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Abstract

Nonreciprocity and topologically protected wave propagation have significant implications on how
energy and information are transmitted or guided within materials to control or mitigate its effects.
The major challenge in tailoring interface mode arises from challenges related to the customizabil-
ity and linearity of interface lattice, moreover, there is a scarce of experimental analysis reported in
the literature. Our study has focused on obtaining topologically protected nontrivial interface modes
at a specific frequency by breaking the inversion symmetry through novel hourglass metastructure
both theoretically and experimentally. Detailed work on wave transmission, dispersion, and bandgap
analysis are carried out considering topological metamaterials. New cellular configurations based on
regular honeycomb and auxetic cells, and variations of their geometric parameters responsible for
interface mode tuning are reported here. A generalized theoretical scheme for different combinations
of the hourglass lattice is derived at the interface, and consequent energy harvesting and damping
prospects are reported. Analytical modeling of topological metamaterial lattice along with numeri-
cal simulation, additive layer manufacturing (3D printing), and finally experimental validations are
carried out to justify the behaviour and reveal the underlying physics responsible for its unique be-
haviour. Three types of configurations including hourglass lattice at the interface define a general
framework for introducing lattice-based imperfections in the continuous elastic structure for potential
engineering applications. The localized topological interface mode obtained within the bandgap can
be tuned significantly with the help of latticed hourglass and may be utilized for the purpose of wave
guiding, wave focusing, and energy harvesting within the isolation zone.

Keywords: , Topological metamaterial, wave propagation, localized interface mode, hourglass
metastructure, auxetic lattice, honeycomb lattice, energy harvesting.

Nomenclature

χ Modified stiffness parameter
γ Stiffness parameter
µ Wave number
ν Poisson’s ratio
Ω Non-dimensional frequency
ω Natural frequency
ωr Natural resonant frequency
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τ Non-dimensional time scale
θc Cell lattice angle
Es Modulus of Elasticity of hourglass
H Height of hourglass metastructure
h Height of single dome of hourglass
k Mean stiffness value of spring
k1 Spring stiffness higher than mean stiffness
k2 Spring stiffness lower than mean stiffness
lc Beam length of regular honeycomb and auxetic cells
m Mass of unit cell
r Radius of curvature joining double dome
t Thickness of hourglass metastructure
tc Beam thickness of regular honeycomb and auxetic cells
uc,0 Displacement of the cth mass in 0th unit cell
uv, j Displacement of the vth mass in jth unit cell
uw, j Displacement of the wth mass in jth unit cell

1. Introduction

Wave propagation including wave manipulation and waveguiding in engineered microstructures
have been extensively pursued by the researchers associated with condensed matter physics [1]. With
reference to acoustic, elastic, electromagnetic, and electronic field, topologically protected energy
transmission by waves is a well studied phenomenon in physics and engineering [2]. Various fields
of applications such as aerospace, acoustics [3, 4], electronics [5], photonics [6], mechanics [7], and
optomechanics [8] have brought out the characteristics of such wave propagation. Recently, this study
has been extended to elastic wave propagation by metamaterials whose distinctive material properties
are due to their structure and geometry, rather than their inherent material property [9–12]. These
materials have periodic structures or systems that exhibit spatial periodicity manifested by internal
system geometry, material phases, or repeating boundary conditions. The engineering of band struc-
ture using metamaterials serves as a unifying subject of research in a vast range of physical domains,
including directional propagation, wave focusing [13], acoustic cloaking [14], negative Poisson’s ra-
tio [15], negative refraction [16], wave alteration [17], topological edge states [11, 18], multistable
metamaterials [19] and subwavelength bandgaps [20].

More recently, in this direction a novel class of wave mechanisms known as "topological edge
states" [18], has been explored from the mechanical wave propagation perspective. The ability of a
wave to travel in a single direction along a surface without back-scattering, regardless of the existence
of defects or disorder, is known to be inspired by the electronic edge states occurring in topological
insulators, and possess a striking and technologically promising area of research. One of the impor-
tant properties that can be achieved to understand how information and energy are transmitted using
wave-based phenomena is the band topology in topological metamaterials, which results in unique
characteristics like localized interface mode within the bandgap [21, 22].

Two phononic crystal lattices with different configurations combined with each other would lead
to edge state modes within the bandgap [18, 23, 24]. The present study is based on linking periodic
assemblies that are inverted copies of each other and breaking inversion symmetry within a unit cell
of a periodic medium. The one-dimensional linear chain incorporated comprises the spring-mass lat-
tice with the stiffness values of the springs alternating about the mean. The interface mass acts as a
point of breaking symmetry, and the phenomena of a localized mode within the bandgap are observed
[18, 25–28]. In order to study the dynamic response, the springs attached adjacent to the interface
mass are replaced with the hourglass metastructures [29–31] of different classes namely auxetic and
honeycomb, and integrated into the system. The hourglass metastructure behaves as a spring in the
linear chain, as it has been observed that the equivalent stiffness of the hourglass metastructure can be
assumed to be linear within a small deflection range. It is required to create an ideally dome-shaped
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Figure 1: (a) Details of geometric specifications of hourglass lattice metastructure along with the honeycomb and auxetic
cellular configurations and their dimensions. (b) Schematic representation of a novel 1D periodic spring-mass system with
the introduction of hourglass metastructure at the interface junction to break the inversion symmetry. (c, d, e) Represen-
tation of homogeneous type hourglass lattice metastructure with the honeycomb, auxetic and solid shell configurations.

structures, popularly known as synclastic shapes [32], using these auxetic structures [33–35] with
negative Poisson’s ratios. On a large scale, it is presumable that the honeycomb is a continuous part
or sample made up of a sufficient number of periodic unit cells, enabling homogeneity of its over-
all mechanical properties. In order to analyze the system as a whole, periodic boundary conditions
were applied using the Bloch wave formulation [36, 37]. The band diagrams contain information
on bandgaps, frequency, and interface modes that have been obtained by applying Floquet-Bloch
periodic boundary conditions with the consideration of topological effects [37–39]. Recently ad-
vancements have been made in the realization of interface modes in topological lattices using beams
with periodically varying structures [18, 26, 40] and symmetry-breaking principles, where the idea
of alternating spring stiffness is created by periodically changing the cross-section of beam [41, 41].
Topological metamaterials provide an exciting pathway towards materials with robust functionalities
[42]. Origami and Kirigami, have recently emerged as prototypical routes for the design of mechani-
cal metamaterials due to their characteristics such as easy fabrication and folding patterns, bistability,
and self-assembly ability [43]. Moreover, the effect of material damping on the topological interface
states and energy localization performance is analyzed and it is found that at high frequencies, the
damping could play a vital role in the strength of the interface state [44, 45]. Very little literature
has been reported on the application of such metastructures as the customizable interface lattice in
topological metamaterials. The challenges to achieving singularity at its precise interface location
pose major challenges to implementing it practically. We demonstrated experimentally and validated
the claims made in this report so far. However, the experimental demonstration of interface mode
using spring-mass based one-dimensional lattice and the tuning of the same by inserting hourglass
metastructure is currently reported in this study. Further, the piezoelectric transduction is used for
transforming vibrational energy into electrical energy such that the proposed system can also be used
for energy harvesting [46].

The primary goal of this research is to create interface modes in topological metamaterial lattices
with the aid of metastructures, which results in a novel idea for obtaining high amplitude response
within the bandgap that may be used for wave focusing at particular frequencies. With the integration
of tunable metastructure, we successfully achieve our main objective of realizing interface modes
in topological metamaterial lattice. Experimental validations were conducted using Laser Doppler
Vibrometer (LDV) to analyze the complete dynamics and wave propagation behavior. Additionally,
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we have demonstrated the idea of energy harvesting within the bandgap at specific frequencies, which
has promising applications in the areas of wave tuning, and energy harvesting. The interdependency
of hourglass stiffness with its constitutive cell angle has been utilized to tune the interface modes,
which has good potential for energy harvesting. This is a new idea for energy harvesting inside the
bandgap that hasn’t been reported in the literature.

2. Mathematical Modelling

The existence of interface modes in topological metamaterial can be exemplified with an one-
dimensional diatomic spring mass lattice chain (shown in Fig. 1) which comprises two sublattices
joined through an interface, namely the sublattice - A and sublattice - B. The sublattice chains are
made up of diatomic unit cells comprising of identical masses m and alternating springs having stiff-
nesses k1 and k2 respectively. Arrangement of the entire topological lattice is such that at both the
sides of the interface mass, stiffness of the spring attached on adjacent sides is the same i.e. either k1
or k2. The novel hourglass metastructure [30] possessing stiffness kh is inserted at the adjacent sides
of the interface mass keeping rest of the lattice intact as shown in Fig. 1. The sublattices mounted on
adjacent sides of the interface mass are inverted copies (mirror images) of each other which results in
topological polarization, achieved by breaking symmetry.
The governing equations of motion under free vibration for a unit cell j on sublattice - A of topologi-
cal metamaterial can be obtained as,

müv, j + k2(uv, j −uw, j)+ k1(uv, j −uw, j−1) = 0 (1)
müw, j + k2(uw, j −uv, j)+ k1(uw, j −uv, j+1) = 0 (2)

Similarly, the governing equations of motion for a unit cell j on sublattice - B of topological metama-
terial can be obtained as,

müv, j + k1(uv, j −uw, j)+ k2(uv, j −uw, j−1) = 0 (3)
müw, j + k1(uw, j −uv, j)+ k2(uw, j −uv, j+1) = 0 (4)

The governing equations of motion for the interface mass (interface unit cell consisting of two masses
having displacements uc,0 and uw,0) are given by,

müc,0 + kh(uc,0 −uw,−1)+ kh(uc,0 −uw,0) = 0 (5)
müc,0 + kh(2uc,0 −uw,−1 −uw,0) = 0 (6)

müw,0 + kh(uw,0 −uc,0)+ k2(uw,0 −uv,1) = 0 (7)

For expressing the above derived governing equations into the non-dimensional form, a non-dimensional

time scale τ =

(√
k
m

)
t̃ is incorporated, where t̃ is time.

2.1. Relating γ parameter with the stiffness of auxetic and honeycomb hourglass lattice
Given that the stiffness corresponding to the regular honeycomb hourglass lattice is denoted as

kh and stiffness corresponding to the auxetic hourglass lattice is denoted as ka, we incorporate these
lattices in the arrangement as shown in Fig. 1(b) having kh at the adjacent side of interface mass
and rest of the lattice comprising of linear springs with stiffness k1 and k2 respectively. A similar
arrangement can also be made for auxetic hourglass metastructures configuration having stiffness ka
at the adjacent sides of the interface mass. Considering,

k1 = k(1+ γ) and k2 = k(1− γ) (8)
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In order to introduce tunability of the stiffnesses that depend on the geometrical parameters of the
hourglass, we take k1 (which represents higher stiffness) as stiffness of regular honeycomb kh and k2
(which represents lower stiffness) as stiffness of auxetic hourglass ka. The linear stiffness is approxi-
mated for small deflections of the hourglass lattice [30] which implies,

kh = k(1+ γ) and ka = k(1− γ) (9)

On comparing the value of γ from Eq. (9), we further obtain

γ =

(
kh

k
−1
)
=

(
1− k2

k

)
(10)

γ =
kh − k2

kh + k2
(11)

Equation (11) shows that the γ parameter is dependent on the stiffness of hourglass metastructure
kh and thereby reflects its dependency on the cell lattice angle θc present on the dome shape of the
hourglass metastructure.

γ = f (kh) = f (θc)

By using the load-deflection relationship available related to the dome-shaped hourglass metastructure
with lattice on its dome from our previously published results [30], the final expression for the external
load P and moment MR generated corresponding to the deflection of a single dome of hourglass
metastructure is given by

P =

(
tc
lc

)3 Es

cosθc sinθc

δ
(1−ν2)Ma3

[
(h−δ )(h− δ

2
)t + t3

]
(12)

Representing the load-deflection relationship from Eq. (12) as a simplified cubic polynomial having
K1, K2 and K3 as controlling parameters of nonlinear stiffness in terms of δ , one can express

P = K1δ +K2δ 2 +K3δ 3 (13)

where,

K1 = (C1 t h2 +C1 t3),K2 =−
(

3
2

h t C1

)
,K3 =

(
1
2

t C1

)

C1 =

(
tc
lc

)3 Es cosθc(
hc

lc
+ sinθc

)
(sinθc)2

1
(1−ν2)Ma2

1
M

=

[
r+1
r−1

− 2
log r

]
π
(

r
r−1

)2

, where r =
a
b

To obtain the relation of load-deflection, assuming it as a combination of two nonlinear springs in
series with spring constants C1 and C2 resulting in satisfying the force characteristics P1 =C1xN and
P2 = C2yN which after expressing them as z = x+ y lead to the following expression as obtained in
[30], and reported here for completeness.
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For odd power of N; N = 2n+1

P =
1



(

1
C1

) 1
2n+1 +

(
1

C2

) 1
2n+1




2n+1 Z2n+1 (14)

For even power of N; N = 2n

P =
1



(

1
C1

) 1
2n +

(
1

C2

) 1
2n




2n Z2n (15)

Considering the hourglass metastructure as the series combination of two identical nonlinear springs
expressed by Eq.(13) upon incorporating Eq. (14) and (15), yields the expression of equivalent load
Peq for homogeneous configuration as

Peq =
K1

2
δeq +

K2

4
δ 2

eq +
K3

8
δ 3

eq (16)

The experimental results and load-deflection plot mentioned in [30] take into consideration only the
linear relation between load and deflection since in the small deflection range, it shows a linear rela-
tionship. Finally, relating the stiffness kh to lattice cell angle θc i.e., kh = f (θc) , we can relate the
dependency of γ to θc as γ = f (θc).
In order to obtain the dispersion relationship using Bloch formulations, an infinite periodic diatomic
lattice having identical masses and alternating spring stiffness as k1 and k2 is considered without the
presence of interface mass which earlier acted as a point of breaking symmetry [47]. Let the governing
equation of the unit cell j of the diatomic periodic lattice be given as,

müv, j + k1(uv, j −uw, j)+ k2(uv, j −uw, j−1) = 0 (17)

müw, j + k1(uw, j −uv, j)+ k2(uw, j −uv, j+1) = 0 (18)

Substituting the value of k1 = k(1+ γ) and k2 = k(1− γ) in Eqs. (17) and (18) results in the non-
dimensional form as:

üv, j +2uv, j − (1+ γ)uw, j − (1− γ)uw, j−1 = 0 (19)

üw, j +2uw, j − (1+ γ)uv, j − (1− γ)uv, j+1 = 0 (20)

The plane wave solution of the form u j = (uv, j,uw, j) = A(µ)ei(Ωτ+µ j) is implemented in Eq. (19) and
(20) which results in the eigen value problem of Eq. (21), where Ω is used to represent frequency,
i =

√
−1 is imaginary number and µ is non-dimensional wave number.

(
2−Ω2 −(1+ γ)− (1− γ)e−iµ

−(1+ γ)− (1− γ)eiµ 2−Ω2

)(
Av
Aw

)
= Ω2

(
Av
Aw

)
(21)

Taking into account wavenumber along the first Irreducible Brillouin zone (IBZ) i.e. µ ∈ [0,π] and
evaluating the expression leads to dispersion relation Ω depending upon µ and γ .

Ω =

√
2±
√

2+2γ2 +2(1− γ2)cos µ (22)
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The two solutions correspond to optical branch Ω1 =
√

2+
√

2+2γ2 +2(1− γ2)cos µ and acoustic

branch Ω2 =
√

2−
√

2+2γ2 +2(1− γ2)cos µ can be utilised to obtain the plots of the dispersion
relation for varying values of γ as represented in Fig. 2. For γ = 0, the bandgap is zero leading to
the acoustic and optical branch meeting each other when evaluated at µ = π . While for γ ̸= 0 the
non-dimensional parametric width of the bandgap is given by

Ω ∈
(√

2(1−|γ|),
√

2(1+ |γ|)
)

(23)

The eigenvector corresponding to the optical and acoustic branch can be obtained respectively as
−

(γ +1)e−iµ − γ +1√
2−2γ2 cos µ +2γ2 +2cos µ

1


 and




(γ +1)e−iµ − γ +1√
2−2γ2 cos µ +2γ2 +2cos µ

1


. Also evaluating them

at µ = π , we obtain the eigenvector corresponding to the frequency of symmetric mode which is

given by
(

Av
Aw

)
=

1√
2

(
1
1

)
while the eigenvector corresponding to the frequency of anti-symmetric

mode is given by
(

Av
Aw

)
=

1√
2

(
1
−1

)
.

The anti-symmetric vector will correspond to a higher frequency from Eq. (23) as the value of γ
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Figure 2: (a) Acoustic and optical mode frequency variation with the γ parameter along with proportional variation of
included angle θc (ranging from auxetic to honeycomb cell). The value of µ = π and showing interdependence on lattice
of different hourglass metastructures (b) Variation of non-dimensional frequency Ω for optical and acoustic mode with
respect to varying values of γ and wave number µ .

changes from negative to positive due to band inversion represented in Fig. 2. The localized modes
are obtained at the interface of lattices where symmetry breaking happens i.e. γ < 0 and γ > 0 in
case of hourglass mounted at adjacent sides of the interface mass. The cell lattice angle (θc) of the
hourglass metastructure can be related to the stiffness parameter γ of the lattice as mentioned in the
same section earlier where the value of γ varies from -1 to 1.

2.2. Analytical Computation of Interface Modes
It is known that a non-trivial localized mode is obtained when the two periodic lattices having

different Zak phases [48–50] are attached in such a way that one lattice is a mirror copy of another
and the point of symmetry breaking assists in obtaining the non-trivial localized mode within the
bandgap. The frequency at which the localized mode is observed at the interface in a linear chain
can be calculated and the corresponding mode shapes can be derived explicitly. For the purpose of
studying the harmonic response of the topological lattice with symmetry broken at the interface, we
would consider a finite lattice upon having a considerably large number of unit cells on either side
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of the interface mass, which would result in the boundary effects being negligible. The unit cells are
numbered by parameter j ranging from j = −N to N, while the position of the interface mass is de-
fined at j = 0. A harmonic solution of the form u j(t) = u jeiΩτ is imposed in the bandgap frequencies
to understand the lattice dynamics. The interval of the bandgap frequency may be expressed as

Ω ∈
[√

2(1−|γ|),
√

2(1+ |γ|)
]

(24)

or Ω > 2 (25)

For the implementation of the harmonic solution to the interface mass, we would relate the displace-
ments of adjacent neighboring unit cells j− 1 and j on any side of the interface mass either left or
right. The masses attached to the interface mass mc,0 are mw, j−1 and mw, j on the left side and right side
sublattices respectively. To relate how the displacements of the diatomic atoms of two different unit
cells vary as we move from center to right side or left side, we would write the governing equations of
the masses of two adjacent unit cells j−1 and j. The governing equations of the two masses mw, j−1
and mv, j where j > 0 (since we are considering the unit cells on the right-hand side of the interface
mass mc,0) are as follows :

müv, j + k1(uv, j −uw, j)+ k2(uv, j −uw, j−1) = 0 (26)

müw, j−1 + k2(uw, j−1 −uv, j)+ k1(uw, j−1 −uv, j−1) = 0 (27)

The non-dimensional form of Eq. (26) and (27) would result in

(2−Ω2)uv, j − (1+ γ)uw, j − (1− γ)uw, j−1 = 0 (28)

(2−Ω2)uw, j−1 − (1− γ)uv, j − (1+ γ)uv, j−1 = 0 (29)

The relationship between displacements of two adjacent unit cells on the right side of the interface
mass would be revealed after rearranging the terms of Eq. (28) and (29). On the left side of the
interface mass, a similar procedure can be used to determine the relationships between neighboring
unit cells.

(
uv
uw

)

j
=




γ +1
γ −1

2−Ω2

1− γ

−2−Ω2

1− γ
(2−Ω2)2 − (γ −1)2

1− γ2




(
uv
uw

)

j−1
= T

(
uv
uw

)

j−1
(30)

where the notation T is used to denote the Transfer matrix which relates displacement of masses in
the two adjacent unit cells. Similarly, we can also relate displacement of masses of interface unit cell
and the Nth unit cell using the Transfer Matrix method

uN = T Nu0 (31)

where u0 =

(
uc,0
uw,0

)T

and uN =

(
uv,N
uw,N

)T

are the vector components corresponding to the displace-

ments of masses of the interface unit cell and the Nth unit cell respectively. The relation obtained in
Eq. (31) depicts that as we move away from the interface unit cell to either left or right the displace-
ments of the unit cells decay exponentially with a power of transfer matrix [10]. Solution of frequency
is obtained when the eigenvectors found from the transfer matrix of the considered lattice would sat-
isfy the decay condition. In the bandgap frequency, the eigenvector of T found corresponding to the
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eigenvalues which are less than 1 are

e =
(

2(Ω2 −2)(1+ γ)
(Ω2 −2)2 +4γ +Ω

√
(Ω2 −4)((Ω2 −2)2 −4γ2)

)
(32)

The interface mass governing equation can be written as

2
(

1− Ω2

2(1+ γ)
uc,0

)
= (uw,0 +uw,−1) (33)

Although the sublattice at the adjacent sides of the interface mass is symmetric and there is a presence
of a non-propagating localized mode, the conditions being symmetric about the interface mass would
lead to equal displacement movement for the masses which are positioned adjacent to the interface
mass ∣∣uw,0

∣∣=
∣∣uw,−1

∣∣ (34)

Implementing the wave solution to the above condition, we may write as uw,−1 = e2iθ uw,0 and form
the governing equation in the vector form as

u0 =

(
uc,0
uw,0

)
=




eiθ cosθ

1− Ω2

2(1+ γ)


 (35)

The decay condition as mentioned in Eq. (31) can be satisfied and we can have u0 as a non-trivial
solution if and only if u is in the subspace which is spanned by e eigenvector having eigenvalue less
than 1, i.e. e = su0 where s is considered as a scalar value. Now comparing the two eigenvectors as
u0 and e i.e. Eq. (32) and (35); equating them with each other would lead to the explicit expressions
for the frequencies at which the localized modes are obtained.

e = u0 (36)

e =
[

e1
e2

]
=

[
uc,0
uw,0

]
(37)

This would lead to the computation of the two eigen vectors as

[
2(Ω2 −2)(1+ γ)

(Ω2 −2)2 −4γ +Ω
√

(Ω2 −4)((Ω2 −2)2 −4γ2)

]
=




eiθ cosθ

1− Ω2

2(1+ γ)


 (38)

Upon further solving, the expressions would lead to an equation whose root values of Ω would give the
frequency of the localized mode. The component uc,0 of the eigenvector u0 which is the corresponding
mode shape for the interface unit cell comprising the two masses is given by eiθ cosθ . Hence, the
component uc,0 = eiθ cosθ can take the value as either 0 or 1 due to the condition of the eigen vector
e being a scalar multiple of the interface unit cell mode shape u0 leading to

e1

uc,0
=

e2

uw,0
= c (39)

2(Ω2 −2)(1+ γ)
(

1− Ω2

2(1+ γ)

)
= (Ω2 −2)2 −4γ +Ω

√
(Ω2 −4)((Ω2 −2)2 −4γ2)eiθ cosθ (40)

Substituting the value of θ = π/2 in Eq. (40) would lead to the expression of following condition
uw,−1 =−uw,0 which can be further expressed as |uw,−1|= |uw,0| and uc,0 = 0; that makes the interface
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unit cell mode shape as symmetric.

2(Ω2 −2)(1+ γ)
(

1− Ω2

2(1+ γ)

)
= 0 (41)

Hence,
(Ω2 −2γ −2)(Ω2 −2) = 0 (42)

where non-zero value of γ would result in the value of Ω as

Ω =
√

2 (43)

While substituting the value of θ = 0 in Eq. (40) would lead to the condition uw,0 = uw,−1, and by

(a) (b)

(c) (d)

Figure 3: (a) Frequency response function plot for a 1D topological metamaterial spring-mass lattice with the regular
honeycomb hourglass metastructure attached to the opposite sides of the interface mass: identical masses m, k1 = k(1+γ),
and k2 = k(1− γ), γ = 0.4. In the central region of the bandgap, a localized interface mode is seen at the interface mass.
(b) Natural frequencies of the finite 1D topologically arranged mechanical metamaterial spring-mass lattice comprising
122 masses with regular honeycomb hourglass metastructure kh attached at both the adjacent sides of the interface mass
exhibiting resonating and interface modes over the range of non-dimensional frequencies. (c) Frequency response function
plot for 1D topological metamaterial spring-mass lattice : identical masses m, k1 = k(1+ γ) and k2 = k(1− γ), γ =−0.4
with auxetic re-entrant angle hourglass metastructure attached at the adjacent sides of the interface mass. A localized
interface mode is observed at the interface mass within the bandgap from the start point of the bandgap to its center.
(d) Natural frequencies of the finite 1D topologically arranged mechanical metamaterial spring-mass lattice comprising
122 masses with auxetic hourglass metastructure ka attached at both the adjacent sides of the interface mass exhibiting
resonating and interface modes over the range of non-dimensional frequencies.
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observing the expression of the transfer matrix and eigenvector one can understand that the mode
shape is antisymmetric with respect to the interface mass.

2(Ω2 −2)(1+ γ)
(

1− Ω2

2(1+ γ)

)
= (Ω2 −2)2 −4γ +Ω

√
(Ω2 −4)((Ω2 −2)2 −4γ2) (44)

Solving Eq. (44), the roots of the equation may be obtained as
Ω =

√
2; which is symmetric and within the bandgap between acoustic and optical mode

Ω =

√
3+
√

1+8γ2; which is antisymmetric and above the optical mode

Ω =

√
3−
√

1+8γ2; which is antisymmetric and within the bandgap between acoustic and opti-
cal mode

Fig. 3(a) and (b) shows the occurrence of localized interface mode for topological lattice with reg-
ular honeycomb hourglass metastructure incorporated; while, Fig. 3(c) and (d) corresponds to auxetic
hourglass configuration mounted at adjacent side of the interface. The first and second interface mode
frequencies are related to symmetric and antisymmetric mode respectively corresponding to γ > 0 in
the expression kh = k1 = k(1+ γ) and ka = k2 = k(1− γ) following the arrangement at adjacent side
of interface mass shown in Fig. 1(b). This represents the case of hard-hard spring mass topological
arrangement about the interface mass (k1 − k1) that is depicted in Fig. 4(a). The third interface mode
frequency which is antisymmetric is obtained when the value of γ < 0. It can be interpreted that
it represents the case of soft-soft spring mass topological arrangement (k2 − k2) about the interface
mass where the interface mass is having the highest amplitude and the masses adjacent to the inter-
face mass have an amplitude of equal magnitude as depicted in Fig. 4(b). The second and the third
frequency of the localized modes obtained are related to the antisymmetric mode which indicates that
the unit cells on both sides of the interface move in phase with zero phase difference; while the first
frequency mode is associated with the symmetric mode which implies unit cell on adjacent sides of
the interface mass move relative to each other with a phase difference of π . From Fig. 4(a) it can be
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Figure 4: Considering lattice with 122 masses attached using springs (a) Normalised amplitude versus mass mode number
with the k1 −m− k1 arrangement at adjacent sides of interface mass having γ = 0.4 about the interface frequency at
Ω =

√
2. (b) Normalised amplitude versus mass mode number with the k2 −m− k2 arrangement at adjacent sides of

interface mass having γ = - 0.4 about the interface frequency at Ω = 1.2206.

observed that the alternate mass particles are immobile since their normalized displacement is zero
causing the remaining mass particles to oscillate about their equilibrium positions. In the symmet-
ric mode, the displacement of the interface mass is equal to zero while the adjacent masses oscillate
about their mean position but are in opposite phase. Fig. 4(b) depicts that the absolute displacements
at any jth position in the spring-mass lattice system having a topological arrangement with lower
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stiffness springs at the adjacent sides of the interface mass can be easily obtained using the symmetric
condition about the central interface mass. This is because the central interface mode would be non-
propagating and similar sub-lattice are attached at their adjacent sides. Hence, for the antisymmetric
mode, the displacement of the interface mass is non-zero. The displacement of adjacent masses are
equal and in phase. Due to this reason, for the response of k1 − k1 arrangement at the interface, we
measure the response at the mass adjacent to the interface. Contrary to this, in the case of the k2 − k2
arrangement, the response is measured at the interface mass. The normalized amplitude diagram as
shown in Fig. 4(a) and (b) assist in understanding the reason for measurement of response at those
specific masses i.e. one on the interface while the other on the mass adjacent to the interface for
different cases.
The frequency response of the lattice can be found by considering a finite lattice, however, the length
must be large enough so that the boundary effects are negligible. Considering a topological meta-
material lattice consisting of 122 masses having diatomic masses and alternating stiffness spring in
one unit cell results in 61 unit cells out of which there is one interface unit cell at the center and 30
unit cells on the left side and 30 on the right side respectively. The value of stiffness parameter γ is
considered as 0.4 for numerical computation and the system is given a forced harmonic excitation at
one end keeping the other end of the system free. The dynamics of the complete lattice is governed
by the following equation

M̃ü(τ)+ K̃u(τ) = f (τ) (45)

where the lattice is subjected to an externally applied harmonic force f cos(Ωτ). Assuming the solu-
tion of the form u(τ) = ueiΩτ , we can reduce the equation to the following form as,

(
K̃ −Ω2M̃

)
u = f (46)

Equation (46) can be transformed into eigenvalue problem by taking f = 0 and can be used to find
out the eigen frequencies of the chain, such that

(
K̃ −Ω2M̃

)
u = 0 (47)

The band gap is obtained for the diatomic periodic chain of spring mass. Converse to this, a localized
mode is obtained at the interface mass within the bandgap when the symmetry of the periodic lattice
is broken in such a way that the left side sub-lattice and right side sub-lattice of interface mass are
mirror replica of each other, as shown in Fig. 3. Acoustic and optical modes are observed and in
between them an interface mode at frequency Ω =

√
2 is observed in the bandgap frequency when the

stiffness parameter γ > 0. Another interface mode is obtained above the optical mode at frequency

Ω =

√
3+
√

1+8γ2 for the same configuration. Considering the value of stiffness parameter as
γ < 0 and springs with stiffness lesser than the mean value attached at the adjacent sides of the
interface mass results in interface mode which is obtained anywhere from center of the bandgap
to the left-hand side of the bandgap depending on the value of γ parameter at the frequency Ω =√

3−
√

1+8γ2. It is observed that as the value of stiffness parameter γ changes from positive to
negative, the symmetric mode obtained for γ > 0 within the bandgap gets converted into the localized
anti-symmetric mode for γ < 0. The amplitude obtained at the interface mass is large enough than the
desired one which can be used for various applications like energy harvesting. The localized interface
mode obtained within the bandgap of the lattice structure resembles a sharp peak of base displacement
and gives a better illustration of guiding the wave at a precise frequency. Implementing the hourglass
metastructures, instead of linear springs at the position adjacent to the interface mass, we can have
a new way of energy harvesting in topologically protected edge states with the help of hourglass
lattice-based mechanical metamaterials due to the customizable stiffness of hourglass possible from
the presence of lattice on its dome shape. The energy harvested would be dependent on the cell
angle (θc) of the hourglass metastructures implemented in the topological metamaterial lattice. The
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stiffness of hourglass metastructures would correspond to honeycomb lattice when stiffness parameter
γ > 0, and it would correspond to auxetic lattice when γ < 0. For distinguishing between bandgap
and interface mode, we considered the periodic diatomic lattice without interface mass and without
breaking symmetry which would result in the bandgap present in the frequency response function
plot of the diatomic lattice where vibration can be isolated. For the realization of interface mode
within the bandgap, we consider the lattice comprising 122 masses out of which 60 masses are on the
left side of the interface unit cell corresponding to the left-hand diatomic sublattice and 60 masses
on the right side of the interface unit cell corresponding to right-hand diatomic sublattice. Since
the system is one dimensional, we would assume the boundary conditions at the extreme left end of
the sublattice is given a harmonic excitation displacement of uw,−30 = cos(Ωτ) for ( j =−30) while
keeping the extreme right end of the sublattice free. The frequency response of the lattice is taken at
the interface unit cell of the topological metamaterial lattice. The displacement for the center-mass
can be obtained by formulating the eigenvalue problem given in Eq. (47). We observed that the
regular diatomic lattice with identical masses and alternating springs does not support any localized
modes within the bandgap. In the case where symmetry is broken, there is a localized mode obtained
within the bandgap. The frequency at which the interface mode is obtained within the bandgap is
predicted by the analytical solution, which is derived explicitly using Eq. (44). These frequencies
support the localized interface modes for various arrangements of the lattice, i.e., k1 − k1 (hard-hard)
or k2 − k2 (soft-soft) spring arrangement at the adjacent sides of the interface mass.

3. Experimental Method

3.1. Additive Manufacturing of 3D printed hourglass metastructure samples

(a) (b) (c)

Figure 5: 3D printed hourglass samples using PCTPE (Plasticized Copolyamide Thermoplastic Elastomer) material with
different lattices namely (a) honeycomb (b) auxetic and (c) solidshell respectively. Hourglass metastructures with different
cellular lattices are designed using the CAD modeling software SolidWorks with specified dimensions of the free height
of the hourglass metastructure, H = 24 mm (the height of each dome is h = 12 mm). The spherical radius of domes is 40
mm, and the thickness in the radial direction is 2 mm, while the base radius is 38 mm.

The double dome of the hourglass metastructure is connected through the radial surface to avoid
any stress concentration. The CAD model is converted to a STereoLithography file (STL) to fabri-
cate additive manufactured samples. The 3D printing material PCTPE is flexible in nature, procured
from Taulman 3D and utilized for printing the hourglass metastructure samples using Ultimaker 3.0
Extended 3D printer having a multi-material printing facility. The filament diameter of the PCTPE is
2.85 mm. The mechanical properties of PCTPE material are : density ρ = 1.25 gm/cm3, Poisson’s
ratio ν = 0.285, and Modulus of Elasticity E = 73 MPa, respectively. Specifications of 3D printing
and its associated control parameters are provided in Table 1. Figure 5 shows the three different types
of 3D printed hourglass samples.
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Sr. No. Specifications in 3D printing Value (unit)
1 3D Printing Material PCTPE 2.85 mm nominal diameter
2 Thickness of layer height 0.15mm
3 Infill density 100%
4 Infill pattern Triangular
5 Speed of printing 70 mm/s
6 Support placement Support overhang angle 45◦C
7 Support pattern Zig-zag (auxetic and solid shell)

gyroid (honeycomb lattice)
8 Print temperature 240◦C
9 Temperature of Built plate 90◦C
10 Support density 20 %
11 Support line distance, 2.5 mm (both)

infill layer support line distance
12 Type of Built plate adhesion Brim, raft

Table 1: 3D printing detailed specifications for hourglass metastructures

3.2. Dynamic testing of the hourglass samples

(a) (b) (c)

Figure 6: (a), (b) and (c) shows dynamic testing of hourglass sample using LDS shaker upto frequency range of 300 Hz
with the dead weight of 100 gm mounted at the top of hourglass sample with LDV laser beam incident.

Non-contact vibration measurement techniques are adapted for measuring the dynamic response
of hourglass metastructure. Three samples of the hourglass, namely regular honeycomb, auxetic, and
solid shell were 3D printed and their responses were compared by carrying out dynamic testing using
the 3D Laser Doppler Vibrometer (LDV) of Polytec. The samples were mounted on the Electrody-
namic LDS shaker system (V201). The hourglass metastructure samples are attached to the aluminum
plate at the top and bottom. The hourglass metastructures are placed between the two plates in a sand-
wiched manner upon which retro-reflective tape is attached which is used to reflect the incident laser
beam, as shown in Fig. 6. Laser sensor heads recorded the velocity of the vibrating surface by mea-
suring the phase shift of incident and reflected laser beam from it. At the same time, NI-DAQ systems
are used for data acquisition and signal processing. Base excitation technique was used to determine
the transmissibility of hourglass samples for which 1600 FFT lines with pseudo-random signal were
provided by the LDS shaker. Experiments were performed for an excitation frequency range of 0 to
300 Hz, with two different gains of g = 1 and g = 1.6, and corresponding displacement readings of
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Figure 7: 3D Hourglass printed samples dynamically tested using LDS shaker with LDV data acquisition system having
gain (a) g=1 and (b) g=1.6 upto 300 Hz.

top and bottom aluminium plates of hourglass metastructure. In turn, from the measured data, trans-
missibility was calculated. The recorded data was post-processed with a Saitzky-Golay filter with
frame length 5 and of order 1, thereby filtering the noise. The dead weight of the aluminium plate
mounted on the hourglass sample was 100 gm. The stiffness of the hourglass sample was measured
by calculating the natural frequency of the fundamental mode. The peak frequency in Hertz for the
auxetic, regular honeycomb, and solid shell obtained experimentally came out to be 105.5 Hz, 115
Hz, and 251.4 Hz, respectively, which can be verified from Fig. 7(a) and (b). The masses of hourglass
metastructures were 6.05 gm, 4.97 gm, and 12.67 gm, respectively. Since the mass of hourglass is
very small compared to the dead weight applied, the effect of mass of hourglass is neglected for nat-
ural frequency estimation. Accordingly, the stiffness of honeycomb, auxetic and solid shell hourglass
were obtained as 52 N/mm, 43.94 N/mm, and 249.51 N/mm, respectively. The natural frequencies
were obtained experimentally from the transmissibility plots through the base excitation technique.

3.3. Experimental setup of Topological metamaterial
In order to obtain a non-trivial localized interface mode experimentally, we considered 12 periodic

unit cells comprising 24 masses connected by springs of alternate stiffnesses, k1 and k2. The springs
were designed of two different configurations, i.e., having different wire and coil diameters keeping
the alternating stiffness as k1 = 800 N/m and k2 = 150 N/m. The masses are considered identical, each
weighing 150 gm. The experimental setup consists of the system, which is manufactured considering
the balancing aspect (dynamic and static), thereby not requiring any complex attachments to support
it. The masses are supported by the cantilever support structure of considerable length such that when
axial longitudinal vibrations are provided to the spring-mass chain, for small amplitude of vibrations,
the motion is assumed to be in the longitudinal direction only. The guideway act as a frame for the
masses attached with rigid link connections (with hinge joint), treated as a 1D pendulum chain for
small angular deflections. The schematic of the complete experimental setup is shown in Fig. 8.

The metamaterial lattice, as shown in Fig. 9, comprises the two fixed guideways supported on
the fixtures, and the chain of the coupled spring-mass system resembles a 1D pendulum chain. The
optimum length for the system is calculated to be 2.5 m, and a total of 24 unit cells were on it.
The objective of obtaining localized interface mode within the bandgap is well achieved theoretically
as well as numerically using MATLAB and COMSOL simulations. The experimental setup was
designed as per the proposed schematic diagram of the experimental setup in Fig. 9; the different
components were manufactured and assembled to carry out experiments, as shown in Fig. 10. In order
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Figure 8: (a) Schematic diagram of the experimental setup with topological metamaterial lattice along with interface mode
(b) Laser Doppler Vibrometer

Supporting frame

LDS Shaker

Piezoelectric 

MFC patch

Piezoelectric 

Energy Harvesting 

Circuit

Hourglass metastructureInterface mass

Guideways

Mass Springs

Cantilever support
Holes for hanging assembly

Figure 9: Conceptual schematic diagram of topological metamaterial lattice with hourglass mounted at the adjacent sides
of the interface mass along with integrated piezoelectric energy harvesting circuit.

to achieve the one-dimensional spring-mass chain motion in the horizontal direction, all the masses
are suspended from the fixed end and rigidly supported using guideways by a reasonably large length
cantilever support such that they behave as pendulums individually. The complete system resembles
a compound pendulum, and during the operation, the possibility of the effect of the small angle of
tilt of each mass from a horizontal position can be neglected so that the 1D model can be assumed.
The cantilever support shown in Fig. 9 and 10 are of rectangular cross-section so that due to its high
moment of inertia in torsion, the lateral movement of topological metamaterial spring-mass system
can be constrained in one direction only.
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Figure 10: Experimental setup of topological metamaterial lattice with hard-hard springs arrangement at adjacent sides of
interface mass i.e. k1 − k1 to demonstrate interface mode

4. Results and Discussion

4.1. FEA simulation of Topological metamaterial lattice
In order to identify the bandgap occurrences via simulation, a one-dimensional periodic diatomic

lattice with 122 masses and alternating springs is first explored in the absence of interface mass
without breaking symmetry. The frequency response function (FRF) and phase diagram are obtained
using the lumped mechanical system model in COMSOL, the excitation is given at one end of the
lattice keeping the other end free, and response is measured at the interface mass. The bandgap
is evident in the frequency response function plot and is further confirmed by phase plot, which
reveals no phase change in the bandgap, as shown in Fig. 11(a) and 11(b) respectively.

(a) (b)

Figure 11: 1D diatomic spring-mass lattice subjected to harmonic excitation at one end keeping other end free while
response measured at center mass (a) Frequency Response Function in COMSOL and (b) Phase plot in COMSOL. The
parameters considered are : m = 1 kg, k = 1 N/m, k1 = k(1+ γ), k2 = k(1− γ), γ = 0.4.

The FEA simulation of topological metamaterial lattice comprising 61 unit cells, out of which 30
unit cells are on the left sub-lattice, and 30 unit cells on the right sub-lattice with the central unit cell
acting as an interface, i.e., with 122 identical masses m and alternating springs k1 and k2 attached
sequentially with a broken symmetry at the interface mass is performed in COMSOL, and the fre-
quency response is obtained thereby verifying the presence of localized interface mode at the same
frequency as obtained using the analytical formulation. Harmonic excitation is given at one end of the
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lattice keeping the other end free, while the response was calculated at the interface mass. The sim-
ulations with springs at the adjacent sides of interface mass for two different types of arrangements,
i.e. hard-hard (k1 − k1) and soft-soft (k2 − k2) springs, are carried out. Hourglass metastructure with

(a) (b)

(c) (d)

Figure 12: 1D topological metamaterial spring-mass lattice subjected to harmonic excitation at one end keeping other
end free while response measured at center mass when regular honeycomb hourglass structure kh or auxetic hourglass
structure ka is attached adjacent to interface mass. (a),(c) Frequency Response Function in COMSOL and (b),(d) Phase
plot in COMSOL for regular honeycomb and auxetic hourglass respectively. The parameters considered are : m = 1
kg, k = 1 N/m, k1 = k(1+ γ), k2 = k(1− γ), γ = 0.4 for regular honeycomb hourglass adjacent to interface mass, while
γ =−0.4 for auxetic hourglass adjacent to interface mass.

honeycomb and auxetic cells were placed at the adjacent sides of interface mass, considering linear
stiffness. With the help of simulations, it is possible to study the frequency response function and
phase plot when auxetic hourglass and regular honeycomb lattices are coupled next to the interface
mass under the linear stiffness assumption as shown in Fig. 12. The modified topological metama-
terial is having different stiffness adjacent to interface mass governed by χ parameter, with χ being
any scalar value. It is observed that with an increasing value of χ , for γ < 0 lattice arrangement case
at neighbouring sides of a topological lattice, the generalized case of a modified lattice with interface
mass under consideration would cause the interface mode frequency to move from left to right. For
the modified topological lattice with added χ parameter for γ > 0, the interface mode at Ω =

√
2,

obtained at symmetric mode, would not change.
The experimental FRF results obtained by attaching 24 identical masses m = 150 gm along with the
alternating springs having stiffness k1 = 825 N/m and k2 = 175 N/m and γ = 0.88 for topological
metamaterial lattice with hard-hard (k1 − k1) spring arrangement at the adjacent sides of interface
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mass clearly show good agreement of the localized interface mode obtained via simulation in COM-
SOL where same parameters were used and results match within the bandgap as shown in Fig. 13.

k1 k2 k2 k2 k1m m m m m m m mk2 k1

Sublattice - A Sublattice - BInterface

uc,0 uw,0 uv,1 uw,1 uv,2uw,−1uv,−1uw,−2

k1 k1

(a)

(b) (c)

Figure 13: (a) Schematic diagram of topological metamaterial lattice with hard-hard (k1−k1) springs attached at adjacent
sides of interface mass excitation given at one end and response measured at interface. The parameters considered are :
m = 150 gm, k1 = 825 N/m, k2 = 175 N/m. (b) Experimental and COMSOL FRF comparison showing interface mode at
12.64 Hz for hard-hard (k1 − k1) arrangement (c) Phase plot for hard-hard (k1 − k1) arrangement in COMSOL depicting
interface mode phase change within the bandgap at same frequency.

The response is measured at the interface mass unit cell i.e. second mass of the interface unit cell
where displacement obtained is maximum. It is observed that damping conditions are present, and the
amplitude of side resonating masses is reduced to some extent rather than on the interface mass, as
shown in the experimental plots. Fig. 13(b) clearly depicts the localized interface mode present within
the bandgap located at the center of the bandgap. The analysis is carried out in a low-frequency range
i.e. from 0 to 25 Hz, which is our area of interest. The interface mode is obtained at the frequency
of 12.64 Hz when the frequency response function is plotted as a transmissibility plot i.e. ratio of the
response signal and base excitation signal. While Fig. 13(b) represents the comparison of FRF plots
obtained from COMSOL as well as experimentally obtained FRF plots, which shows good agreement
with each other. This study is majorly focused on the interface mode obtained within the bandgap.
Thus the interface mode above the optical mode is not explored in this case. Furthermore, the phase
plot for the same obtained in COMSOL can be observed, as shown in Fig. 13(c), which agrees with the
presence of localized interface mode at the center of the bandgap, indicated by a single blue-colored
line inside the grey color of the bandgap.

4.2. Energy harvesting within the bandgap
We obtained a localized interface mode within the bandgap by incorporating hourglass metastruc-

ture in topological metamaterial lattice within the adjacent sides of interface mass. The dependence
of the cell lattice angle (θc) of hourglass metastructure was found to affect energy harvesting sig-
nificantly. The amplitude obtained at the localized interface mode, where the symmetry of lattice is
broken, is of high magnitude from which energy harvesting is carried out and can be utilized to power
the electronic devices within the bandgap. The voltage and power plots obtained by integrating a
cantilevered bimorph piezoelectric energy harvester give us the implications of the voltage and power
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obtained corresponds to the fundamental mode, as shown in Fig. 14. The properties of the macro
fiber composite along with the dimensions taken into consideration, are provided in Table 2.

(a) (b)

(c) (d)

Figure 14: Analytically calculated (a) Voltage (b) Current (c) Power plots for cantilever bimorph piezoelectric energy
harvester subjected to harmonic base excitation. (d) Schematic representation of cantilever bimorph PZEH.

Sr. No. Property parameter Value
1 Length of piezo (Lp) 118 mm
2 Width of piezo (Wp) 35 mm
3 Height of piezo (tp) 0.08 mm
4 density (ρp) 5650 kg/m^3
5 Capacitance of each layer (Cp) 15.11 nF
6 Series Connection (χ) 0.5
7 d31 -170 pC/N or pm/V
8 d33 374 pm/V
9 Young’s modulus of piezo (Ep) 30.336 GPa

Table 2: Piezoelectric material properties : MFC M-2814-P1

Similar experimentation is performed with soft-soft (k2−k2) spring arrangement at adjacent sides
of interface mass as shown in Fig. 15(a) and the unit harmonic excitation displacement is given at base
mass, keeping another end free, and response is measured at interface mass unit cell, i.e. first mass of
interface unit cell where the displacement obtained is maximum for this case. A good agreement is
achieved with experimental frequency response function plots and simulation results on the presence
of the interface mode within the bandgap, which is found to be shifted slightly towards the left side
from the center of the bandgap. The considered masses are identical m = 150 gm and stiffness of
springs k1 = 825 N/m and k2 = 175 N/m. Localized interface mode of this lattice is obtained at a
frequency of 9.56 Hz. However, both plots give a clear idea of the shifting of interface mode towards
the left side from the center of the bandgap, as shown in Fig. 15(b) and (c). Using a bimorph
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Figure 15: (a) Schematic diagram of topological metamaterial lattice with soft-soft (k2 − k2) springs attached at adjacent
sides of interface mass excitation given at one end and response measured at interface. The parameters considered are :
m = 150 gm, k1 = 825 N/m, k2 = 175 N/m. (b) Experimental and COMSOL FRF comparison showing interface mode
at 9.56 Hz for soft-soft (k2 − k2) arrangement (c) Phase plot for soft-soft (k2 − k2) arrangement in COMSOL depicting
interface mode phase change within the bandgap at same frequency.
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Figure 16: Topological metamaterial lattice with soft-soft (k2 − k2) spring arrangement attached at the adjacent sides of
interface mass along with the piezobeam attached to it for voltage and power measurement showing peak at 9.56 Hz
(a) Comparison between experimental and analytical Voltage FRF (b) Comparison between experimental and analytical
Power FRF.

cantilevered piezoelectric energy harvester attached to the interface mass as formulated [51, 52]. The
peak voltage is obtained at the same frequency at which the interface mode is obtained, as shown
in Fig. 16(a) and (b), representing peak experimental voltage and comparison of experimental and
analytical voltage. Thus, by appropriately choosing the dimensions of the bimorph cantilevered PZEH
such that the fundamental mode of the cantilever occurs at the same frequency at which the interface
mode has appeared within the bandgap and by utilizing its high amplitude available at the interface
mass, one can obtain the value of voltage. The maximum value of experimental voltage and power
available for (k2 − k2) configuration as depicted in Fig. 16(a) and (b) is 12.59 mV and 0.062 µW
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respectively when connected with a load resistance of 2500 Ω in series. In addition to that, the FRF
and phase plot provide a good agreement of the interface mode shifting towards left side from the
center of the bandgap.

4.3. Generalised Case of Modified Lattice with Interface mass and experimental validation
Hourglass metamaterial lattice with modified spring stiffness mounted from both sides of interface

mass, whose stiffness is governed by the stiffness tuning parameter χ , is schematically represented
in Fig. 17. In order to consider a generalized case, where the placement of different stiffness of
springs is allowed at the adjacent sides of interface mass other than k1 or k2, the new stiffness is
denoted by expression k3 = χk1, and corresponding analytical expressions are derived. Subsequently,
the experimental validations are also presented.

k1 k2 k2 k2 k1m m m m m m m mk2 k1

Sublattice - A Sublattice - BInterface

uc,0 uw,0 uv,1 uw,1 uv,2uw,−1uv,−1uw,−2

χk1 χk1

kh kh

Figure 17: 1D topological metamaterial lattice having diatomic unit cells comprising identical masses m and inversion
symmetry broken at the interface with hourglass metastructure having stiffness kh = χk1 while the remaining lattice is
connected with the linear springs having stiffness k1 and k2, where k1 = k(1+ γ), k2 = k(1− γ), γ =−0.4.
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Figure 18: (a) Plot of interface mass frequency versus γ parameter for different values of χ for the modified interface mass
lattice consideration where χ = 0.7,1,2,10 and 100. Curves in red and blue color shows limits of frequencies that bound
bandgap for lattice. (b) Representation of modified topological lattice with interface mass sandwiched by hourglass on
adjacent sides.

We have performed analytical solution for eigenfrequency and displacement of the Nth unit cell
for modified topological lattice. Considering the overall height of hourglass as 24 mm and single
dome height of 12 mm. The governing equation of the interface mass with modified stiffness is given
by

müc,0 +χk1(2uc,0 −uw,−1 −uw,0) = 0 (48)

−Ω2uc,0 +χ(1+ γ)(2uc,0 −uw,0 +uw,−1) = 0 (49)

The localized interface mode is obtained for different values of the modified spring stiffness mounted
adjacent to interface mass. The displacement relationship for any unit cell on sublattice - B and
interface mass unit cell as well as that between any unit cell on sublattice - A and interface mass unit
cell of modified topological metamaterial can be obtained from Eq. (A.1.15) in Appendix .1 and Eq.
(A.2.30) in Appendix .2 respectively.

22



(a) (c)(b)

(e)(d) (f)

Figure 19: COMSOL simulation for 1D diatomic modified topological metamaterial lattice having symmetry broken
at the interface when hourglass auxetic metastructure ka or k3 − k3 i.e. (χk1 − χk1) springs are attached adjacent to
interface mass along with excitation given at one end and response is taken at the interface. (a), (b) and (c) Frequency
Response Function corresponding to modified stiffness parameter as χ = 2 , 3 and 4 respectively. (d), (e) and (f) Phase
plot corresponding to modified stiffness parameter as χ = 2 , 3 and 4 respectively. The parameters considered are : m = 1
kg, k = 1 N/m, k1 = k(1+ γ),k2 = k(1− γ), γ =−0.4.

Computation of the exact resonant natural frequencies or mode shapes for modified topological
metamaterial lattice analytically leads to complex calculations. As a result, the closed form resonant
frequency for modified topological lattice cannot be obtained. It is dependent on the value of χ and
number of unit cells taken into account for given range of γ . The interface mode frequency of the
modified topological lattice with definite number of unit cells for varying values of γ is obtained by
investigating the governing equation of interface mass mentioned in Eqns. (48) and (49), and its
corresponding mode shape for different values of χ , as shown in Fig. 18. The outer curves shown in
red and blue color specifies the limits bounding the interface mode frequency for different values of χ .
The displacement amplitude of interface mode for modified topological metamaterial lattice acquired
on logarithmic displacement scale is very small due to unavailability of the exact resonant frequency
expression. To confirm existence of the interface mode in modified topological lattice and determine
corresponding resonant frequencies, phase diagrams and their inflection points are obtained as shown
in Fig. 19.

For further analysis of the system using COMSOL and validate the same through experimental
FRF, modified topological metamaterial lattice (k3−k3) i.e. (χk1−χk1) arrangement was considered
as k3 = ka = 43,500 N/m while keeping m, k1 and k2 unchanged. The COMSOL simulation results
are shown in Fig. 19 and the validation with respect to the experimental results are shown in Fig. 20.
The localized interface mode for this lattice having 24 masses came out to be at frequency of 15.63
Hz which is in good agreement with that obtained from FRF and phase plot in COMSOL which is
presented in Fig. 20(b) and (c). The interface mode with increase in χ is observed to be shifting
towards the right bands in the COMSOL simulation. The experimental peak voltage and power for
modified topological lattice is found to be 8.72 mV and 0.03 µ W respectively for load resistance
of 2500 Ω in series and its comparison with the analytical solution for PZEH bimorph cantilevered
beam is shown in Fig. 21(a) and (b), which are found to be in good agreement. As depicted in Fig.
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k1 k2 k2 k2 k1m m m m m m m mk2 k1

Sublattice - A Sublattice - BInterface

uc,0 uw,0 uv,1 uw,1 uv,2uw,−1uv,−1uw,−2

ka ka

(a)

(b) (c)

Figure 20: (a) Schematic diagram of modified topological metamaterial lattice with auxetic hourglass metastructure having
stiffness ka = k3 = χk1 where χ is a parameter with k3 − k3 arrangement at the adjacent sides of interface mass with
excitation given at one end and response measured at interface. The parameters considered are : m = 150 gm, k1 = 825
N/m, k2 = 175 N/m, k3 = 43,500 N/m, χ ≈ 50. (b) Experimental and COMSOL FRF comparison showing interface
mode at 15.63 Hz for modified lattice (k3 − k3) arrangement (c) Phase plot for modified lattice (k3 − k3) arrangement in
COMSOL depicting interface mode phase change within the bandgap at same frequency.
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Figure 21: Modified topological lattice with (k3 − k3) auxetic hourglass arrangement at adjacent sides of interface mass
having stiffness parameter χ ≈ 50 along with the piezobeam attached to the interface mass for voltage and power mea-
surement showing peak at 15.63 Hz (a) Comparison between experimental and analytical Voltage FRF (b) Comparison
between experimental and analytical Power FRF.

20, simulations show significant amplification of peaks when compared to the experimental response.
This amplification is primarily caused by not considering the damping effects due to friction and
viscoelastic energy dissipation of the hourglass material [29, 53]. Additionally, presence of system
noise represents a major cause of signal distortion.

Theoretical load-deflection profile dependent upon constitutive cell angle (θc) mentioned in Eq.
(12) is considered to evaluate stiffness (approximated to be linear for small deflection) of the hourglass
metastructure system as the same is incorporated in Table 3. The parameter γ is then examined for
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Type θc h t h/t M K
Auxetic -72.169 24 2 12 0.7877 41.60x103

Auxetic -75.5 24 2 12 0.7877 38.93x103

Auxetic -72.169 24 3 8 0.7877 64.68x103

Auxetic -75.5 24 3 8 0.7877 60.53x103

Honeycomb +29.984 24 2 12 0.7877 48.70x103

Honeycomb +30.015 24 2 12 0.7877 52.52x103

Honeycomb +29.984 24 3 8 0.7877 75.71x103

Honeycomb +30.015 24 3 8 0.7877 81.66x103

Solidshell - 24 2.7 ≈ 12 - 237.81x103

Solidshell - 24 2.75 ≈ 12 - 251.50x103

Solidshell - 24 3.5 ≈ 8 - 236.57x103

Solidshell - 24 3.6 ≈ 8 - 257.84x103

Table 3: Stiffness comparison for distinct parameters of hourglass metastructures

tunable frequency-dependent interface modes that span the system’s bandgap from lower to upper
frequency bands. The interface mode is found to be at the centre of the bandgap for honeycomb
lattice metastructure with assumed linear alternating stiffness at remaining places, and is observed to
be shifting towards left (lower frequency band) for auxetic lattice metastructure with same alternating
stiffness. Table 4 shows a range of γ values together with related stiffnesses (k1, k2) at respective
cell angles (θ1 and θ2). The location of the interface mode and the corresponding frequency have
been underlined and categorised. Table 4 also specifically refers to the modified stiffness case for the
(k3 − k3) arrangement, which has the stiffness of the hourglass metastructure of higher magnitude,
and which causes the interface mode to shift towards the right (higher frequency band).

Configuration of springs at
h
t

θ1 θ2 k1 k2 γ
Position of localized Interface mode Frequency in Hz

adjacent sides of interface Towards Left Center of Towards Right from COMSOL
Bulk bands Bandgap Bulk bands

k1 −m− k1

2 +29.984 - 48,700 25,000 0.3125 111.5
2 +30.015 - 52,500 25,000 0.3550 114.5
3 +29.984 - 75,710 25,000 0.5035 130.3

(Hard-hard) 3 +30.015 - 81,660 25,500 0.5312 134.1

k2 −m− k2

2 - -72.169 25,000 41,600 -0.5 84.1
2 - -75.50 25,000 38,930 -0.5250 80.8
3 - -72.169 25,000 64,680 -0.3180 111.9

(Soft-soft) 3 - -75.50 25,000 60,530 -0.3474 107.4

k3 χ

2,37,810 2 +29.984 -72.169 48,700 25,000 4.8831 123.5
χk1 −m−χk1 2,51,500 2 +30.015 -75.50 52,520 25,000 4.7886 128.7
(k3 −m− k3) 2,36,570 3 +29.984 -72.169 75,710 25,000 3.1268 150.1
(Generalised case) 2,57,840 3 +30.015 -75.50 81,660 25,000 3.1574 155.5

Table 4: γ parameter dependence on lattice of different hourglass metastructures.

Combining piezoelectric or magnetostrictive materials with the hourglass presents a promising
opportunity for active mechanical response tuning. By introducing the hourglass into the topological
metamaterial lattice with remotely regulated stiffness variation, a shift in the interface mode frequency
can be observed digitally within the bandgap. The synclastic curvature of the hourglass dome, which
depends on geometrical parameters, can be actively controlled to achieve tunability of the interface
mode within the bandgap. With the utilization of NiTiNoL-based SMA actuators or piezo stacks, it is
possible to pre-stress the hourglass and dynamically adjust the stiffness actively. This advancement
in the development of remotely controlled metamaterials enables the realization of active tuning of
interface mode through hourglass integration.

There are enormous applications of this concept in terms of developing localized modes for vibro-
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acoustic devices that can be used for medical imaging as well as for developing transducer. The
same system can also be used for energy harvesting from vibration. One potential application is the
sensitivity of topological structures to the introduction of defects. By carefully positioning topological
interfaces, waves can be customized and isolated, leading to a variety of potential applications in areas
such as acoustic focusing, impact mitigation, sensing, and noise control [40]. Manipulating finite
interface frequency modes in elastic topological structures has direct implications for structural health
monitoring, energy transport, waveguiding without backscattering loss, wave tunneling, isolating,
switching, filtering, and precision positioning [43]. The resulting localized non-trivial interface mode
can also be used to design antifracture materials, vibration isolators, and on-chip transducers [21].
Applications like sensors, ultrasound imaging, and therapy may benefit from topological interface
states. Surface acoustic wave devices might benefit from the robustness of topological modes, which
is important for wave transfer applications.

4.4. Effect of damping on the topological metamaterial lattice
Finally, the effect of damping on the current topological metamaterial has been analyzed using

simulations performed in COMSOL. Different values of damping coefficients have been taken into
account such that c = 0.0001, 0.001, and 0.01 N-s/m; m = 1 kg, k = 1 N/m, γ = 0.4, χ = 1, k1 = k(1
+ γ), and k2 = k (1 - γ), with identical masses m, in the configuration of the hard-hard (k1 − k1) and
soft-soft (k2 − k2) spring mounted at the adjacent sides of the interface mass. The amplitude of the
interface mode tends to diminish when damping is increased, and its presence is observable from
the phase shift seen in the phase plot. Additionally, it was previously noted that in the absence of

(a) (c)(b)

(e)(d) (f)

Figure 22: COMSOL simulation for 1D topological metamaterial lattice when regular honeycomb hourglass metastructure
kh or hard-hard (k1 − k1) springs are attached adjacent to interface mass along with considered damping and excitation
given at one end and response is taken at the interface. (a), (b) and (c) Frequency Response Function corresponding
to damping c = 0.0001,0.001 and 0.01 N-s/m respectively. (d), (e) and (f) Phase plot corresponding to damping c =
0.0001,0.001 and 0.01 N-s/m respectively. The parameters considered are : m = 1 kg, k = 1 N/m, k1 = k(1+ γ),k2 =
k(1− γ), γ = 0.4.

damping, the phase tended to shoot up, however, this is not the case in the presence of damping,
since the edge of the phase diagram has a smooth curve. In the honeycomb hourglass metastructure,
increasing the damping would lead to a decrease in the amplitude of the second interface mode, also
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(a) (c)(b)

(e)(d) (f)

Figure 23: COMSOL simulation for 1D topological metamaterial lattice when auxetic metastructure ka or soft-soft
(k2 − k2) springs are attached adjacent to interface mass along with considered damping and excitation given at one
end and response is taken at the interface. (a), (b) and (c) Frequency Response Function corresponding to damping
c = 0.0001,0.001 and 0.01 N-s/m respectively. (d), (e) and (f) Phase plot corresponding to damping c = 0.0001,0.001
and 0.01 N-s/m respectively. The parameters considered are : m= 1 kg, k = 1 N/m, k1 = k(1+γ), k2 = k(1−γ), γ =−0.4.

above the optical branch. As shown in Figs. 22(a) to (f) and 23(a) to (f), the effect of damping on
both lattices of a regular honeycomb and auxetic structure are investigated with frequency response
function and phase plot, which indicates the distinct presence of interface mode. The magnitude of
the interface modes in the COMSOL simulation for the modified lattice was not large possibly due to
the lack of proper discretization of frequency range values in COMSOL. However, the experimental
findings show high amplitude of the interface mode.

5. Conclusion

Our study primarily illustrates analytically and also through computational simulation and ex-
perimental studies that the tunable localized modes can be induced at the interface or boundaries of
one-dimensional lattices by incorporating the novel hourglass lattice metastructure. Quantitative mea-
surements for different configurations of springs at the adjacent side of the interface are presented to
switch the position of a localized mode within the bandgap. The piezo-electric-based energy harvest-
ing within the isolation zone (i.e., bandgap) at a specific frequency has been obtained successfully.
The voltage magnitude and related frequency may be controlled by using an hourglass lattice oscil-
lator by breaking the inversion symmetry in the periodic elastic structures. The significant findings
from the study are as follows:

• In the one-dimensional case, we consider a lattice of point masses connected by alternating
springs. The interface mass can be strategically placed at the desired locations of the lattice
where the localized mode is required to be obtained. The localized interface mode is achieved
successfully by placing the mirror copies of the left and the right sublattice for the purpose of
wave-guiding at a precise frequency and energy harvesting.

• We derived explicit expressions for the frequencies of the localized modes for various interface
types and their associated mode shapes. We demonstrated how varying the cellular configura-
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tion of the additively manufactured hourglass could lead to a frequency shift of the interface
mode. By choosing the geometrical parameters suitably one can control the location of inter-
face modes and move them from the left to the right side of the bulk modes. For example, a
hard-hard interface can place the mode at the centre of the bandgap, while a soft-soft interface
can shift it to the left. Again, by using a generic hourglass structure at interface one can shift it
to the right side of the bandgap.

• Moreover, piezo-electric-based energy harvesting is carried out using bimorph cantilever model.
The power expressions are derived explicitly and subsequently found depending upon the hour-
glass lattice parameters, and we demonstrate the frequency-dependent power modulation ex-
perimentally. The amplitude-dependent peak voltages obtained under different conditions of
spring stiffness at the interface positions are 12.59 mV (for soft-soft spring case) and 8.72 mV
(for the generalized case), respectively. The peak power value for these cases turned out to be
0.062 µW and 0.03 µW respectively.

• Finally, the effect of damping has been analyzed, which shows that the amplitude of the inter-
face mode tends to diminish with damping increments, and its presence is still noticeable from
the phase shift seen in the phase plots.

This work can be further extended to evaluate amplitude-dependent frequency response at the in-
terface by exploring the hourglass lattice-based nonlinearities that can lead to tunable topological
lattices.
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9. Appendix

Appendix .1. Sublattice - B : Displacement relation
To obtain relation between two adjacent neighbouring unit cells on right side of interface mass

of modified topological metamaterial i.e. sublattice - B, the governing equations of motion for the
masses of sub-lattice w0 and v1 may be written as

müv,1 + k1(uv,1 −uw,1)+ k2(uv,1 −uw,0) = 0 (A.1.1)

müw,0 +χk1(uw,0 −uc,0)+ k2(uw,0 −uv,1) = 0 (A.1.2)
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Implementing the plane wave solution of the form u j = (uv, j,uw, j) = A(µ)eiµ j+iΩτ and substituting
the values of stiffness in Eq. (A.1.1) and (A.1.2) leads to

−Ω2muv,1 + k(1+ γ)(uv,1 −uw,1)+ k(1− γ)(uv,1 −uw,1) = 0 (A.1.3)

−Ω2muw,0 +χk(1+ γ)(uw,0 −uc,0)+ k(1− γ)(uw,0 −uv,1) = 0 (A.1.4)

The non-dimensional form of Eq. (A.1.3) and (A.1.4) would result in

(2−Ω2)uv,1 − (1+ γ)uw,1 − (1− γ)uw,0 = 0 (A.1.5)

(χ +χγ +1− γ −Ω2)uw,0 − (1− γ)uv,1 −χ(1+ γ)uc,0 = 0 (A.1.6)

uv,1 can be expressed in terms of uw,0 and uc,0 as

uv,1 =
χ +χγ +1− γ −Ω2

1− γ
uw,0 +

χ(1+ γ)
γ −1

uc,0 (A.1.7)

uv,1 =
χ(1+ γ)

γ −1
uc,0 +

χ +χγ +1− γ −Ω2

1− γ
uw,0 (A.1.8)

Substituting uv,1 from Eq. (A.1.8) in Eq. (A.1.5) and finding uw,1 in terms of uc,0 and uw,0

(2−Ω2)χ
(1+ γ)
γ −1

uc,0+
(2−Ω2)(χ +χγ +1− γ −Ω2)

1− γ
uw,0− (1+ γ)uw,1− (1− γ)uw,0 = 0 (A.1.9)

uw,1 =−2−Ω2

1− γ
χuc,0 +

(2−Ω2)(χ +χγ +1− γ −Ω2)− (1− γ)2

1− γ2 uw,0 (A.1.10)

Combining Eq. (A.1.8) and (A.1.10) leads to

(
uv
uw

)

1
=




χ(γ +1)
γ −1

(χ +χγ +1− γ −Ω2)

1− γ

−(2−Ω2)χ
1− γ

(2−Ω2)(χ +χγ +1− γ −Ω2)− (1− γ)2

1− γ2




(
uc
uw

)

0
= T1

(
uc
uw

)

0

(A.1.11)
The relation of the unit cell adjacent to the interface mass unit cell is given by

(
uv
uw

)

1
= T1

(
uc
uw

)

0
(A.1.12)

The relationship between the unit cell next to the interface mass and the other unit cell advancing
across the sublattice toward the free end of the lattice is given by the transfer matrix T previously
computed in Eq. (31) as (

uv
uw

)

2
= T

(
uv
uw

)

1
(A.1.13)

For the unit cell N = 2 and unit cell containing interface mass N = 0 is related by
(

uv
uw

)

2
= T T1

(
uc
uw

)

0
(A.1.14)
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The displacement relation for the Nth unit cell on sublattice - B and the unit cell containing the
localised interface mass can be obtained as

(
uv
uw

)

N
= T N−1T1

(
uc
uw

)

0
(A.1.15)

Appendix .2. Sublattice - A : Displacement relation
The governing equations of motion for the masses w−1 and v0 of the sublattice-A may be written

as
müw,−1 + k2(uw,−1 −uv,−1)+χk1(uw,−1 −uc,0) = 0 (A.2.16)

müc,0 +χk1(2uc,0 −uw,−1 −uw,0) = 0 (A.2.17)

Implementing the plane wave solution of the form u j = (uv, j,uw, j) = A(µ)eiµ j+iΩτ and substituting
values of stiffness in Eq. (A.2.16) and (A.2.17) leads to

−Ω2muw,−1 + k(1− γ)(uw,−1 −uv,−1 +χk(1+ γ)(uw,−1 −uc,o) = 0 (A.2.18)

−Ω2muc,0 +χk(1+ γ)(2uc,0 −uw,−1 −uw,0) = 0 (A.2.19)

Non-dimensional form of Eq. (A.2.18) and (A.2.19) would result in

(1+χ −Ω2)uw,−1 −χ(1+ γ)uc,0 − (1− γ)uv,−1 = 0 (A.2.20)

(2χ +2χγ −Ω2)uc,0 −χ(1+ γ)uw,−1 −χ(1+ γ)uw,0 = 0 (A.2.21)

Making uw,−1 as subject from previous Eq. (A.2.21) and determining its expression in terms of uw,0
and uc,0 as

uw,−1 =
(2χ +2χγ −Ω2)

χ(1+ γ)
uc,0 −uw,0 (A.2.22)

Put uw,−1 from Eq.(A.2.22) into Eq.(A.2.20) and finding uv,−1 in terms of uc,0 and uw,0

(1+χ −Ω2)uw,−1 −χ(1+ γ)uc,o − (1− γ)uv,−1 = 0 (A.2.23)

(1+χ −Ω2)(2χ +2χγ −Ω2)

χ(1+ γ)
uc,0 − (1+χ −Ω2)uw,0 −χ(1+ γ)uc,0 − (1− γ)uv,−1 = 0 (A.2.24)

uv,−1 =
(((1+χ −Ω2)(2χ +2χγ −Ω2))− (χ2(1+ γ)2))

χ(1+ γ)(1− γ)
uc,0 −

(1+χ −Ω2)

1− γ
uw,0 (A.2.25)

Combining Eq. (A.2.22) and (A.2.25) leads to

(
uv
uw

)

−1
=




(1+χ −Ω2)(2χ +2χγ −Ω2)−χ2(1+ γ)2)

χ(1+ γ)(1− γ)
−(1+χ −Ω2)

1− γ

−(2χ +2χγ −Ω2)

χ(1+ γ)
−1




(
uc
uw

)

0
= T2

(
uc
uw

)

0

(A.2.26)
The relation of the unit cell adjacent to the interface mass unit cell is given by

(
uv
uw

)

−1
= T2

(
uc
uw

)

0
(A.2.27)

While the transfer matrix T previously computed in Eq. (31) relates the relationship between the unit
cell next to the interface mass and the other unit cell travelling along the sublattice towards the free
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end of the lattice (
uv
uw

)

−2
= T

(
uv
uw

)

−1
(A.2.28)

For the unit cell N = 2 and the unit cell containing interface mass N = 0 are related by
(

uv
uw

)

−2
= T T2

(
uc
uw

)

0
(A.2.29)

Similarly, we can get the displacement relation for the Nth unit cell on the sublattice - A and the unit
cell containing the localized interface mass as

(
uv
uw

)

−N
= T N−1T2

(
uc
uw

)

0
(A.2.30)

To determine the relationship between stiffness parameter γ and non-dimensional frequency Ω for
different values of χ , i.e. χ = 0.7, 1, 2, 10, 100..., when a certain number of unit cells with altered
interface stiffness are used in the numerical analysis, the eigenvalue problem of topological lattice
formulated using Eq. (49) for interface mass is resolved.
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