformation is nearly identical to that obtained by the hydrocode
reported in [14].

In addition to the standard benchmark simulation, which considers impact with a rigid obstacle,

the simulation is also performed with a deformable obstacle with the same material properties
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Figure 8: Comparison of (a) the temperature, (b) the equivalent plastic strain and (c) the
von Mises stress distribution obtained using the ALE and Lagrangian approaches. A fine-mesh

Lagrangian solution provides the reference solution.

as the rod. This additional test case assesses the various formulations abilities to resolve contact
at high strain rates. The resulting deformed cylindrical rod and obstacle at the end of the

simulation obtained using the Lagrangian approach are shown in Figure |§|(b)

The Taylor impact benchmark is now used to test the ALE formulation. Figure [10] shows, on
either side of the midline, the final deformed configuration that result when the simulation is
run with or without the ALE steps, as well as the temperature, the pressure, and the von Mises
stress distributions. As expected, the mesh distortion near the impact region is higher in the
Lagrangian simulation than the ALE one. The results of the Lagrangian and ALE simulations

of the problem are otherwise similar.
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Parameter Value Parameter Value

Bulk modulus & 103300Nmm~2 Reference temperature g 293.15 K

Shear modulus p 47690 Nmm~2  Melting temperature fy 1356 K

Johnson-Cook A 89.7 N mm 2 Density p 8.96 x 1079 Nmm—*s?
Johnson-Cook B 291.87Nmm~2  Thermal expansion coefficient o 1 x 107> K~!
Johnson-Cook C 0.025 Thermal conductivity k 4.5 %1072 Jmm s K™t
Johnson-Cook m 1.09 Volumetric heat capacity c 3.588 x 1073 Jmm 3 K~}
Johnson-Cook n 0.31 Dissipation factor x 0.9

Reference strain rate &g 1s~ 1

Table 2: Material parameters for the dynamic impact of a circular bar problem
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Figure 9: In (a), a comparison of the deformed domains obtained using a Lagrangian approach
developed in the current work with a hydrocode and experiment [14] for a rigid obstacle. The
final configuration obtained using the Lagrangian approach and a deformable body with the

temperature field superimposed is shown in (b).
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5.3 Friction welding problem

The simulation of a direct drive friction weld between two similar hollow bars with an outer
diameter of 50 mm and an inner diameter of 25 mm is now described. The workpiece geometry

and weld process parameters are based on the weld presented by Schmicker et al. [26].

Based on the weld process parameters [26], the mechanical boundary conditions are a constant
rotational speed of 800rpm and a constant downward pressure of 40 N/mm? throughout the
weld. The friction coefficient is set to 0.3. The only thermal boundary condition imposed is
a convection boundary condition with a convection coefficient of 20 x 1076 J/mm?sK on the
boundaries of the two workpieces and an ambient temperature of 293 K, which is also set as the

thermal initial condition.

During the weld simulation, the downward force is primarily balanced by the normal contact
force. As described in Section [2.2] the normal contact force at each augmented Lagrangian
step is made up of two components: the penalty component and the accumulated augmented
Lagrangian component from the previous steps. The penalty component, in turn, is modified
at each Newton step according to the penetration and the normal contact penalty factor. If
the contact penalty factor is sufficiently large, then the magnitude of the total normal contact
force may overshoot that of the applied downward force in some intermediate iterations of the
Newton-Raphson loop. If the resulting incremental displacement is such that the gap between
the contactor and target surfaces is positive, then the Newton-Raphson method may fail to
converge, because the force balance would require, at least as an intermediate measure, the
application of a tensile contact force, which would violate the normal contact constraints. To
address this issue without incurring a large change in the number of augmented Lagrangian
steps or the time increment, a unidirectional spring boundary condition in combination with
the downward force boundary condition is applied. At each point on the upper surface of the
contactor, if the displacement is in the opposite direction to the applied downward force, then
a small downward force proportional to the displacement is added. If the displacement is in the

same direction as the downward force, then no additional force is applied.

Following [26], the material response is approximated using the modified Johnson-Cook model

(13.40] The material is assumed to be a perfectly viscoplastic solid, with the stress vanishing
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as the strain rate approaches zero and the elastic behaviour of the material is approximated by
using a very large viscosity value in the stress range below the yield strength. By contrast, in the
return-mapping approach employed here, the material remains elastic when the stress is below
the yield strength of the material. With this modification, the flow rule only applies at stresses

above the yield strength. The material parameter values used are listed in Table

Parameter Value Parameter Value

Bulk modulus « 158 700 N/mm? Reference strain rate &g 1s7t

Shear modulus p 77520 N/mm?  Density p 7.87 x 107 kg /mm—3
A 235 N/mm Thermal expansion coefficient @ 1 x 1075 K~!

B 0N/mm? Thermal conductivity k 3.5 x 1072 J/mmsK

d 0.2 Volumetric heat capacity c 6.445 x 1073 J /mm? K
m 1.5 Dissipation factor y 0.9

n 1 Upper saturation viscosity pg 1 x 10*2 Ns/mm?
Reference temp. g 293.15K Lower saturation viscosity fieo 1 x 1074 Ns/mm?

Melting temp. 6y 1693.15 K

Table 3: Material parameters for the direct drive welding of a hollow bars problem

Adaptive Time Stepping. During the weld, where plastic deformation takes place at high
strain rates, the time increment required to accurately resolve the material response is orders of
magnitude smaller than that required during the conditioning stage, where the deformation is
primarily elastic. For this reason, an adaptive time stepping procedure is implemented. In this
procedure, the time increment size in increased by a small percentage each time step up to a
predetermined maximum value. When a convergence failure is detected, the time increment size
is halved and computation of that time step is restarted. This approach saves computational
time during the early stages of the weld by using a larger time increment value, and a sufficiently

small time increment value is used later in the weld when it is necessary.

Simulation Results. The deformation and temperature distributions at various stages of the
weld, obtained using the ALE formulation, are shown in Figure A comparison with [26]
of the temperature distribution superimposed upon the deformed shape at the end of the weld

is shown in Figure It shows good qualitative agreement at the weld interface, with the
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temperature in both simulations approaching, but not exceeding, the melting temperature of
1420°C.
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Figure 11: The evolution of the weld obtained using the ALE formulation with the temperature

field superimposed.
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Figure 12: Comparison of the deformed shape at the end of the weld with the temperature

distribution superimposed from (a) [26] and (b) the ALE formulation.
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A fully Lagrangian simulation of the weld is now performed to assess its performance. Severe
mesh distortion occurs around the weld interface, causing caused large deviations from the ex-
perimentally observed results, followed by failure in convergence of the solution steps. Figure
shows a comparison between the Lagrangian and ALE simulations at different stages of the weld.
Early in the process, the differences between the Lagrangian and ALE simulations are small.
As the mesh distortion in the Lagrangian simulation increases, however, the results deviate
considerably. Since the ALE results correlate well with the experimental and numerical results
from [26], this deviation confirms that excessive distortions limit the reliability of a fully La-
grangian formulation in simulation of friction welding processes, and shows the ALE formulation

is effective in addressing this limitation.

Lagrangian

t=20s t=238s t=3.5s t=42s

il
ALE

Figure 13: Comparison of the Lagrangian and ALE formulations at various point during the

friction welding process.

6 Conclusions

This work has described the development and implementation of a large-deformation thermo-
elastoviscoplasticity solver with thermomechanical friction contact, a key application being the

numerical simulation of friction welding processes. A novel Arbitrary Lagrangian-FEulerian
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(ALE) has been developed, validated with benchmark problems, used to simulate a friction

welding process.

The novelty of the developed ALE formulation lies in that the deformation gradient between the
current and material configurations is not required; the motion of the material configuration is

represented only incrementally in terms of the reference velocity.

The ALE formulation presented and used improves on the state of the art of ALE approaches
for finite strain plasticity, in that there is no need to keep track of the material configuration
mesh, thus enabling simulation of more severe deformations. Furthermore, it is not necessary to
use a Godunov-like technique for convection of the left Cauchy-Green deformation tensor, the
equivalent plastic strain, and the deformation Jacobian. Rather, these are evaluated directly at
the quadrature point positions before the incremental mesh motion. This alleviates convection
accuracy considerations when choosing the mesh motion step size. This also makes it possible to
use the developed remapping procedure unchanged for adaptive mesh refinement and coarsening,

or for remeshing.

The implemented solver makes use of the rotational symmetry in rotary friction welding pro-
cesses, with the reference motion decomposed into an in-plane component and a circumferential
component. The in-plane component is updated in a split-step approach, and the circumferential

component simultaneously with the deformation field.

The formulation and algorithms implemented in this work can be extended in a number of ways in
order to simulate a broader range of friction welding and general metal- working processes. First,
the rotational symmetry assumed in this work would have to be generalized to a fully three-
dimensional implementation to accommodate friction stir welding and linear friction welding
simulations. Another possible extension pertains to modelling, implementation and validation

of self-contact, which is also relevant in some rotational friction welding applications.

The prediction of solid bonding in numerical simulation of friction welding processes remains
an open problem [6]. The model developed in this work serves as a basis for modelling solid
bonding, and predicting the transitional behaviour at the welding interface from contact between

two bodies to deformation of one bonded body.
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