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Abstract: 7 

Increased rainfall extremes cause severe urban flooding in cities with adverse socio-economic 8 
consequences, and Kathmandu city is no exception. Rainfall events are projected to become 9 
more intense and frequent in a warm and wet future, and they pose a major challenge to the 10 
sustainable development of Kathmandu city. This paper analyses historical extreme rainfall 11 
patterns across the city and uses these as the basis for future projections in combination with 12 
a range of General Circulation Models.  Future projections of extreme rainfall are then fed 13 
into the numerical flood model HAIL-CAESAR (Lisflood), using a high-resolution digital 14 
elevation model of Kathmandu. We show that rainfall intensity, such as the 24-hour maximum 15 
rainfall (RX1day), is projected to increase by up to 72% in the future, and the historical 100-16 
year return period rainfall will become a 20 or 25-year return period rainfall. The flood 17 
modelling results show that the future flood hazard (magnitude and extent) will increase. The 18 
historical 100-year return period flood discharge will correspond to a 25-year return period 19 
future flood. A 100-year period flood discharge is likely to increase up to 72% (37% median) 20 
in the future. Area of land inundated by more than 1 m in a 100-year return period flood event 21 
could increase from 11.7 km² to 23 km² in the future. Furthermore, the location and timing of 22 
rainfall maxima affect the peak, timing, and location of flood hazards. This analysis can serve 23 
as a scientific basis to assess future flood-induced risk in Kathmandu in response to climate 24 
change. 25 
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1 Introduction 27 
Urban flood risk management is integral to climate-resilient urban development as more people are 28 
predicted to live in urban areas (IPCC, 2022). Climate-related extremes are projected to be more 29 
frequent and intense with temperature rise (AghaKouchak et al., 2020; Alfieri et al., 2017). The 30 
increasing trend of heavy precipitation events has already resulted in recurrent and severe urban 31 
flooding in cities across the globe (Dodman et al., 2022). Climate change is expected to exacerbate this 32 
condition further. It is estimated that without adaptation, direct flood damages are projected to 33 
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increase by 1.4 to 2 times at a 2°C global temperature rise compared to a 1.5°C temperature rise (IPCC, 34 
2022).  35 

Nepal is one of the countries most vulnerable to river flood hazards in the world (Alfieri et al., 2017). 36 
In the last decade, intense rainfall and consequent floods have caused displacement of people, 37 
infrastructure damages and disruption of urban services (Ojha, 2021; Ojha and Dhungana, 2021; 38 
Uprety, 2019). Examples of these increasing urban flood risks include the major flood events in July 39 
2014, August 2018, July 2019 and September 2021. As agricultural land is rapidly converted into urban 40 
settlements in Kathmandu (Lamichhane and Shakya, 2019; Shrestha and Acharya, 2021), the increase 41 
in flood-plain urbanisation, river encroachment, and channelisation of the existing river and tributaries 42 
will increase exposure and vulnerability of urban infrastructure and settlements to flood hazards. 43 

Future cities need to be prepared for the evolving risks associated with flood hazards in the context 44 
of the changing climate, and meaningful quantification of future flood risks is required to inform the 45 
risk-sensitive design of tomorrow’s cities (Cremen et al., 2022). Climate-resilient design also means 46 
addressing the uncertainty related to climate change and variability, which the current regime of 47 
infrastructure design processes lacks because of its inherent assumption that the future will look like 48 
the present (Brown et al., 2020).  49 

However, quantifying the impact of climate change on flood hazards is challenging (Brunner et al., 50 
2021). Global Climate Models (GCMs) are used to force the hydrological simulation required to 51 
estimate future flood projections. However, there is uncertainty associated with estimating and 52 
projecting precipitation extremes. Some limitations of climate models include spatial resolution 53 
(coarser resolution) (Fowler et al., 2007; Teutschbein and Seibert, 2012), hydrologic process 54 
representation (Clark et al., 2015), sub-grid parameterisation (Yin et al., 2023), and model initialisation 55 
(Richter et al., 2020). These limitations lead to biases in GCMs results. Therefore, using climate models 56 
in a local context requires data processing such as statistical downscaling and bias correction (Fowler 57 
et al., 2007; Hakala et al., 2019; Teutschbein and Seibert, 2012). The wide spread of predictions in 58 
GCMs is a major source of uncertainty in climate impact studies compared to other sources of 59 
uncertainties such as parametric or hydrological model structure uncertainties (Finger et al., 2012; 60 
Minville et al., 2008). It is thus necessary to incorporate the uncertainties associated with GCMs into 61 
future flood hazard and risk analysis. Uncertainties can be incorporated into the analysis using a 62 
selection of plausible representative climate futures (e.g., Whetton et al., 2012) or an envelope-based 63 
approach (e.g. Lutz et al., 2016). Following the envelope-based approach of Lutz et al. (2016), GCMs 64 
are selected based on their future projections of average climatic changes, modifications in climate 65 
extremes, and their ability to simulate past climate accurately. The method encompasses a wide range 66 
of possible changes in precipitation and temperature in the future and categorises them into four 67 
futures: cold-wet, cold-dry, warm-wet and warm-dry conditions. This provides a basis for evaluating 68 
vulnerabilities of a water system (such as flood protection or irrigation) in the given conditions and 69 
quantifies the uncertainty range required for decision making.  70 

To effectively assess climate risks, a context-based, bottom-up approach is necessary (Mendoza et al., 71 
2018; Ray and Brown, 2015). It begins by analysing the climate conditions that lead to high-impact 72 
vulnerabilities or hazards. The envelope approach, using selected GCMs, provides the necessary 73 
climate conditions for assessing potential future flood hazards. The Tomorrow's Cities Decision 74 
Support Environment (TCDSE) recognises the importance of simulating multiple-hazard scenarios and 75 
their consequences as a key element in preparing for future risks (Galasso et al., 2021; Cremen et al., 76 
2023). Jenkins et al. (2023) under TCDSE has implemented the “Multi-hazard modelling”, with 77 
simulations of flood, earthquake, and debris flow scenarios, in assisting with the identification of 78 
developing urban regions that are vulnerable to potential multi-hazard events. The methodology 79 
adopted in this study aligns with the process of estimating future flood risks associated with different 80 
scenarios and incorporating these into the climate-resilient design of urban spaces in Kathmandu, as 81 
described in Cremen et al. (2022).  82 
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Our approach starts with the diagnostic analysis of high-impact historical extreme precipitation and 83 
flood events to analyse the climate drivers, extreme precipitation indices and patterns of urban 84 
flooding in the Kathmandu basin. This specific context-based information is then used to bias correct 85 
and downscale the GCM projections of the extreme precipitation (RX1Day, One-day Maximum 86 
Rainfall) to the required spatial and temporal scale required for flood modelling in the Kathmandu 87 
valley. To align the concept of climate change driven future precipitation events with the traditional 88 
engineering approach for categorising flood events, we express the rainfall and floods in terms of their 89 
probabilities or return period. The rationale and motivations of the methodology used in this paper 90 
are based on the realisation that the future climate will differ from the past, but the information and 91 
knowledge of the historical high-impact extreme precipitation and flood events are useful in 92 
addressing some of the limitations of future climate projections. Thus, the main objective of the paper 93 
is to analyse and use the temporal and spatial variations of high-impact precipitation events of the 94 
past to define the extreme precipitation under climate change and then assess future flood-induced 95 
impacts in Kathmandu. This paper presents a workflow for assessing future flood hazards that 96 
integrates various established approaches such as GCM selection, spatial analysis of rainfall, non-97 
stationary rainfall frequency analysis, spatial disaggregation of rainfall based on historical extreme 98 
event and hydrodynamic modelling. To overcome the lack of observed sub-daily precipitation data, 99 
we combine the historical observed spatially distributed rainfall data with the temporal distribution 100 
of satellite-based rainfall data to obtain a spatially and temporally disaggregated extreme rainfall 101 
event. 102 

2 Study area  103 
Kathmandu valley is the upstream catchment of the Bagmati Basin, which extends between 85°11’ E 104 
to 85°31’ E longitude and 27°35’ N to 27°49’ N latitude in the Bagmati province in central Nepal (Figure 105 
1). The catchment area of Kathmandu valley at Khokana, the focal area of this study, is approximately 106 
654 km2. The elevation of the catchment ranges from 1119 m to about 2714 m above mean sea level. 107 
The Bagmati River originates in the northern Shivapuri hills of Kathmandu and flows southwest until 108 
it is joined by the Manohara River flowing from the east (Figure 1). Then after travelling about 5.6 km 109 
in a westerly direction, the Bagmati River turns towards the south, where it is joined by another major 110 
tributary, the Bishnumati River, and it continues flowing south to where it leaves the Kathmandu 111 
valley. Other tributaries like the Hanumante, the Dhobi Khola, the Tukucha, the Balkhu, and the Nakhu 112 
rivers join the Bagmati along its path through Kathmandu. The Kathmandu Valley has a sub-tropical 113 
climate. The monthly average minimum temperature is about 3.4 °C while the monthly average 114 
maximum temperature is about 29.8°C (Lamichhane and Shakya, 2019). The precipitation regime is 115 
governed by the Indian Summer Monsoon (ISM), and the westerlies dominate the winter months 116 
(Nayava, 1980). The nature and behaviour of the summer monsoon and westerlies in Nepal are 117 
discussed by Kansakar et al. (2004) and  Nayava (1980). The average annual precipitation is 118 
approximately 1660 mm with a standard deviation of 243 mm (computed from the observations from 119 
1976 to 2016). Roughly 80 percent of the rainfall occurs during the monsoon months from June to 120 
September. Extreme events are related to the strength of the monsoon, and they commonly occur in 121 
the monsoon period, mostly in July and August (Pokharel and Hallett, 2015). The average annual flow 122 
of the Bagmati River at Khokana is approximately 16 m³/s. In the monsoon months, the average flow 123 
is about 36 m³/s, while in the winter months (December – February), the flow is only about 4.3 m³/s. 124 
It reaches its lowest in April, with an average of only 3 m³/s (computed from observations from 1992 125 
- 2015). Based on the land-use and land-cover data of 2018, the agricultural land, forest and built-up 126 
area covered about 42%, 34% and 23% of the Kathmandu Valley, respectively (Lamichhane and 127 
Shakya, 2019). Historically, the highest recorded 24-hour rainfall at the catchment scale was about 128 
178 mm in July 2002, which generated a peak flood discharge of approximately 942 m³/s in the 129 
Bagmati River at Khokana.  130 
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 131 

Figure 1: Topographic map of the Kathmandu Valley, including the river network and flow direction of 132 
the Bagmati River and its main tributaries, and the location of all rainfall stations in the region and the 133 
hydrological gauging station at Khokana to the south-west of the catchment. The location of the 134 
Kathmandu Valley within Nepal is shown in the top right insert.  135 

3 Material and methods 136 
The overall workflow followed in this study is presented in Figure 2. Components are described in the 137 
following sections. 138 

 139 

Figure 2: Flowchart with the methodology adopted in this study 140 



 

5 
 

3.1 Data collection and pre-processing 141 
3.1.1 Observed data 142 
Observed rainfall data from 23 stations and discharge data from the Khokana gauging station were 143 
collected from the Department of Hydrology and Meteorology (DHM), Nepal (Figure 1). Data quality 144 
was checked manually for missing data and any anomalies. 13 rainfall stations with data available for 145 
more than 20 years out of 30 years (1976 – 2005) were checked for homogeneity using the standard 146 
normal homogeneity test on annual precipitation.  Only one station (index 1015) was found to be non-147 
homogenous, with a possible detection of change in 1979. For this reason, the data from this station 148 
before 1979 was omitted. Data were checked manually for the remaining 10 stations, where data were 149 
available for less than 10 to 20 years and were found consistent. Missing rainfall data were filled using 150 
the inverse distance weighting method (IDW) spatial interpolation at a daily scale with a power factor 151 
of 2. Available records of sub-daily rainfall data are limited in length and inconsistent and, therefore, 152 
discarded in the rainfall analysis. Instantaneous maximum and daily mean discharge data at the 153 
Khokana gauging station were available from 1992 to 2015. Annual maximum instantaneous discharge 154 
at Khokana and corresponding 24-hour catchment rainfall in Kathmandu are presented in Table 1.  155 

Global precipitation measurement (GPM) -  Integrated Multi-satellitE Retrievals for GPM (IMERG) data 156 
-final rainfall estimate product (Huffman et al., 2019), with half hourly temporal resolution and 0.1° x 157 
0.1° spatial resolution, were used in addition to the ground observation data for temporal 158 
disaggregation of the daily observed data. Available sub-daily discharge records for September 2021 159 
have been used to calibrate the hydrodynamic model and the flood model was validated against the 160 
historical RX1day flood event in July 2002. Historical 25-year and 100-year return period floods were 161 
used as the base events for flood hazard modelling and were compared with future floods.  162 

Table 1: Maximum instantaneous discharge at Khokana, corresponding catchment rainfall and RX1day 163 
maximum rainfall in Kathmandu 164 

Year Flood Date 
Instantaneous 
Discharge (m³/sec) 

Catchment 
rainfall (mm) 

RX1 day in 'mm' (Date 
of occurrence) 

1992 20-07-1992 113.00 38.90 39.1 (24-07-1992) 
1993 20-07-1993 938.00 63.80 65.3 (22-07-1993) 
1994 07-08-1994 533.00 56.70 69.3 (17-06-1994) 
1995 18-07-1995 393.00 64.00 66 (13-06-1995) 
1996 14-07-1996 328.00 64.80 64.8 (14-07-1996) 
1997 18-08-1997 493.00 39.60 73.2 (01-07-1997) 
1998 09-07-1998 649.00 71.80 71.8 (08-07-1998) 
1999 03-07-1999 421.00 85.90 85.9 (03-07-1999) 
2000 08-08-2000 519.00 67.20 67.2 (08-08-2000) 
2001 13-08-2001 275.00 36.50 36.6 (20-07-2001) 

2002 
22/23-07-
2002 942.00 178.30 178.3 (23-07-2002) 

2003 31-07-2003 421.00 84.20 84.2 (31-07-2003) 
2004 09-07-2004 268.00 79.10 79.1 (09-07-2004) 
2005 07-08-2005 226.00 56.00 56 (07-08-2005) 
2006 19-07-2006 191.00 35.70 37.2 (09-09-2006) 
2007 05-09-2007 424.00 68.10 68.1 (05-09-2007) 
2008 03-08-2008 135.00 35.50 35.5 (03-08-2008) 
2009 27-07-2009 375.00 48.70 52.1 (28-07-2009) 
2010 07-09-2010 354.00 52.70 52.7 (07-09-2010) 
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2011 01-07-2011 480.00 60.80 60.8 (01-07-2011) 
2012 03-08-2012 173.00 39.20 39.4 (24-06-2012) 
2013 22-07-2013 130.00 44.00 44 (22-07-2013) 
2014 14-08-2014 176.00 41.10 47.1 (15-10-2014) 
2015 17-08-2015 364.00 50.70 50.7 (17-08-2015) 

Note:  
• Rainfall data recorded at collected at 8:00 am, which is accumulated value of last 24 hours. 
Flood gauge heights are collected at 8:00am, 12:00am and 4:00am. Therefore, flood data can 
have overlap of the rainfall from the given day and the previous day. So, catchment rainfall 
value represent maximum value in those days. 
• Highlighted cells show that highest flow in given year is from RX1day rainfall. 

 165 

3.1.2 Future climate data 166 
Future rainfall projections were obtained from the Coupled Model Intercomparison Project 5 (CMIP5) 167 
General Circulation Models (GCMs) that are used in Nepal’s National Adaptation Plan (MoFE, 2019). 168 
These GCM projections have been used previously in Nepal for vulnerability and risk assessment and 169 
for identifying the adaptation options in the water resources and energy sector (MoFE, 2021). It is to 170 
be noted that CMIP6 GCMs were still in the development phase, and limited CMIP6 GCMs were 171 
available when MoFE (2019) was prepared.  172 

Nepal’s National Adaptation Plan (NAP) considered CMIP5 GCMs in the spectrum of the projected 173 
temperature changes vs precipitation changes for each RCP 4.5 and RCP 8.5 scenario independently. 174 
MoFE (2019) considered a pool of 105 GCMs for RCP4.5 and 77 for RCP8.5 for the model selection. 175 
This pool has multiple ensemble members (variants) from each model. The selection of the GCMs in 176 
MoFE (2019), based on the approach by Lutz et al. (2016), followed  three main steps: 177 

The first step is the selection of 20 GCMs out of an available pool of CMIP5 GCMs based on their 178 
projections for changes in average temperature and precipitation for the future period of 2036-2065. 179 
The 10th and 90th percentile values of these changes were marked as the ‘cold’ and the ‘warm’ 180 
conditions for the projected temperature, and the ‘dry’ and ‘wet’ conditions for precipitation, 181 
respectively. The spectrum is divided into four conditions, namely cold-wet (CW), cold-dry (CD), warm-182 
wet (WW) and warm-dry (WD). For instance, the warm-wet condition represents the 90th percentile 183 
of temperature change and the 90th percentile of precipitation change. Five GCMs were selected in 184 
each condition based on their proximity to those percentile values.  185 

The second step is to filter 5 GCMs in each condition selected from the first step based on projected 186 
changes in extreme values of precipitation and temperature. MoFE (2019) used the Expert Team on 187 
Climate Change Detection and Indices (ETCCDI) indices R95pTOT (very wet days precipitation) and 188 
consecutive dry days (CDD) for precipitation, and the indices warm spell duration index (WSDI) and 189 
cold spell duration index (CSDI) for temperature. The two GCMs with the highest projected changes 190 
for those indices were selected in each condition.  191 

The final step is the selection of one GCM for each condition based on the fidelity of the GCMs to 192 
represent the historical climate. MoFE (2019) accounted for the biases in monsoon, winter, and annual 193 
precipitation and temperature in GCMs compared to the observed precipitation and temperature for 194 
the historical period. Basing the selection of GCMs solely on changes in temperature and precipitation 195 
in the first step or on extreme indices in the second step may exclude GCMs with better performance 196 
in representing historical climate. Despite this limitation, for this study, we are relying on GCMs from 197 
MoFE (2019) to align with the national context of the NAP process. Please refer to MoFE (2019) and 198 
Lutz et al. (2016) for details on the model selection. 199 
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These steps were carried out for two possible trajectories (representative concentration pathway – 200 
RCP) of greenhouse gas concentration based on future emissions, namely RCP 4.5 and RCP 8.5 201 
scenarios. RCP 4.5 scenario is the medium emission scenario, while RCP 8.5 represents the high 202 
emission scenario (van Vuuren et al., 2011). Selected GCMs are listed in Table 2. Projected changes 203 
were analysed for the three future periods; near-future (2016-2045), mid-future (2046-2075) and far-204 
future (2076-2100). It is to be noted that the historical or baseline period is from 1976 to 2005. 205 
Historical runs for CMIP5 GCMs are up to 2005; therefore, we chose data up to 2005 as the baseline 206 
period. Data from the GCM grid cell corresponding to the location of Kathmandu were extracted using 207 
the nearest neighbour algorithm. Since we selected the models shown in Table 2 from MoFE (2019), 208 
we didn’t focus on the biases introduced by the choice of models selected or examine the sensitivity 209 
of the choice of ensemble members of the GCM model.  210 

Table 2: Selected General Circulation Models (GCMs) based on the National Adaptation Plan for Nepal, 211 
MoFE (2019). 212 

Conditions Name of GCM  
RCP 4.5 Scenario  
Cold-Wet (CW) BCC-CSM1_1_r1i1p1 
Cold-Dry (CD) GFDL-ESM2M_r1i1p1 
Warm-Wet (WW) CanESM2_r2i1p1 
Warm-Dry (WD) MIROC-ESM-CHEM_r1i1p1 
RCP 8.5 Scenario  
Cold-Wet (CW) BCC-CSM1_1_r1i1p1 
Cold-Dry (CD) GFDL-ESM2M_r1i1p1 
Warm-Wet (WW) CanESM2_r5i1p1 
Warm-Dry (WD) MIROC-ESM-CHEM_r1i1p1 

 213 

3.2 Precipitation-based extreme indices and 24-hour maximum rainfall 214 
Attributes of the climatic extremes, such as frequency and magnitude, can be described with indices 215 
identified by the Expert Team on Climate Change Detection and Indices (ETCCDI) (Tank et al., 2009). 216 
These indices are widely used to study the global or local changes in future climatic extremes, like in 217 
Sillmann et al. (2013a, 2013b). In this study, a set of 9 precipitation related ETCCDI extreme indices, 218 
listed in Table 3, were analysed to quantify changes in future extreme precipitation for the Kathmandu 219 
valley.  220 

Table 3: Precipitation extreme indices used in this study. 221 

Name of Index Description Computational method 
Annual maximum 
1-day (or 24 hour) 
precipitation 
(RX1day) (mm) 

Most intense 
rainfall event in 1 day (or 24 
hours) for a given year 

Let RRij be the daily precipitation amount on 
the day i in period j. Then maximum 1-day 
values for period j are RX1dayj = max(RRij) 

Annual maximum 
consecutive 5-day 
Precipitation 
(RX5day) (mm) 

Most intense rainfall event in 5 
consecutive days for a given 
year 

Let RRkj be the precipitation amount for a 5-
day interval ending k in period j. Then 
maximum 5-day values for period j are 
RX5dayj = max(RRkj) 

Heavy rainfall days 
(R10mm) (days) 

Annual count of days when 
precipitation > 10 mm 

Let RRij be the daily precipitation amount on 
the day i in period j. Count the number of 
days where RRij > 10mm 

Very heavy rainfall 
days (R20mm) 
(days) 

Annual count of days when 
precipitation > 20 mm 

Let RRij be the daily precipitation amount  
on day i in period j. Count the number of 
days where RRij > 20mm 
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Consecutive dry 
days (CDD) (days) 

Maximum number of 
consecutive days with daily 
precipitation (RR) less than 1 
mm 

Let RRij be the daily precipitation amount on 
day i in period j. Count the largest number 
of consecutive days 
where RRij < 1mm 

Consecutive wet 
days (CWD) 
(days) 

Maximum number of 
consecutive days with daily 
precipitation ≥ 1 mm 

Let RRij be the daily precipitation amount on 
day i in period j. Count the 
largest number of consecutive days where 
RRij ≥ 1mm 

Very wet day 
precipitation 
(R95pToT) (mm) 

Annual total precipitation 
when RR > 95 percentile of 
reference period 

Let RRwj be the daily precipitation amount 
on a wet day w (RR ≥ 1.0 mm) in period j and 
let RRwn95 be the 95th percentile of 
precipitation on wet days in the reference 
period. If W represents the 
number of wet days in the period, then 
R95pToTj = ∑ 𝑅𝑅𝑤𝑗

𝑊
𝑤=1  where RRwj > RRwn95 

Annual total wet 
day precipitation 
(PRCPTOT) (mm) 

Total wet-day precipitation Let RRij be the daily precipitation amount on 
the day i in period j. If I represents the 
number of days in j, then PRCPTOTj = 
∑ 𝑅𝑅𝑖𝑗

𝐼
𝑖=1  

Simple 
precipitation 
intensity index 
(SDII) (mm / day) 

Simple daily intensity Let RRwj be the daily precipitation amount 
on wet days, RR > = 1 mm in period j. If W 
represents number of wet days in j, then: 
SDIIj = (∑ 𝑅𝑅𝑤𝑗)/𝑊𝑊

𝑤=1  
 222 

These indices represent different climate conditions that influence catchment runoff in terms of water 223 
availability and extreme events. The 24-hour maximum rainfall (RX1day) and or the 5-day maximum 224 
rainfall event (RX5day) represent climate conditions that can trigger floods and landslides (Pandey et 225 
al., 2021). Highly wet conditions are also indicated by very wet day precipitation (R95pToT). 226 
Consecutive high days (CDD) are linked to dry spells of low water availability or droughts.  On the other 227 
hand, consecutive wet days (CWD) refer to increased wet conditions. Intense rainfall days (R10mm 228 
and R20mm) are related to the frequency of the rainfall and thus can cause high flows in the 229 
catchment. We note here that within Kathmandu, floods are triggered by rainfall events. In this study, 230 
24-hour maximum rainfall (RX1day) was assessed to have a direct relationship with flood events (Table 231 
1). Basnyat et al. (2020) showed a linear relationship between the RX1day rainfall and flood discharge 232 
at Pandherodovan in the Bagmati catchment, while Pandey et al. (2021) also showed a strong link 233 
between RX1day and high flows in a similar rainfed catchment in Nepal, the East Rapti. 234 

3.3 Spatial distribution of historical rainfall extremes and floods 235 
The spatial distribution of extreme rainfall is important as it affects local flood hydrographs and 236 
inundation (Wilson et al., 1979; Zoccatelli et al., 2011). Observed daily rainfall values were interpolated 237 
using inverse distance weighting (IDW) with a power parameter of 2 over a 1 km x 1 km grid of 238 
Kathmandu. To investigate the spatial distribution of rainfall, we selected rainfall events for the ten 239 
highest 24-hour maximum rainfall events (RX1day) in the historic record and the three events that 240 
generated the highest discharge at the Khokana gauging station. We normalised the rainfall values 241 
across the IDW interpolated grid to present them on a scale of 0 to 1 to compare spatial rainfall 242 
patterns across different events. The rainfall patterns were then analysed to identify the area of 243 
rainfall maxima during the event and the rainfall gradients across the catchment. The rainfall value 244 
was normalised by dividing its difference by the minimum value across the grid cells by the difference 245 
between the maximum and the minimum values across the grid cells.  246 
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3.4 Bias correction – Distribution Mapping 247 
Biases in rainfall magnitude in GCMs during the historical period observation were corrected using the 248 
empirical quantile mapping method, a technique of mapping the probability distribution of rainfall of 249 
GCMs with the probability distribution of the observed rainfall. Details of this procedure are described 250 
in Gudmundsson et al. (2012). The procedure is given by the following relationship: 251 

𝑋𝑓𝑢𝑡𝑢𝑟𝑒,𝑡
𝑐𝑜𝑟𝑟 =  𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑒𝑐𝑑𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑜𝑏𝑠 (𝑒𝑐𝑑𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑀𝑜𝑑𝑒𝑙 (𝑋𝑓𝑢𝑡𝑢𝑟𝑒,𝑡

𝑀𝑜𝑑𝑒𝑙 )), 252 

where ecdf is the empirical cumulative distribution function (CDF) for the reference time period, 253 
𝑋𝑓𝑢𝑡𝑢𝑟𝑒,𝑡

𝑀𝑜𝑑𝑒𝑙  is the raw GCM at time t in the future, 𝑒𝑐𝑑𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑀𝑜𝑑𝑒𝑙  is the empirical cumulative distribution 254 

function of the GCM for the reference period, and 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑒𝑐𝑑𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑜𝑏𝑠  is the inverse empirical 255 

cumulative distribution function of the observed rainfall for the reference period. 𝑋𝑓𝑢𝑡𝑢𝑟𝑒,𝑡
𝑐𝑜𝑟𝑟  is the 256 

corrected estimate of 𝑋𝑓𝑢𝑡𝑢𝑟𝑒,𝑡
𝑅𝑀𝑜𝑑𝑒𝑙 . The relationship can be explained with Figure 3 (A), which shows ecdf 257 

for the model and the observation of the historical period. For any given future projection, 𝑋𝑓𝑢𝑡𝑢𝑟𝑒,𝑡
𝑀𝑜𝑑𝑒𝑙  258 

in the x-axis, the probability is given by 𝑒𝑐𝑑𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑀𝑜𝑑𝑒𝑙  (red curve). The bias-corrected value, 𝑋𝑓𝑢𝑡𝑢𝑟𝑒,𝑡

𝑐𝑜𝑟𝑟  259 
is the value on the x-axis corresponding to the same probability on the reference 𝑒𝑐𝑑𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑜𝑏𝑠  black 260 
curve.  261 

For this study, we used the complete dataset of observations and GCM hindcast for the reference 262 
period of 1976-2005 to create the empirical cumulative distribution function (ecdf), defined for each 263 
month. Another variant called quantile delta mapping (QDM) was implemented along with quantile 264 
mapping. Quantile delta mapping preserves model-projected relative changes in the quantiles 265 
(Cannon et al., 2015). Details on QDM are described in Cannon et al. (2015). 266 

Distribution mapping using empirical relationships works well for the normal range of rainfall values. 267 
But for extreme values or future projected values beyond the range of the observed values in the 268 
baseline period, extrapolation techniques like linear scaling based on upper quantiles are used. These 269 
can cause inflation issues, which are discussed in Cannon et al. (2015) and Maraun (2013). To reduce 270 
this inflation, distribution mapping was done with the theoretical distribution rather than the 271 
empirical distribution for the extreme values. Generalized Pareto Distribution (GPD) is commonly used 272 
as a theoretical distribution to model extreme values above a high threshold (Coles, 2001; Tank et al., 273 
2009).  Firstly, we computed the 99th percentile values for both observation and hindcast GCM for the 274 
reference period of 1976-2005. Then, we selected data points greater than the 99th percentile value 275 
for observations and GCM hindcast. Note that these threshold values are different for observation 276 
and hindcast. We considered the whole reference period of 1976-2005 without monthly breakdown. 277 
We fitted the theoretical GPD using Maximum Likelihood Estimation (MLE) and derived GPD based 278 
CDF for each of the observation and GCM hindcast datasets for the reference period of 1976-2005. 279 
Lastly, using this, we performed quantile mapping for the projected GCM data greater than the 99th 280 
percentile value of the hindcast (reference period) dataset. GPD curves for RCP 8.5 scenario for the 281 
warm wet condition are shown in Figure 3 (B). Note that, on rare occasions, linear scaling was still 282 
needed to adjust the values even when GPD based mapping was used. 283 

An additional correction known as the “frequency adaption” was needed if the frequency of dry days 284 
in the reference period GCM data was greater than the frequency of dry days in the observed data 285 
(Themeßl et al., 2012). In this study, corrections were made for the extra dry days to prevent the 286 
artificial introduction of wet biases if any dry day is mapped as a wet day. Only the fraction, 287 

∆𝑃0 =  
𝑒𝑐𝑑𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑀𝑜𝑑𝑒𝑙 (0) −  𝑒𝑐𝑑𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑜𝑏𝑠 (0) 

𝑒𝑐𝑑𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑀𝑜𝑑𝑒𝑙 (0)

 , 288 
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of such dry-day cases with probability 𝑃0 are corrected randomly by uniformly sampling a number 289 
between zero precipitation and the precipitation amount of 290 
𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑒𝑐𝑑𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑡

𝑜𝑏𝑠 ( 𝑒𝑐𝑑𝑓𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑡
𝐺𝐶𝑀 (0)). 291 

  
Figure 3: (A) Empirical cumulative distribution and (B) Generalized Pareto Distribution used for 292 
distribution mapping for RCP 8.5 warm wet condition. 293 

3.5 Spatial and temporal disaggregation of future extreme values 294 
Spatial disaggregation of the rainfall for the extreme values was based on the historical spatial 295 
distribution of rainfall events that generated the highest flood at Khokana. This rainfall pattern 296 
corresponded to the rainfall pattern on 22 July 2002 (Figure 8). In the formal DHM data record, the 297 
event is recorded as occurring on 23 July 2002 because the rainfall recorded at 8:45 am each morning 298 
refers to the accumulated rainfall of the preceding 24 hours. In the rainfall pattern of 22 July 2002, the 299 
rainfall maxima are located at the south and west of the Kathmandu valley (Figure 8), with over 160 300 
mm of rainfall across most of the Kathmandu Valley catchment area. 301 

Temporal disaggregation of the 24-hour rainfall was carried out using the temporal sub-daily pattern 302 
of the GPM IMERG product (Huffman et al., 2019). Temporal disaggregation of rainfall is essential 303 
because the catchment time of concentration at Khokana is approximately 6 hours based on 304 
estimations using Kirpich’s equation (Kirpich, 1940). Therefore, daily rainfall is insufficient to model 305 
flood propagation through the catchment accurately. Automatic weather stations in the Kathmandu 306 
valley are sparse. They have only been installed in recent years, so it was not possible to adequately 307 
represent the sub-daily temporal resolution using observed data only. The temporal resolution of GPM 308 
IMERG was used to overcome this deficit because of its half-hourly resolution. Relative to the spacing 309 
of rainfall stations, the GPM IMERG spatial resolution, which is approximately 10 km x 10 km, is still 310 
low. However, the temporal rainfall pattern of GPM can be transferred to the station scale (from grid 311 
to station) using the following scaling approach.  312 

Extreme rainfall values corresponding to different return periods were computed using non-stationary 313 
frequency analysis at the catchment scale, described in Section 3.6. Spatial and temporal 314 
disaggregation for a given return period event was achieved simultaneously in the following steps: (a) 315 
Observed rainfall on 22 July 2002 for each of the stations was first divided by the catchment average 316 
rainfall for the same date and multiplied by the rainfall value of the given return period. This approach 317 
linearly scales observed rainfall on 22 July 2002 to the rainfall value of the given return period. (b) 318 
GPM IMERG sub-daily precipitation was aggregated to a daily scale after extracting the rainfall values 319 
for each observation station using the nearest neighbour algorithm. (c) A scaling factor was computed 320 
as the ratio of observed rainfall values for each station to a daily GPM IMERG rainfall value. (d) The 321 
scaling factor was then multiplied by sub-daily GPM IMERG to obtain the scaled sub-daily precipitation 322 
corresponding to the given return period. 323 
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3.6 Rainfall frequency analysis 324 
Stationary rainfall frequency analysis is conventionally used for quantifying the rainfall value 325 
associated with a given probability. For water resources development, this poses a challenge because 326 
the fundamental assumption of stationarity in the climate system is questionable when climate 327 
change is considered (Milly et al., 2008). As warming continues, precipitation extremes are observed 328 
to be on the rise globally, and future projections of GCMs predict an increase globally and in the South 329 
Asian region (Sillmann et al., 2013b). To incorporate these time-variant processes, the frequency 330 
analysis used non-stationary models that allow probability distribution functions (pdfs) of time-331 
dependent and non-stationary extreme rainfall (Coles, 2001). 332 

In this study, for non-stationary rainfall frequency, the approach described in Coles (2001) and Wi et 333 
al. (2016) was used. Non-stationary analysis has been recommended for climate change conditions by 334 
the Committee on Adaptation to a Changing Climate (2018). A Mann-Kendall trend test was carried 335 
out to test the time series trend. For the future data period of 2006-2100, a non-stationary process 336 
was adopted. For the historical observations from 1976-2005, the trend was not significant, and the 337 
stationary frequency analysis was deemed sufficient.  338 

Generalized extreme value (GEV) distribution for the annual maximum series of RX1day rainfall was 339 
used in the study (block maxima approach) (Chow et al., 1988). GEV distribution is commonly used for 340 
non-stationary frequency analysis of annual maxima for rainfall, as in Wi et al. (2016) and Ragno et al. 341 
(2018). The GEV distribution function, as defined in Coles (2001), is given by: 342 

𝐺(𝑧) = 𝑒𝑥𝑝 {− [1 +  𝜉 (𝑧− 𝜇
𝜎

)]
−1

𝜉} , …..Equation 1 343 

where 𝜇, 𝜎 and 𝜉 are location, scale and shape parameters, respectively. Here, the parameters satisfy 344 
−∞ <  𝜇 <  ∞, 𝜎 > 0  and −∞ <  𝜉 <  ∞. If 𝜉 → 0,  it leads to Gumbel distribution which is given by: 345 

𝐺(𝑧) = 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [− (𝑧− 𝜇
𝜎

)]} , ……Equation 2 346 

and the T- year return level value (𝑋𝑇) for extreme rainfall is estimated as, 347 

𝑋𝑇 =  𝜇 + 𝜎
𝜉

 [1 − {− 𝑙𝑜𝑔 (1 −  1
𝑇

)}
−𝜉

] , ……Equation 3 348 

The key assumption of GEV is that the extreme values are independent and identically distributed. 349 
Any presence of a trend violates this assumption (Wi et al., 2016). In this regard, the non-stationary 350 
case is introduced by considering the parameters of GEV as a function of time. Generally, the location 351 
and scale parameters are taken as a function of time (Committee on Adaptation to a Changing Climate, 352 
2018; Wi et al., 2016). In this study, four cases were considered, shown in Table 4. 353 

Table 4: Specification of parameters used in the generalized extreme value distribution (GEV).  354 

Case Description Notation used 
A Location parameter is function of time for 2006-2100. 

Distribution is given by: 
𝐺𝐸𝑉 (𝜇(𝑡), 𝜎, 𝜉) 

𝜇(𝑡) =  𝛽0 +  𝛽1  × 𝑡 
where, 𝛽0 𝑎𝑛𝑑 𝛽1 are parameters. 

NS-GEV-M1 

B Location and scale parameters are function of time for 2006-
2100. Distribution is given by: 

𝐺𝐸𝑉 (𝜇(𝑡), 𝜎(𝑡), 𝜉) 
𝜇(𝑡) =  𝛽0 +  𝛽1  × 𝑡 
𝜎(𝑡) =  𝐶0 +  𝐶1  × 𝑡 

NS-GEV-M2 
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where, 𝛽0 𝑎𝑛𝑑 𝛽1 and 𝐶0 𝑎𝑛𝑑 𝐶1are parameters. 

C Parameters are constant in time during 2006 – 2100 S-GEV 
D Parameters are constant in time during given time period (near 

future, mid future and far future) 
S-GEV (near-future NF 
or mid-future MF or far-
future FF) 

Note: NS and S represent non-stationary and stationary approaches, respectively. GEV represent 
Generalized extreme value.  

 355 

In the RCP 8.5 warm-wet case, the non-stationary (NS) Gumbel distribution was used instead of NS 356 
GEV M1 because of issues related to the shape parameter, described in section 4 below. The 357 
parameters of stationary and non-stationary distributions for a given sample N (N = 30 for the 358 
historical period 1976-2005, and N = 95 for the future period 2006-2100) were estimated by the 359 
maximum likelihood estimation (MLE) approach as described in Coles (2001) and Wi et al. (2016). 360 
Location and shape parameters were estimated using MLE as a linear function of time in the non-361 
stationary case, and the values of estimated parameters were compared considering changes in 362 
sample number and time frame. So, for the future period 2006-2100 (95 years), we used two 363 
approaches – one with the moving window where the number of samples is fixed (N = 30) and the 364 
other with the incremental window (where the number of samples increases, starting from N= 30 to 365 
N=95, as we move into the future by one year at a time). The advantage of using the MLE method is 366 
that it allows estimation of the confidence intervals of the distribution quantiles. This is possible due 367 
to the asymptotic normality of the ML parameter estimator; the maximum likelihood estimator will 368 
have an approximately normal distribution as the sample size gets sufficiently large (Wi et al., 2016). 369 
Parameters were estimated using the R programming environment with the ismev library (Stephenson 370 
et al., 2018). 371 

3.7 Flood-hazard analysis under extreme rainfall  372 
To explore flood propagation through the Kathmandu Valley for different historical and future 373 
scenarios, the rainfall time series were used as input in the numerical model HAIL-CAESAR (Valters, 374 
2017). The HAIL-CAESAR model is an open-source, high-performance, parallelised C++ implementation 375 
of the Caesar-Lisflood algorithm (Coulthard et al., 2013). It combines the cellular automation 376 
landscape evolution model, Caesar (Coulthard et al., 2002), with the hydrological flow model, Lisflood 377 
(Bates et al., 2010). For this rainfall-driven flood analysis, the landscape evolution component of Hail-378 
Caesar was disabled. The Lisflood algorithm has been used widely in small and large-scale flood 379 
analysis, including as part of a European-wide flood analysis project (Dottori et al., 2022; Feeney et al., 380 
2020; Malgwi et al., 2021). Although Lisflood uses a simplified version of the shallow water equations 381 
for flow routing, it has been shown to yield results within 10% accuracy of full shallow water models 382 
while allowing for significant gains in computational time (Neal et al., 2012).  383 

All simulations presented in this study were run using a 10 m Digital Elevation Model (DEM), resampled 384 
from a 2 m resolution DEM derived from tri-stereo Pleiades satellite imagery captured in 2019. The 385 
model mesh size is the same as the DEM cell size. A detailed description of the numerical model and 386 
flow routing algorithms can be found in Bates et al. (2010) and Coulthard et al. (2013). A spatially 387 
varied rainfall time series is applied to each cell in the model domain using the Thiessen polygon 388 
method (Herschy et al., 1998; Thiessen, 1911). Rainfall runoff is generated using an adaptation of the 389 
TOPMODEL (Beven and Kirkby, 1979) and the parameter m, which determines the runoff rate. 390 
Because of the large size of the catchment and the lack of high resolution land-use maps, this study 391 
used a uniform Manning’s coefficient for the whole catchment. The Manning’s coefficient, n and the 392 
TOPMODEL m parameters were calibrated for the September 6th 2021, flood event (Error! Reference 393 
source not found.). This flood event had a maximum local precipitation of 116 mm in 24 hours, 394 
recorded in the northern part of the catchment (Sankhu), and a 24-hour catchment average rainfall of 395 
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56 mm (Error! Reference source not found.). The model performance was evaluated by analyzing the 396 
hydrograph patterns and statistical measures such as Nash-Sutcliffe efficiency (NSE) and the 397 
coefficient of determination (R2). The values of m and n that gave the best results in the calibration 398 
test were 0.003 and 0.03 m1/3s-1, respectively (Figure 4 and Figure 5). The small m value represents a 399 
flash flood event, where most rainfall contributes to surface runoff.   400 

401 

 402 

Figure 4: Comparison of observed (solid black line) and simulated (dashed lines) stage height (m) at 403 
Khokana gauging station, close to the outlet of the catchment (location shown in Figure 1); (a) shows 404 
simulated stage for model runs with constant Manning’s coefficient, n = 0.04 m1/3s-1, and variable 405 
TOPMODEL m parameter from 0.002 to 0.004; (b) shows simulated stage height for simulations with 406 
constant m = 0.003, and variable Manning’s coefficient, n. 407 

(a) 

(b) 
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 408 

Figure 5: Scatter plot diagram showing observed versus simulated height for Bagmati River at Khokana 409 
during a) calibration test (September 2021 event) and b) validation test (July 2002 event). R2 trend line 410 
given as dashed line.  411 

Figure 6 presents results for the observed and simulated stage height at the Khokana gauging station, 412 
which is close to the outlet of the Kathmandu catchment, for the calibration (6 a) and validation (6 b) 413 
tests, for optimum m and n values. For the calibration test, in the numerical model, the arrival of the 414 
flood wave is delayed by approximately 1 hour, but the peak stage magnitude and shape of the flood 415 
wave are comparable. We note that the simulated hydrograph displays two peaks, following the two 416 
peaks in rainfall intensity, but the observed hydrograph shows a single flood peak. This is likely related 417 
to the use of rainfall data that was only available for 9 out of 17 stations across the catchment and 418 
thus may not be representative of the actual rainfall which occurred during the event. The model was 419 
then validated for the peak historic flood, the event that occurred on July 22nd, 2002, using rainfall 420 
data from 17 gauging stations. As seen in Figure 6b, there is good agreement between the observed 421 
and simulated stage heights, although it is possible that the simulated results underestimate the peak 422 
flood which likely occurred between 16:00 on 22/07/2002 and 08:00 on 23/07/2002 but was not 423 
captured by the recorded data.  424 

Following successful validation and calibration, values of m = 0.003 and n = 0.03 m1/3s-1 were selected 425 
for all further flood model simulations in this study.  426 

 427 
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 428 

Figure 6: Comparison of simulated and observed stage height (m) at the Khokana gauging station for 429 
(a) the calibration test flood event on 6th September 2021, and (b) the validation test against the flood 430 
on 22nd July 2002. In both cases the TOPMODEL m = 0.003, and Manning’s coefficient, n = 0.03 m1/3s-431 
1. Hourly catchment average rainfall (mm) is shown as blue histogram bars.  432 

4 Results and discussion 433 

4.1 Relationship between spatio-temporal distribution of rainfall in Kathmandu and 434 
floods 435 

The spatial distribution of rainfall across the Himalayas is strongly influenced by topography 436 
(Bookhagen and Burbank, 2006); this is also the case in the Kathmandu valley. The central valley floor 437 
receives about 1500 mm of annual average rainfall, while the hill slopes receive up to 2400 mm of 438 
rainfall, and, in general, rainfall is concentrated over the northern hills. The annual precipitation 439 
distribution is shown in Figure 7. Spatial heterogeneity of rainfall in Kathmandu occurs due to the 440 
interaction between the monsoon wind and the surrounding hills in Kathmandu. In the monsoon, the 441 
flow of moisture-laden wind enters the valley mainly from the west, southwest and south directions 442 
(Aryal et al., 2008). As it passes the southern hill ridge, rainfall occurs over the southwest flank of the 443 
valley. Once the wind encounters the hills in the north, further orographic enhancement of 444 
precipitation occurs (Anders et al., 2006; Roe, 2005). Intense precipitation can be highly localised 445 
when convective storms are influenced by Himalayan topography (Hobley et al., 2012). Besides, 446 
precipitation extremes during the monsoon season are attributed to the synoptic conditions of low-447 
pressure systems, mid-level troughs, western disturbances and break monsoon conditions, as 448 
described in Bohlinger et al. (2017) and Richardson (2021). In Kathmandu, low intensity rainfall ranging 449 
from 0.01 mm/hr to 0.25 mm/hr contributes a larger percentage of the total precipitation than higher 450 
intensity rainfall ranging from 4.25 mm/hr to 4.50 mm/hr (Pokharel and Hallett, 2015). However, 451 
higher intensity rainfall is the primary driver of floods. 452 

(a) 

(b) 
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 453 

Figure 7: Annual rainfall in Kathmandu  454 

The spatial pattern of extreme rainfall differs from the annual rainfall pattern in terms of the location 455 
of maxima. For extreme rainfall events, the rainfall maxima are concentrated in the west and 456 
southwest regions of the valley (Figure 8) because the moisture-laden wind enters from this direction. 457 
In contrast, annual rainfall is concentrated over the northern region (Figure 7). This demonstrates the 458 
difference between high and low intensity rainfall patterns in the region. Figure 8 (A) illustrates the 459 
spatial distribution of the top 5 highest RX1day (catchment average) rainfall events, and (B) shows 460 
rainfall patterns that generated the highest floods recorded at the Khokana gauging station. In both 461 
(A) and (B), the top row shows the actual rainfall, while the bottom row shows the normalised rainfall 462 
at a scale of 0 to 1. Cross-sectional profiles of extreme rainfall events (Figure 9), further illustrate that 463 
higher rainfall intensity occurs in the southwest region compared to the northeast region. Similar 464 
patterns are observed for extreme rainfall distribution that causes floods at Khokana.  465 

The spatial distribution and magnitude of rainfall events that generated floods at Khokana (Figure 8 466 
B) are different from the RX1day events (Figure 8 A), although all conditions presented in Figure 8 are 467 
wet enough to produce high flows. This is due to the difference in travel time of rainfall runoff to 468 
Khokana. We estimated the travel time using Kirpich’s equation (Kirpich, 1940). The approximate 469 
travel time from the northern hills (Sundarijal, the origin of the Bagmati River) to Khokana is estimated 470 
to be approximately 11 hours, while from the southern hills (near the origin of the Nakku tributary), it 471 
is estimated to be about 6 hours. If we consider flood hazards in other areas of the Kathmandu Valley, 472 
the spatial distribution of extreme rainfall becomes even more important in the analysis because of 473 
different times of concentration of the peak flood. 474 

In Figure 8, the spatial patterns of 1978, 1994 and 2000 events are different to the seven rainfall 475 
events. These rainfall patterns, where the highest rainfall occurred in the northern hills, could have 476 
had a higher impact in the areas of the north of Kathmandu compared to Khokana because the severity 477 
of flooding at different locations depends on the rate at which rainfall accumulates, the spatio-478 
temporal pattern of rainfall, and the travel time. Among all the patterns shown in Figure 8, the spatial 479 
pattern of rainfall that produced the highest flow at Khokana is also the highest RX1day event, so we 480 
chose this pattern for spatial disaggregation of future rainfall events. For the purpose of this study, we 481 
do not examine the sensitivity of future rainfall events to varying spatial patterns.   482 

 483 

 484 
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485 

 486 

Figure 8: Spatial pattern of extreme rainfalls in Kathmandu for (A) top five RX1day rainfall and (B) 487 
rainfall events that generated the top five highest floods at Khokana station. Top row indicates the 488 
magnitude of rainfall in millimetres, while bottom row shows normalised rainfall. 489 

 490 

Figure 9: Cross section of elevation and rainfall in the Kathmandu Valley (A) North-South Direction (B) 491 
West–East direction 492 

Results of the temporal disaggregation of the 2002 RX1day event show that rainfall was particularly 493 
heavy on 22 July 2002 from 00:00 to 12:00, with some stations exceeding 20 mm of rain in an hour 494 
(Figure 10 A). This incessant rainfall caused the peak discharge of 942m³/s at Khokana. The south and 495 
west regions of Kathmandu received higher rainfall than the northern regions during this event. The 496 
daily GPM IMERG precipitation data bears a good correlation (R = 0.96) with the gauged observations 497 
at the daily scale (Figure 10 B). In the study, the performance of the temporal distribution of the GPM-498 
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IMERG product at a sub-daily scale over Kathmandu or Nepal as a whole has not been evaluated. Since 499 
hourly rainfall data for the Kathmandu valley is scarce, lacks consistency, and is of questionable quality 500 
whenever available, it was not used for the study. Despite the uncertainty associated with the sub-501 
daily temporal distribution of GPM-IMERG rainfall over Kathmandu, previous studies have shown good 502 
performance of GPM-IMERG products at a daily scale in capturing the patterns of spatial precipitation 503 
extremes in Nepal. Nepal et al. (2021), Sharma et al. (2020) and Talchabhadel et al. (2022) showed 504 
that GPM-IMERG can capture the spatial variability and patterns of precipitation indices over Nepal, 505 
with the constraint that it underestimates the precipitation magnitude. Figure 10 B also shows that 506 
the GPM-IMERG product underestimates rainfall in Kathmandu. A linear scaling was performed to 507 
remove the biases in the estimate of total daily precipitation. However, because the scaling is linear 508 
and applied at the catchment scale, the sub-daily temporal distribution and spatial distribution pattern 509 
remain unchanged. Since the time resolution of the GPM IMERG product is 30 minutes, it is useful to 510 
model the flood response to the rainfall because of the short time of concentration to Khokana. 511 

 
 

 
 

Figure 10: GPM precipitation (A) temporal variation of GPM precipitation at 23 stations (shown in 512 
Figure 1) for 22 July 2002 event and red star shows instantaneous flood peak of magnitude 942 m³/sec 513 
(B) Comparison of daily GPM rainfall and observation at catchment scale 514 
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4.2 Bias correction of GCMs  515 
Long-term monthly observed precipitation and hindcast GCM precipitation for the reference period 516 
1976-2005 are shown in Figure 11 A. The selected GCMs, listed in Table 2, show reasonable reliability 517 
to represent the seasonal cycle of the summer South Asian Monsoon. Even though step three in the 518 
GCM selection method aims to ensure minimal bias in the monsoon and winter precipitation and 519 
temperature, some biases were still present. Performance of the empirical quantile mapping (QM) 520 
and quantile delta mapping (QDM) using a split-sample cross-validation approach for the period of 521 
1976-2005 were found to reduce biases. This can be observed in Figure 11 B and C. Figure 11 B shows 522 
an example of monthly precipitation for the CanESM2_r5i1p1 model, selected for the warm-wet 523 
condition in the RCP 8.5 scenario before and after bias correction. Figure 11 C compares the biases in 524 
the model before and after bias correction using quantile mapping and quantile delta mapping. Raw 525 
GCM show negative biases more than 50% for the monsoon months. In this case, the quantile delta 526 
mapping reintroduced positive biases of about 90% in the months of January and February, and this 527 
is due to the higher number of dry days in those months. Quantile delta mapping over-fits long-term 528 
average values in the monsoon. Quantile delta mapping, by design, is not meant to adjust the mean 529 
values; instead, it adjusts the biases in the quantiles (Cannon et al., 2015).  530 

Performance of QM and QDM coupled with Generalised Pareto Distribution (GPD) based distribution 531 
mapping were also evaluated to account for inflation in the future period. QM and QDM tend to 532 
exaggerate the projected values due to scale mismatch when downscaling from grid box level to the 533 
local scale (Cannon et al., 2015; Maraun, 2013); when projected values are beyond the range of 534 
historical values (which the cumulative distribution function is derived from), linear scaling based on 535 
the ratio of higher quantile values or other techniques like regression are applied. Thus, QM and QDM 536 
approaches (without GPD) were inflating the projected RX1day values compared to the raw GCM 537 
RX1day values. Figure 12 presents results for RX1day rainfall after quantile mapping. In Figure 12 A, 538 
as a result of the linear scaling, an ensemble member for the RCP 8.5 scenario (light red line), bias-539 
corrected using quantile mapping, repeatedly estimated more than 300 mm of precipitation (400mm 540 
in some cases). Figure 12 B shows how the inflation of projected RX1day values is reduced for the RCP 541 
8.5 scenario (light red line) when quantile mapping is coupled with Generalized Pareto Distribution 542 
(GPD) based mapping. Comparison of projected changes in RX1day rainfall before and after bias 543 
correction with QM, QDM, QM coupled with GPD, and DQM coupled with GPD are shown in Table 5. 544 
For instance, in the near future, for the RCP 8.5 scenario, the changes in RX1day rainfall average 545 
(ensemble mean of four GCM models for RCP 8.5 scenario) for uncorrected GCM is 15% in contrast to 546 
37% and 41% (Table 5) by quantile mapping and quantile delta mapping, respectively. When 547 
correction was done using quantile mapping and quantile delta mapping followed by GPD, these 548 
values reduced to 6% and 14%, respectively (Table 5). The differences in values between these 549 
different approaches to bias correction demonstrate the uncertainty of bias correction processes. 550 

 551 

 552 

 553 



 

20 
 

 554 

 555 

Figure 11: (A) Long-term monthly precipitation for reference period 1976-2005 (B) Long-term monthly 556 
precipitation of CanESM2_r5i1p1 model (warm-wet condition) for reference period 1976-2005 before 557 
and after bias correction in validation process against the observation (C) Monthly biases (in 558 
percentage) in precipitation for CanESM2_r5i1p1 model (warm-wet condition) for uncorrected model 559 
and after quantile mapping (QM) and quantile delta mapping (QDM) for reference period 1976-2005 560 
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 561 

 562 

Figure 12: (A) RX1day rainfall after quantile mapping (QM); (B) RX1day rainfall after quantile mapping 563 
followed by GPD based distribution mapping. Rainfall projections shown for near future (NF), mid 564 
future (MF), and far future (FF) for RCP4.5 and RCP 8.5 scenarios. (Note: Only quantile mapping results 565 
are shown in the figure) 566 

 567 
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Table 5: Projected changes in average RX1day precipitation in near (NF), mid (MF), and far (FF) future 568 
using different approaches of bias correction: quantile mapping (QM), quantile delta mapping (QDM) 569 
and Generalised Pareto Distribution (GPD) 570 

 571 

` Changes in RX1day (%) 

    Uncorrected Bias Corrected Bias Corrected Bias 
Corrected 

Bias 
Corrected:  

Scenarios 
Observed 
average 
RX1day 

  QM QDM QDM + GPD QM + GPD 

  (mm) NF MF FF NF MF FF NF MF FF NF MF FF NF MF FF 

rcp4.5 cold-dry 

70 

8 9 11 31 19 31 17 16 22 9 12 17 8 9 14 
rcp4.5 cold-wet 6 27 9 8 48 27 15 37 21 20 40 13 6 33 7 
rcp4.5 warm-dry 13 8 18 30 15 25 16 14 19 11 5 16 11 4 16 

rcp4.5 warm-wet 16 25 71 18 32 76 21 40 78 4 10 39 -1 5 36 

Average 11 17 27 22 28 40 17 27 35 11 17 22 6 13 18 
rcp8.5 cold-dry 3 17 28 16 36 55 4 21 39 0 18 39 -1 18 37 
rcp8.5 cold-wet 9 29 47 18 40 85 38 47 75 36 50 92 4 31 72 
rcp8.5 warm-dry 12 25 39 21 38 56 16 33 43 7 29 43 7 29 43 

rcp8.5 warm-wet 36 33 114 91 66 139 105 76 137 14 15 47 12 14 46 

Average   15 26 57 37 45 84 41 44 73 14 28 55 6 23 50 
 572 

4.3 Projected changes in future precipitation and precipitation extreme indices  573 
Our analysis shows that precipitation is projected to increase in the future for Kathmandu. All GCMs 574 
project an increase in mid-future and far-future precipitation within a range of 3 to 37%, with an 575 
ensemble mean of 9% in the far future for the RCP 4.5 scenario, and 21% for the RCP 8.5 scenario. The 576 
near future GCMs for warm conditions show a slight decrease in rainfall for RCP 4.5 scenario. In the 577 
RCP 8.5 scenario, precipitation is projected to decrease slightly in the near future, warm-dry condition. 578 
For the wet future scenario, similar projections for other Nepalese river basins have been presented 579 
in various past studies such as Kaini et al. (2021); Pandey et al. (2020); Talchabhadel and Karki (2019). 580 

Precipitation extreme indices in the Kathmandu Valley are also projected to increase in the future. 581 
Future projections for the RX1day precipitation (maximum 24-hour rainfall) are shown in Figure 12 582 
and Table 5. The long-term historical average (from 1976-2005) RX1day value is 70mm which is 583 
projected to increase. Changes in RX1day range from a slight decrease (-1%) to an increase of 72% in 584 
the combined QM and GPD approach (Table 5). The decrease in RX1day for the near-future under the 585 
RCP 4.5 scenario is due to the effect of the bias-correction procedure described in Section 4.2. The 586 
limitation of the quantile mapping approach is that trends are not preserved; therefore, the values of 587 
the bias-corrected variable (as well as the changes compared to the historical data) may be different 588 
from those obtained without bias correction. When QM is coupled with GPD, changes in RX1day 589 
precipitation are about 6% [-1% to 12%] (Table 5) in the near future for both RCP scenarios. For the 590 
same bias correction approach, in the mid-future RCP 8.5 scenario, there is an increase of 23% [14% 591 
to 31%] against 13% [4% to 33%] in the RCP 4.5 scenario, and in the far future, RX1day precipitation is 592 
projected to increase by 50% [43% to 72%] in the RCP 8.5 scenario and by 18% [7% to 36%] in the RCP 593 
4.5 scenario. Historically, for the period of 1976-2005, no increasing trend in RX1day was observed. 594 

An increase in precipitation extremes in the future is also evident by the increase in other indices as 595 
shown in Table 6. Indices like very wet days precipitation (R95pTOT), simple precipitation intensity 596 
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(SDII) and very heavy rainfall days (R20mm) are projected to increase in the mid-future and the far 597 
future for both scenarios, similarly to the RX1day and maximum 5-day (RX5day) precipitations. The 598 
increase in total annual precipitation in wet days is 3% to 37% in the future, while SDII could increase 599 
up to 30% in the far-future. The RX5day precipitation is also projected to rise between 20% and 50% 600 
in the RCP 4.5 scenario in the far future. The consecutive wet days index in RCP 4.5 scenario is 601 
projected to decrease by up to 10% in the near future but increase by up to 13 % in the far future. 602 
Similar projected changes in other river basins in Nepal like Karnali, Koshi, and Bagmati are 603 
documented in various studies ( Chapagain et al., 2021; MoFE, 2019; Pandey et al., 2021; Pokharel et 604 
al., 2020; Rajbhandari et al., 2017). The only index which shows no common consensus across 605 
scenarios is the number of consecutive dry days (CDD), which could decrease or increase depending 606 
on the condition and the scenario. 607 

Increases in rainfall variability and extremes in Kathmandu and Nepal are attributed to the Indian 608 
Summer Monsoon because it exerts major control over the overall precipitation regime (Nayava, 609 
1980). Regional topography, i.e., the presence of the Himalaya, Middle mountains and Siwaliks, also 610 
strongly modulates the distribution of precipitation (Anders et al., 2006; Kansakar et al., 2004; Singh 611 
et al., 2019) and controls the localised extreme rainfall (Hobley et al., 2012). Hobley et al. showed that 612 
the localised convective intense rainfall, which caused widespread damage in Ladakh in 2010, 613 
occurred when the moist monsoonal air mixed with the dry Tibetan air. The projected increase in 614 
precipitation and related extremes can be attributed to the enhancement of future thermodynamic 615 
conditions leading to an increase in ISM intensity (Sharmila et al., 2015). Higher temperatures provide 616 
a conducive environment for an increase in the water-holding capacity of the air following the 617 
Clausius-Clapeyron relationship (Trenberth, 2011); higher differential temperature gradients between 618 
adjoining north Indian (including the Himalayas and Tibetan Plateau) and southern plains enhance 619 
physical processes in the region that could lead to an increase in extreme events such a convective 620 
storms (Suman and Maity, 2020).    621 

Table 6: Predicted changes for a range of precipitation-based ETCCDI indices in the future for the 622 
Kathmandu Valley in the RCP 4.5 scenario (top) and RCP 8.5 scenario (bottom). Results shown for cold-623 
dry, cold-wet, warm-dry and warm-wet conditions.  624 

 625 

1976- 
2005

cold- 
dry

cold- 
wet

warm- 
dry

warm- 
wet

cold- 
dry

cold- 
wet

warm- 
dry

warm- 
wet

cold- 
dry

cold- 
wet

warm- 
dry

warm- 
wet

CDD days 60 11 -8 21 6 -4 -13 13 -2 2 -19 0 -7
CWD days 56 -2 -5 -10 0 -8 6 -1 10 13 11 6 11
R10mm days 61 1 9 -7 -9 1 19 6 -4 7 14 3 -4
R20mm days 22 8 9 -13 -11 2 27 5 5 15 16 13 3
R95pTOT mm 357 25 20 1 22 34 52 23 34 45 31 33 45
PRCPTOT mm 1699 2 10 -6 -3 3 21 6 4 11 17 8 5
RX1day mm 70 8 6 11 -1 9 33 4 5 14 7 16 36
RX5day mm 161 32 30 14 21 35 45 19 26 42 24 33 45
SDII mm/ day 11 4 1 -2 -2 5 11 4 3 9 6 7 5

CDD days 60 18 -14 15 -10 5 -27 44 -8 -4 -21 23 6
CWD days 56 15 5 2 11 1 7 7 14 -12 21 6 33
R10mm days 61 7 12 -5 -1 4 23 -1 3 5 20 2 19
R20mm days 22 18 16 -11 7 17 35 0 12 33 33 1 52
R95pTOT mm 357 37 8 15 45 60 60 35 66 108 73 47 169
PRCPTOT mm 1699 8 12 -2 7 10 26 3 12 18 28 7 37
RX1day mm 70 -1 4 7 12 18 31 29 14 37 72 43 46
RX5day mm 161 30 31 18 30 55 41 35 34 71 67 48 79
SDII mm/ day 11 10 4 0 1 11 12 7 8 21 15 10 29

Indices Unit
Observed

Changes in RCP 4.5 scenario (%)
Near Future (2015-2045) Mid Future (2046-2075) Far Future (2076-2100)

Changes in RCP 8.5 scenario (%)



 

24 
 

4.4 Quantification of rainfall extremes in terms of flood frequency and return periods 626 
The estimates of rainfall for the return period values of 5, 10, 20, 25, 50 and 100 years for the near 627 
future (2016-2045), mid future (2046-2075) and far future (2076-2100) for RCP 4.5 and RCP 8.5 628 
scenarios are shown in Figure 13. Values for a given return period for all future periods are similar, 629 
with slightly higher values for the far future compared to the mid-future and mid-future compared to 630 
the near-future. The slight variation in the results for different future periods is a result of the gentle 631 
slope of the location parameter of the generalized extreme value (GEV) distribution for the period 632 
2006-2100. This is expected because the total time series from 2006 to 2100 was taken for non-633 
stationary rainfall frequency analysis rather than breaking the period into specific periods. Then the 634 
return period values were estimated using a non-stationary GEV model (modelled period of 2006-635 
2100) at the mid-point of the near-future, mid-future and far-future. From herein, results are 636 
presented for the mid-future time frame only. The non-stationary GEV model (NS-GEV-M1) results, 637 
where the location parameter is selected as a function of time, are used to quantify the extreme 638 
rainfall magnitudes from the frequency analysis. These results are compared to the non-stationary 639 
GEV model, where the location and shape parameters are a function of time (NS-GEV-M2), and the 640 
stationary model, where all parameters are constant in time (S – GEV). For the mid-future, rainfall 641 
values given by NS-GEV-M1 and NS-GEV-M2 are similar and slightly higher than rainfall from the 642 
stationary model S-GEV, so results from NS-GEV-M1 only are discussed further).  643 

 644 

Figure 13: Rainfall frequency analysis results for different return periods in the near future, mid future 645 
and far future for a range of scenarios. The red line shows the historical GEV return periods, including 646 
the 95% confidence uncertainty band (red shaded region).  647 

The variation of GEV parameters (location, shape and scale) in the future for the RCP 4.5 warm-wet 648 
scenario is illustrated in Figure 14. Figure 13 shows a linear variation of model parameters for NS-GEV-649 
M1 and NS-GEV-M2 models because they are estimated as a function of time. As explained in section 650 
3.6, we also used a moving window and an incremental window to understand the nature of the 651 
parameters. Wide fluctuations in the parameters can be observed when a moving window timeframe 652 
of 30 years is considered (blue dots), compared to the incremental window approach. This is expected 653 
because of the small sample size (n=30). The nature of data within the 30-year moving window time 654 
frame may also cause these fluctuations. When the sample size is increased, such as in the case of the 655 
incremental window (black dots), these parameters evolve more gradually. Scale and shape 656 
parameters showed inconsistency and fluctuations and were difficult to define (e.g. shown in Figure 657 
14 in RCP 4.5 warm-wet scenario). The stationary model (S-GEV-MF), which considers a shorter time 658 
frame only (e.g. 30 years for mid-future), produces unreasonably high values due to the high 659 
fluctuations in the shape parameter and, therefore, is not shown in Figure 13).  Other studies have 660 
also noted the challenge of defining the shape parameter precisely, hence used a constant value (Wi 661 
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et al., 2016; Committee on Adaptation to a Changing Climate, 2018;  Coles, (2001)). Therefore, results 662 
from non-stationary NS-GEV-M1 were used for the flood modelling simulations, with the location 663 
parameter selected as a function of time and constant shape and scale parameters. When maximum 664 
likelihood estimates of the best-fitted line for location and shape parameters are taken into account, 665 
the variation of parameters is different because the whole future series from 2006 to 2100 was used 666 
to estimate the parameters.  667 

Figure 14 also shows the variation of probability distribution functions based on NS-GEV-M1 in future 668 
periods and the histogram of the future RX1day precipitation. The shape parameter of GEV for RCP 669 
8.5 WW scenario was estimated to be negative, while for the other scenarios, maximum likelihood 670 
estimates a positive shape parameter. In the RCP 8.5 WW scenario, since the shape parameter is 671 
negative, the upper bound value restricted the value of low probability values (such as the 1 in 100-672 
year event), providing low estimates of the extreme rainfall. Therefore, the Gumbel method was 673 
adopted for RCP 8.5 warm-wet case even though its estimate is on the lower side compared to other 674 
scenarios. It is to be noted that for warm-wet case, variants of GCM are r2i1p1 for RCP 4.5 and r5i1p1 675 
for RCP 8.5 scenario, whereas for other cases GCMs have r1i1p1 variant.  676 

 677 

Figure 14: Variation of generalized extreme value parameters (a) location, (b) scale and (c) shape in 678 
the 2006-2100 time period and GEV curve for the RCP 4.5 warm wet scenario; (d) probability 679 
distribution function of future RX1day precipitation 680 

Historical 100-year and 25-year return period precipitation estimates are approximately 156 mm and 681 
122 mm, respectively, as shown in Figure 15. Historical return period precipitation estimate is shown 682 
by red solid line on the background of red shaded confidence interval band of 95%. The mid-future 683 
100-year return period rainfall magnitude is projected to increase to 177mm (+13%) to 350mm 684 
(+128%), with a median projected value (considering all GCM members) of 246mm (+58%).  Likewise, 685 
the mid-future 25-year return period rainfall magnitude is also expected to increase within the range 686 
of 148mm (+21%) to 204mm (+67%) with a median value of 161mm (+32%). The median line (black) 687 

(a) (b) 

(c) 

(d) 
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shows that the historical 100-year rainfall event will be equivalent to the 25- or 20-year future rainfall 688 
event due to the increase in the intensity and frequency of rainfall extremes. Uncertainty in estimates 689 
of rainfall magnitudes is shown in the form of the error bar. Here, the uncertainty is higher for the low 690 
probability, high return period rainfall values. 691 

 692 

Figure 15: Estimation of projected mid-future rainfall magnitudes for different return periods and 693 
different future scenarios. Return periods based on historical rainfall extremes are shown in red with 694 
a 95% confidence interval (red shaded region). 695 

4.5 Extreme rainfall and flood hazards 696 
Here we present maximum inundation maps for 25-year and 100-year flood events for historical and 697 
mid-future rainfall scenarios. To simulate the flood inundation, we have applied the spatial pattern of 698 
rainfall that produced both the highest RX1day and the highest flow at Khokana (see Figure 8). 699 
Although the spatial distribution does affect flood inundation in different parts of the catchment 700 
differently, we base all historical and future flood models on the same rainfall distribution to allow for 701 
better comparison across flood events. Future precipitation values are chosen using RCP4.5 data only, 702 
thus more conservative than if we used the RCP8.5 data. Even so, the range of rainfall selected for the 703 
flood modelling (from 122 mm to 350 mm) covers the historical 25-year period rainfall up to the 704 
maximum mid-future 100-year return period. It also includes estimates from RCP 8.5 scenario after 705 
unrealistic values of rainfall from the rainfall-frequency analysis are excluded. Because the rainfall 706 
intensity for the RX1day historical 100-year event is equivalent to the median mid-future 25-year 707 
event (approx. 160 mm), the flood maps are almost identical. As such, RX1day flood maps will be 708 
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presented for the historical 25-year and 100-year events and median and maximum mid-future 100-709 
year events only.  710 

 711 

Figure 16: Flood inundation map (water depth) for the Kathmandu catchment to Khokana for the 712 
median mid-future 100-year return period rainfall event. The local regions for the Bagmati at Khokana 713 
and the Hanumante River are outlined in black and red, respectively.  714 

Table 7 demonstrates an increase in future flood magnitudes. Compared to the historical 100-year 715 
flood, with a peak discharge of 785 m³/s, the mid-future 100-year flood discharge is estimated to 716 
increase up to 72% (approximately 37% in the median case). A 25-year rainfall event could increase 717 
by up to 70% (approximately 26% in the median case), with a median mid-future 25-year flood 718 
magnitude higher than the historical 100-year flood magnitude. This means that the current 100-year 719 
return period flood will correspond to a 25-year period future flood at most. Besides, inundated are 720 
for water depth greater than 1m in 100-year flood will increase from 11.7 km² to 23 km².  The total 721 
area inundated for each simulation is given in Table 7, and increases linearly with increasing rainfall 722 
intensity. An example inundation map of the Kathmandu Valley for median mid-future 100-year return 723 
period rainfall event is shown in Figure 16. Detailed flood maps are shown for the Bagmati at Khokana 724 
(Figure 17), one of the case study locations of the Tomorrow’s Cities project and an area identified for 725 
future urban expansion (MoUD, 2017), and the Hanumante River (Figure 18), a region of the 726 
Kathmandu Valley that is prone to flood hazards. From Figure 17 and Figure 18, we can see that not 727 
only does the flood extent increase, but inundation depths also increase when comparing historical 728 
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and future 100-year events. The increase in depth is an important factor because depth is often used 729 
as a proxy to estimate flood damage using depth-damage curves (Dabbeek and Silva, 2020; Galasso et 730 
al., 2021). Areas which appear to receive up to 1 m of flood inundation under current climate scenarios 731 
could be inundated by over 5 m of water during future extreme events.  732 

Table 7: Total inundation area (> 0.05 m depth) in the Kathmandu catchment in km2 (Figure 17) for all 733 
scenarios modelled numerically; modelled inundation area (km2) which has a depth greater than 1 m; 734 
simulated instantaneous maximum river depth (m) and discharge (m3/sec) (interpolated from 735 
observed maximum instantaneous stage-discharge relationship) at the Khokana gauging station. Note 736 
that the inundation area is approximate and is affected by DEM resolution, the location of buildings, 737 
infrastructure and obstacles in the DEM, and the choice of model parameters. 738 

Scenario 
Catchment 

RX1day 
(mm) 

Inundated 
Area 
(km2) 

Inundated Area 
for Water Depth 

>1 m (km2) 

Khokana Max 
River Depth 

(m) 

Khokana 
Discharge 

(m3/s) 
Historical 25-year flood  122 34 9 5 632 
Median mid-future 25-

year flood  161 42 12.3 5.7 802 

Historical 100-year flood  156 40 11.7 5.6 786 
Median mid-future 100-

year flood  246* 53 17.5 7 1076 

Maximum mid-future 
100-year flood  350 68 23 8 1356 

Note * - Maximum mid-future 25-year rainfall (270 mm) is similar to median mid-future 100-year flood 739 
(246 mm), hence only the latter case is modelled numerically. 740 

 741 
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 742 

Figure 17: Flood inundation maps (water depth), generated using different rainfall intensity scenarios, 743 
for the Bagmati River and Nakkhu tributary at Khokana, which is located at the outlet of the 744 
Kathmandu valley (black rectangle shown in Figure 16). Black arrows represent river flow direction. 745 

 746 
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 747 

Figure 18: Flood inundation maps (water depth), generated using different rainfall intensity scenarios, 748 
for the Hanumante River (red rectangle shown in Figure 16). Black arrow shows river flow direction. 749 

4.6 Uncertainties and limitations 750 
 The assessment of flood hazard in the context of climate change is influenced by various sources of 751 
uncertainty. We employed an envelope-type method (with four corners: cold-wet, cold-dry, warm-752 
wet, and warm-dry) to represent uncertainties in estimating future floods. However, it is not necessary 753 
for the approach to encompass all aspects of uncertainty. This is because of the presence of various 754 
limitations at different stages of the method and data, which are detailed in this section. 755 

Selection of GCM models: Precipitation uncertainty is a significant source of model uncertainty in 756 
hydrological studies (Bárdossy et al., 2022). The variations in future precipitation projections in 757 
magnitude, seasonality, and extremes by GCMs contribute significantly to this uncertainty. GCM 758 
models exhibit wide variability due to differences in parameterization of physical processes, model 759 
structure and dynamics, internal variability, initial conditions, spatial and temporal resolution, 760 
forcings, and other factors. Consequently, the selection of GCM models becomes crucial for 761 
hydrological applications. 762 

In this study, we incorporated uncertainties by use of envelope-type method following the methods 763 
of Lutz et al. (2016) and MoFE (2019). The choice of GCMs and, consequently, the results can be 764 
influenced by different selection criteria in the model selection process. Factors such as the choice of 765 
extreme indices in step 2 or skill metrics in step 3 or even the sequence of GCM selection steps, can 766 
alter the selection outcome. Since, the projected changes in climate averages (step 1) lead the 767 
selection process, there is a narrower range of projections for climate extremes in step 2, and even 768 
fewer when assessing model runs based on their past climate performance in step 3 (Lutz et al., 2016). 769 
This could lead to the selection of GCMs that may not necessarily have fair skills in representing the 770 
past climate. Additionally, the projected changes in climate represent spatial averages across the study 771 
area, resulting in loss of information of spatial variation (Lutz et al., 2016). 772 



 

31 
 

 773 

The GCM selection method assumes model interdependence (Lutz et al., 2016). However, the GCMs 774 
used for selection in this study are practically not interdependent, as we employed variants of the 775 
same GCM that differ only in initial conditions. This approach may introduce additional biases. In 776 
hydrological studies, the primary source of uncertainty among various uncertainties arising from GCM 777 
models, scenarios, and ensemble members is the uncertainty associated with GCM models 778 
(Hosseinzadehtalaei et al., 2017; Wang et al., 2020; Woldemeskel et al., 2012). Restricting the 779 
selection to a single model for skill assessment could impact the results and potentially underestimate 780 
the bias to be scaled in future scenario simulations. 781 

Bias correction: Significant biases exist in historical GCM model simulations. We applied bias 782 
correction methods to mitigate these biases, though their application may introduce additional 783 
positive or negative biases. For example, the use of quantile delta mapping increased biases in dry 784 
season precipitation. Moreover, when applying only QM or QDM without GPD-based correction for 785 
extreme values, the results could become inflated (see Section 4.2). Proper selection of the threshold 786 
value (in this case, the 99th percentile value of the reference period) in GPD is essential, as it affects 787 
the number of samples available for parameter estimation and, consequently, the bias correction 788 
results. Besides, trends are also not preserved by quantile mapping procedure. This stresses that the 789 
bias correction methods must be used appropriately, as they can add additional uncertainty. 790 

Spatial and temporal sampling of observations: We conducted spatial and temporal disaggregation 791 
of future extreme values using historical rainfall patterns. Our analysis relies on a limited sample of 792 
historical extreme events (1992-2015) and we used only a common rainfall pattern in analysis of flood 793 
mapping which limits its uncertainty quantification. Furthermore, rainfall patterns beyond this 794 
timeframe might yield different flood patterns in Kathmandu. Given the short time of concentration 795 
of the Kathmandu drainage basin at Khokana, temporal distribution of sub-daily rainfall is crucial for 796 
analyzing flood peak magnitudes and occurrences. Although the GPM-IMERG final product reasonably 797 
captures spatial rainfall variation at a daily scale over Nepal (see Section 4.1), the performance and 798 
accuracy of temporal variation remain unexplored due to the lack of quality sub-daily scale data for 799 
Kathmandu stations. Therefore, future research should address this aspect to study the impact of 800 
temporal rainfall distribution on floods. 801 

Rainfall-frequency analysis: Rainfall-frequency analysis for quantifying future rainfall extremes 802 
employs bias-corrected RX1day rainfall from GCMs. Naturally, uncertainties associated with GCM 803 
model selection will propagate: different choices of GCMs would yield different results. In frequency 804 
analysis, a smaller number of samples affect the estimation of GEV parameters. This is evident in the 805 
variable behavior of parameters in the moving window approach (fewer samples) compared to the 806 
stable nature of parameters in the incremental window approach (more samples) (see Section 4.4). 807 
Moreover, uncertainty is more pronounced for high return period rainfall. Techniques like 808 
bootstrapping methods could be explored to enhance robustness in estimating parameters and 809 
confidence intervals. 810 

Flood hazard analysis: In flood hazard analysis, we forced the hydrodynamic model with RX1day 811 
rainfall ranging from 122 mm to 350 mm. Though the resulting discharges covers broad range of flood 812 
estimates, they may still be underestimated due to the combined impact of uncertainties related to 813 
GCM selection; bias correction; spatial/temporal sampling of observations; rainfall-frequency analysis; 814 
and hydrodynamic model inputs (e.g., DEM) and parameters (e.g., roughness coefficient, TOPMODEL 815 
parameter 'm'). 816 

5 Conclusions 817 
Rainfall extremes for the Kathmandu Valley are projected to increase in the future across a range of 818 
scenarios. As a result, flood intensity and frequency are also expected to increase. Despite high 819 
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uncertainty between different climate change projections in terms of future magnitude and frequency 820 
of rainfall intensity, our results suggest that future flood hazards will increase in the Kathmandu Valley 821 
across a range of scenarios, and future rainfall projections should be included when designing the 822 
changing landscape of this rapidly expanding urban catchment. In this study, we quantified changes 823 
in rainfall extremes in the future for Kathmandu Valley and established that the statistical properties 824 
of the rainfall will also change. We analysed the GCMs from CMIP5 in RCP 4.5 and RCP 8.5 scenarios, 825 
evaluated the historical extreme rainfall patterns that trigger floods and adopted a non-stationary 826 
rainfall frequency analysis. Our focus was on analysis and projections of the 24-hour maximum rainfall. 827 
We temporally and spatially disaggregated GPM data to an appropriate scale, as spatial and temporal 828 
distribution of rainfall directly influences the flood peak and propagation through the Kathmandu 829 
Valley. 830 

In this study, we used the spatial rainfall pattern that generated the highest historic flood at the 831 
Khokana station when spatially distributing rainfall for the flood modelling scenarios. Different spatial 832 
distributions of future precipitation should be modelled numerically to understand the effect of future 833 
extreme rainfall events originating in the northern hills of the catchment on flood inundation and is 834 
recommended for further research. 835 

In summary, we drew the following conclusions from this study: 836 

(A) As indicated by extreme precipitation indices, rainfall extremes are expected to increase. The 24-837 
hour maximum rainfall is projected to increase up to 72% depending on the future period and the 838 
scenarios considered, except for a slight decrease of 1% in the near future. This increase in rainfall 839 
directly increases the extent and magnitude of flood events. 840 

(B) The spatial rainfall pattern needs to be considered in flood models because analysis of historical 841 
rainfall patterns shows that a concentration of rainfall maxima in the south and west part of 842 
Kathmandu causes the highest peak flood at Khokana. In addition, because the time of concentration 843 
of the catchment is about 6 hours, sub-daily rainfall should be used in flood models because this 844 
influences the peak and duration of the flood peak. 845 

(C) Future flood magnitudes (discharge) are projected to increase in future. The mid-future 100-year 846 
flood is estimated to increase up to 72% (37% median increase) compared to the historical 100-year 847 
flood of 785 m³/s. Similarly, the projected increase for a 25-year flood in the mid-future is up to 70% 848 
(26% median increase). Furthermore, the median mid-future 25-year flood magnitude is higher than 849 
the historical 100-year flood magnitude, meaning that the current 100-year flood will be equivalent 850 
to a 25-year future flood or a lower return period flood. 851 

(D) Flood modelling results also show that the future flood extent (hazard) will increase with increasing 852 
rainfall and discharge magnitude. The area of land inundated by more than 1 m could increase from 853 
11.7 km² to 23 km² between the historical 100-year return period flood and 100-year maximum mid-854 
future flood. In addition, a change from the present day 100-year flood to a 25-year future flood means 855 
that this magnitude of the flood could become four times more likely to occur annually. This result 856 
represents an important consideration when designing future urban spaces that are resilient to floods, 857 
emphasising the need to account for future rainfall projections in all flood hazard modelling of the 858 
Kathmandu Valley. 859 

(E) The selection of GCM models is important as it is leading the whole process. Uncertainties 860 
accumulate and propagate through bias correction, spatial/temporal disaggregation, rainfall-861 
frequency analysis, and hydrodynamic modelling. Consequently, examining the contribution of each 862 
of these components can result in an improved estimation of uncertainties associated with future 863 
floods. Further research in these areas, therefore, will contribute to a deeper understanding of urban 864 
flood risk. 865 
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