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Clinically we have been aware of the concept of Candida biofilms for many decades, though perhaps without the formal
designation. Just over 20 years ago the subject emerged on the back of progress made from the bacterial biofilms, and
academic progress pace has continued to mirror the bacterial biofilm community, albeit at a decreased volume. It is
apparent that Candida species have a considerable capacity to colonize surfaces and interfaces and form tenacious bio-
film structures, either alone or in mixed species communities. From the oral cavity, to the respiratory and genitourinary
tracts, wounds, or in and around a plethora of biomedical devices, the scope of these infections is vast. These are highly
tolerant to antifungal therapies that has a measurable impact on clinical management. This review aims to provide a
comprehensive overight of our current clinical understanding of where these biofilms cause infections, and we discuss
existing and emerging antifungal therapies and strategies.
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Directly or indirectly, biofilms are responsible for
over 80% of all microbial infections (1–3), which
can vary from superficial to more serious and deep
infections, with high mortality rates associated
(1,2). Candida species biofilms are among the most
common microorganisms in clinical settings, being
commonly found in patients’ skin or on the hands
of nursing staff (4–7), adhered to biomedical
devices, growing as biofilms, capable of withstand-
ing extraordinarily high antifungal concentrations
(5,8). The first description of a Candida albicans
biofilms from oral and urinary sources was made in

1981, and since then our overall appreciation and
undertesting of them has improved (9).

The importance of fungi in human health cannot
be understated, so much so that their impact has
now been fully recognized by the world health
organization (WHO) within their recent publication
of priority fungal pathogens (10). Despite the lack
of definitive data to demonstrate the burden of dis-
ease, some have estimated that over 1 billion people
are affected by fungal disease, which in turns kills
1.5 million annually (11). Among these pathogens
is Candida albicans that has been identified within
the critical priority group, alongside Aspergillus
fumigatus, Cryptococcus neoformans and Candida
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auris. Tens of millions are affected by mucosal can-
didiasis, and an estimated further 750 000 people
with systemic candidiasis, of which the latter has
mortality rates of around 50% (11). These statistics
highlight the critical importance that candidiasis
has in human disease. One of the critical factors in
managing these infections is our ability, or lack
thereof, to successfully diagnose these infections
(12).

Notably, one of the key contributing factors to
this burden of health is the ability of Candida spe-
cies to form an aggregative biofilm phenotype upon
mucosal surfaces, intimately attached to indwelling
biomedical implants or as aggregates surrounding
adjacent tissue to biomaterials (13). Biofilms may
be present as mono-species consortia of yeast and
hyphal cells embedded within polymeric matrix
(14), but also as aggregates (or floccules) of cells
(15). Fig. 1 illustrates morphological appearance of
C. albicans biofilms grown in vitro upon polystyrene
and polymethylmethacrylate, and C. auris grown
on a cellulose matrix. More frequently they are co-
associated with bacteria as interkingdom popula-
tions. Irrespective of their constituent parts, they
are surprisingly recalcitrant to antifungal agents,
and this tolerance makes them a significant clinical
issue (16). This review aims to provide a detailed
insight into the strides made in increasing our
understanding of Candida biofilms over the past

two decades ever since its mainstream acceptance
as a clinical entity.

WHO ARE THE RISK GROUPS FROM

FUNGAL BIOFILM INFECTIONS?

Those at greatest risk from these infections are
those with weakened immunity or those with
underlying health issues (17). This includes chronic
lung disease, HIV, cancer, diabetes, and many other
serious diseases. Those critically ill patients in the
ICU, those undergoing invasive procedures and
those receiving immunosuppressants or broad-
spectrum antibiotics are all high-risk groups.
Patients within these groups will inevitably continue
to expand, especially as the world population grows
past 8 billion inhabitants in 2022. Patients undergo-
ing treatment for cancer, including immunotherapy
and chemotherapy, a patient population that con-
tinues to advance at pace and will undoubtedly lead
to more within these risk groups. We also observed
the consequence of this during the COVID-19 pan-
demic laid bare, and the necessity to use immuno-
therapies and a range of supportive measures that
result in co-morbid invasive fungal disease in this
patient group (18). The critical care environment
coupled with severely ill patients provided the per-
fect storm for biofilm-related disease.

(A)

(B)

(C)

Fig. 1. Candida spp. biofilms on different surfaces. (A) Candida albicans grown on an irregular polymethylmethacrylate
(denture prosthesis) substrate. (B) Candida albicans grown on polystyreme and pseudocoloured green blastospores and
orange hyphae. (C) Candida auris grown on a cellulose matrix – note the dominant yeast morphology.
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Biofilm-related infection plays an additional roles
in patients with any form of biomaterial, for exam-
ple prosthetic heart valve, total hip arthroplasty,
knee joint, presence of an indwelling venous or uri-
nary catheter, artificial lens, cochlear implants, etc
(13). Moreover, the risk of biofilm-related infection
is increased in patients with wound-related trauma,
which may be disease related (e.g. diabetic ulcers),
or in the form of burns or trauma (19). Biofilms
can also exist out with the patient, adhering to
fomites and medical equipment around the clinical
environment (20). For example, C. auris was shown
to persist as a resilient yeast and spread rapidly
throughout a critical care ward in the UK (21).

Collectively, this paints a particularly gloomy
outlook for an ageing population who will increas-
ingly rely on these medical interventions and be
exposed to challenges brought about by innovative
immunotherapies. Whilst the relative risks of
biofilm-related infection remain stable, the increas-
ing population profile means more and more
patients will be exposed to these hard-to-treat infec-
tions. With a limited arsenal of antifungal agents
available for clinical use, the successful manage-
ment of these patients is challenging. Table 1 illus-
trates the breath of risk factors posed by an
increasing population.

CANDIDA BIOFILMS ARE IMPORTANT IN

SUPERFICIAL AND DEEP INFECTIONS

The mucosal barriers of the oral cavity, orophar-
ynx, respiratory, gastrointestinal, and genitourinary
tracts are all potential sites for the genus Candida
to reside, colonize and potentially initiate pathogen-
esis. Alongside an exhaustive list of ‘who’s who’

among the human microbiome (22), Candida spe-
cies have the capacity to either co-aggregate, co-
exist or be antagonized by bacteria in both yeast
and hyphal forms. Notably, Candida spp. appear to
preferentially interact as innocent bystanders in
these relationships (23). Irrespective of these inter-
kingdom relationships, Candida spp. have been
shown within the most accessible of these clinical
sites (i.e. the oral cavity and vagina) to have the
capacity to form biofilms that have the clinical
appearance of white patches, or pseudomembranes
(24,25). Beyond this they have the capacity to
hijack wounds, catheter lines and indwelling devices
to gain systemic access, and to cause debilitating
and life-threatening infections (13,26), some of
which are now discussed. Fig. 2 provides a sche-
matic overview of the breadth of possible Candida
spp. biofilm infections.

Oropharynx

Candidal infections of the oral cavity are mainly
opportunistic in nature, and frequently co-
aggregate with microbial species in the form of bio-
films on biological and inert substrates, or as aggre-
gates within saliva. Oral candidiasis (candidosis)
are generally superficial infections (27), a result of
the overgrowth of mainly C. albicans, though other
non-albicans species, Candida dubliniensis, Candida
krusei, Candida parapsilosis, Candida stellatoidea,
Candida glabrata, Candida tropicalis, and Candida
guilliermondii contribute to oral candidiasis, but to
a lesser extent. Within the oral environment these
yeasts coalesce upon mucosal surfaces and give the
clinical appearance of thick white plaques. Micro-
scopically, these appear as mixtures of yeasts and
hyphae intertwined and covered thoroughly by a
glucans matrix, a substance shared by the genus
(28). Moreover, this glue-like material supports
architecture and tolerance within an interkingdom
biofilm (29).

Diagnosis of oral candidiasis is usually first based
on a clinical presentation, followed up if necessary
with histopathological examinations of the infected
tissue (24). Routinely, oral swabs and rinses are
used for microbiological analysis, with microscopy
being particularly useful for detecting the presence
of C. albicans hyphae, a useful biomarker for differ-
entiating against azole-insensitive yeast such as C.
krusei and C. glabrata. This is an important factor
in empirical treatment of these diseases (24). These
procedures can diagnose Candida species in pseudo-
membranous candidosis, angular chelitis and
denture-induced stomatitis (DIS). DIS differs from
these other infections as the biofilm tends to reside
on the denture-fitting surface (30), and its intimate

Table 1. Risk factors influencing candidal infections

Local Systemic
Indwelling
prosthetic devices

Broad spectrum antibiotic treatment

Xerostomia Immunosuppressive therapy or
condition e.g. Organ transplant

Dentures Genetic susceptibility
Burns Cytotoxic chemotherapy
Trauma Radiotherapy
Wounds Human Immunodeficiency Virus

(HIV)
Vaginal douching Hyperglycaemia
Contraceptive pills Pregnancy

Infections such as tuberculosis
Chronic renal failure
Nutrition e.g. Iron, folate and
vitamin C, B, A
Impaired liver function
Steroid use
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association with the palatal surface results in
inflammation. Here swabs of the tissue and denture
are important, but also consideration of the sonica-
tion of the denture to maximize quantifiable bio-
burden (31), a technique first optimized in
prosthetic joint biofilms (32). Our studies have
shown that Candida species play an important role
in these biofilms as resilient cells within interking-
dom biofilms, but that bacteria occupy the biofilms
by up to 2 logs greater than yeasts (33). This has
an impact for the consideration for therapeutic con-
trol, though it is clear that frequent daily denture
cleansing extra-orally is the most effective preventa-
tive strategy (34).

Other prevalent oral chronic biofilm diseases in
humans are dental caries and periodontal diseases,
both of which are considered primarily bacterial
driven diseases (35,36). However, the role of yeasts
within these diseases is often overlooked and widely
disregarded despite the presence of yeasts in saliva.
Elevated levels of Candida species have been
detected in children with caries (37), though
whether they are directly associated with dental car-
ies remains unconfirmed (38). Their presence may
be indicative of disease rather than directly causal-
ity (39). Similar detection rates have been reported
in patients with periodontal diseases, much higher
than in healthy patients, and shown to correlate
with disease severity (40–42). This is somewhat con-
firmed in what limited data exist within a recent

systematic review from 21 available studies (43).
Taken together, and until proved otherwise, it
would appear that we observe elevated of Candida
levels in these biofilm diseases as a consequence of
microbial dysbiosis and host derived factors,
though we cannot exclude their indirect effects con-
tributing to pathological processes (23). Indeed, we
know that that key periodontal pathogens are
pathogenically primed on encountering C. albicans
(44).

The oropharynx is another important site for
Candida biofilms, especially in those with a voice
prosthesis (45). This is commonly associated in
patients with a laryngopharyngeal malignancy that
need to undergo a laryngectomy, which can result
impact air control, swallowing, phonation, and
coughing. The rapid colonization of silicone voice
prostheses by resident yeasts leads to device failure
and the need for removal, as these have a lifespan
of 4–6 months (46). This is important as these
microbes have the capacity to deteriorate silicone
materials if unmanaged, though there are possibili-
ties to coat with antimicrobials and prevent this
biodegradation (47).

Respiratory tract

The proximity of the lungs to the oropharynx
makes microbial spread to the respiratory tract pos-
sible, often facilitated by endotracheal tubes (48).

Fig. 2. Clinically important sites where Candida biofilms are known to be problematic.
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The trachea can be colonized by C. albicans in criti-
cal care environments, which has significant
biofilm-related implications for patients intubated
with endotracheal tubes that require respiratory
assistance (49). The lungs, an organ commonly
associated with biofilms, are therefore an important
site for Candida species to reside. However, patients
with biofilm-associated diseases, such as bronchiec-
tasis, cystic fibrosis (CF) and chronic obstructive
pulmonary disease (COPD) have also shown to
have a fungal aetiology (50,51). The most notable
of these is CF, an autosomal recessive condition
that is characterized by excess mucus production
plugging the airways, infection, and chronic inflam-
mation. Fungi are frequently cultured, yet bacteria
remain the most common causative agent of CF
infections (52). The most commonly isolated yeast
from up to 75% of patients is C. albicans (53), and
when co-isolated with Pseudomonas aeruginosa can
worsen clinical outcomes in terms of forced expired
volume (FEV1) (54). However, whether C. albicans
within these biofilm aggregates is considered as a
colonizer opposed to active pathogen remains to be
ascertained (50). Though it would be prudent not
to simply disregard its isolation, and instead per-
haps consider the implications of its presence when
deciding on antimicrobial management?

Genitourinary tract

Superficial biofilm infections are also frequently
reported in woman with recurrent vulvovaginal
candidiasis (RVVC). It is estimated that up to 75%
of women will suffer from at least one episode of
vulvovaginal candidiasis (VVC) during their child-
bearing years (55), with almost 10% of these
women are expected to develop recurrent VVC
(RVVC) (56), which is defined as three or more epi-
sodes within 1 year (57). Symptoms are on average
~7 years with a definitive diagnosis in 73% of
women (58). These women often experience failed
azole treatment, as definitive yeast identification is
limited, and this impacts the ability to treat azole
insensitive yeasts such as C. glabrata (59). This is
also coupled with the ability of C. albicans to form
interkingdom biofilms in this environment, which is
the causative organism in up to 90% of VVC epi-
sodes (60). Some authors argue against the presence
of these biofilms in this environment, and state that
VVC is a result of polymicrobial invasion of vagi-
nal tissues (61,62). However, there is unequivocal
evidence that C. albicans biofilm formation on vagi-
nal mucosa in a murine model of VVC, which has
been visualized using scanning electron and confo-
cal microscopy (63). This is supported by imaging
from the swabbed mucosa of patients with RVVC,

where intertwined hyphae are observed as biofilm
aggregates (60). Nevertheless, there are no specific
large-scale studies analogous to those demonstrat-
ing the biofilm capacity of Gardnerella vaginalis in
bacterial vaginosis, which still creates an element of
doubt for clinicians in treating RVVC (64). We are
also limited with representative biofilm models of
the vaginal environment during VVC to study
potential Candida biofilm formation, though inno-
vative pre-clinical models are available (65). These
approaches are essential in providing important
knowledge of the pathogenesis and tolerance of
yeasts in RVVC, which could support more effec-
tive treatments that simply relying on azoles that
will eventually fail. Fluconazole remains the pri-
mary treatment for VVC owing to its high cure
rates and availability at clinics as well as over the
counter (66,67).

Candida spp. biofilm are also important in intra-
uterine devices (68), where removal of the device
is often seen to correlate with improvement of
clinical symptoms (69). Experimental studies have
shown a wide variety of Candida spp. retain the
capacity to adhere to intrauterine device, particu-
larly the tail end (70). Other inserted materials,
such as urinary catheters have also been shown to
support Candida colonization, that may lead to
urinary tract infections (UTI’s) (71). In general,
removal of these devices and antifungal therapy is
the optimal strategy, as these could lead to candi-
demia (72).

Skin and wounds

It has become apparent that complex biofilm com-
munities of bacteria and fungi can flourish on the
skin and in wounds (19,73,74). One of the first
mycobiome studies by Oh et al. (75) investigated
the biogeography of the human skin and reported
that mycobiome constituents made <10% of the
total microbial population. Fungal levels vary
between different sites, with the yeast Malassezia
being the most prevalent fungal species on the skin,
making up to 80% of the total skin associated
fungi (75,76). Alongside these, Trichosporon, Rho-
dotorula, Cladosporidium and Candida species are
also observed (19,73,77). It is noteworthy that der-
matophytes, which affect up to 1 billion people
(11), are able to form biofilms on keratin substrates
such as nails (78).

Given their presence and pathogenic capacity,
then it is unsurprising that fungi are important in
chronic wound infections. While Candida is unlikely
to play a significant role in these complex infec-
tions, it is frequently identified (19,79). Indeed,
in culture-based studies it has frequently been
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identified in diabetic foot ulcers (73,77). Over three
quarters of the species isolated were Candida species
(10.6% C. albicans, 22.7% C. tropicalis and 25%
C. parapsilosis) (77). These species were also
reported by Dowd and colleagues (73), suggesting
an unrecognized importance of fungi in these clini-
cal sites. Indeed, it has been shown within a ran-
domized controlled trial that fluconazole treatment
reduces the mean healing time of DFUs (80). Pio-
neering next generation sequencing studies from
Kalen and colleagues (2018) has further shown the
importance of fungi in wounds, where ITS1
sequencing enabled detection of C. albicans from
22% of patients (19). Taken together, these data
show that Candida spp. play an important acces-
sory role in wound infections, and that by consider-
ing them as an important structural element of the
complex wound biofilm, and reciprocally using anti-
fungals as an adjuvant alongside antibacterial
agents will support successful clinical management.
Indeed, we have shown that in an experimental tri-
adic model containing C. albicans, P. aeruginosa,
and S. aureus that only triple therapy targeting
each component will successfully reduce the overall
bioburden (81).

Medical device-related infections

It is reported that approximately 60–70% of all
hospital-based infections can be accounted for by
direct contact with implanted medical devices (82).
Biofilm-related infections are a critical issue for
these devices, from which a vast range of indwelling
biomaterials that have been associated with fungal
biofilm colonization (13,83). Prosthetic joint infec-
tion (PJI) is a significant complication to an other-
wise ordinarily successful procedure and presents a
significant issue for post-clinical management when
fungi are present. In a recent review of fungal peri-
prosthetic joint infections comprising of 89 patients,
C. albicans was the most common clinical isolate
(49.4%), followed by C. parapsilosis (18%) and C.
glabrata (12.4%) (84). In another meta-analysis
from 2009 to 2019 it was reported that 286 patients
had a fungal periprosthetic infection of the knee,
hip, shoulder, or elbow. Candida spp. were the most
identified fungal pathogen (85%), with 30% of
these being dual-species interkingdom infections.
Notably, the use of antifungal spacers with a two
stage revision was required in 65% of cases (85). A
critical consideration for PJI and for other wounds,
either trauma-induced or otherwise, is that Candida
spp. and other fungi have access to bone. There is
clear evidence, which is subject to an excellent
review by Gamaletsou et al. (86), that biofilm infec-
tions are key elements in osteoarticular mycoses.

These are both difficult to diagnose and treat, and
often require surgical intervention.

Within critical care there are a myriad of indwell-
ing lines where adherent candidal biofilm communi-
ties can thrive, detach, and cause a fungemia by
spreading throughout the human body. Indwelling
medical devices, such as intravascular catheters and
ventricular-assist devices (VADs) are commonly
colonized with Candida spp. (87,88). Clinically,
unless swift diagnosis to treat a Candida infection
in the ICU is given in the first 24 h, then this can
lead to a 30-fold increased likelihood of mortality
(89). Here, the biofilm phenotype is an important
determinant in patient outcomes. We and others
have highlighted how the presence of a biofilm
forming isolates positively correlates with mortality,
and that catheter removal or the use of highly
active anti-biofilm therapy, i.e. liposomal amphoter-
icin B or an echinocandin, can lead to a clinical
improvement (90,91). Indeed, a recent meta-
analysis of bloodstream infection and biofilms dem-
onstrated that Candida spp. were the most associ-
ated compared to all other microbes analysed (92).

Candida biofilms are everywhere!

Collectively, it can be summarized that Candida
spp. form biofilms across a large clinical spectrum,
on any available substrate. There is evidence from
the emergence of C. auris that yeasts can also form
resilient populations beyond the host upon hospital
surfaces (21,93), such as reusable skin temperature
probes that can facilitate spread within a clinical
environment (94). The biofilm phenotype of this
yeast and others indicates the clinical impact of
candidal biofilms is not insignificant (95). Although
these are often overlooked and under-diagnosed, it
is reassuring that the International Consortium for
Osteoarticular Mycoses specifically identified fungal
biofilms as an important clinical element for consid-
eration in their review of the subject area (86).

CURRENT ANTIFUNGAL APPROACHES TO

MANAGING CANDIDA INFECTIONS

Generic treatment of Candida

The management of Candida infections is generally
driven by applying IDSA guidelines (96), as the
protocols for the management of Candida infections
have not markedly changed. It is relevant to note
that these guidelines do not have in account if the
infection is biofilm mediated, meaning that the
treatment is the same for both planktonic and
biofilm cells. Treatment of systemic diseases
(invasive candidiasis/candidemia) focus mostly on
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echinocandins (first-line drugs) and polyenes
(amphotericin B) with step-downs with triazoles (or
polyenes); local infections (e.g. oral, vaginal) have
indications to be first treated with triazoles (e.g. flu-
conazole, voriconazole) and polyenes. In severe
cases, polyenes or echinocandins can be first choice
(not common and less recommended). The use of
antiseptics, as co-adjuvants, in all cases, is also
recommended. These protocols are just a generic
guideline, and do not consider the individual varia-
tion among patients. Their application also depends
on the Candida species involved in the infection
(for example, if it is a C. glabrata or a C. parapsilo-
sis, the use of an echinocandin should be used cau-
tiously). Table S1 summarizes the protocols most
frequently employed to manage Candida spp. infec-
tion in general.

Azoles, including fluconazole and voriconazole,
remain the antifungal of choice for treatment for
Candida spp. with exception of a few azole resistant
species C. krusei, C. auris, and C. glabrata. These
compounds are fungistatic through targeting of the
ergosterol biosynthetic pathway. They work on the
14-lanosterol demethylase enzyme pathway, deplet-
ing the biosynthesis of ergosterol molecules in the
cell membrane, and lead to accumulation of sterol
precursors (97). Cellular membranes become unsta-
ble, leading to impaired growth and a static out-
come. Triazoles are the most frequently used, and
this can lead to resistance through upregulated
efflux pumps, alterations in the ergosterol biosyn-
thesis pathway, and activation of heat shock pro-
teins, is common. Though biofilm mediated
tolerance is not strictly induced by azole misuse.

Polyenes, including amphotericin B (AMB), nys-
tatin and liposomal formulations, are an alternative
fungicidal option. These insert into the lipid mem-
brane adjacent to ergosterol and form pores, lead-
ing to destabilizing the cell membrane enabling
cellular lysis (98). Oxidative stress may additionally
contribute to its fungicidal activity. Whilst resis-
tance is infrequent due to its membrane-based tar-
get, alterations to sterols and anti-oxidative stress
mechanisms can protect the cell from polyene, in
addition to cell wall changes, example enhanced
1,3-alpha- and 1,3-beta-glucans. Liposomal formu-
lations are highly effective against biofilms (99).

Echinocandins, including caspofungin and mica-
fungin, are fungicidal by virtue of inhibiting 1,3-
beta-glucan synthase that facilitates cell wall desta-
bilization. They can be considered analogous to
penicillin interfering with peptidoglycan in bacteria.
They have a wide spectrum of activity, though with
an apparent paradoxical effect against C. albicans
biofilms (97). Their overuse has led to echinocandin
resistance through alteration of the glucan synthase

enzymes (Fks1-Fks2 complex), changes in chitin
composition and stimulation of stress pathways.
These were the first class of compounds that were
shown to be effective against biofilms and have con-
tributed to the success of caspofungin (100).

The new pipeline of antifungals: Prospects for

biofilms?

There is a renewed optimism in the management of
fungal infections as new antifungals emerge into
clinical use (101). However, a caveat to this is that
although there is currently advanced development
of novel agents, and a series of clinical trials in pro-
gress, the number of antifungal drugs that has been
approved by the Federal Drug Administration
(FDA) is currently limited to a few. Indeed, the last
approval was for oteseconazole in early 2022, which
is an azole indicated to reduce the incidence of
RVVC (females not of reproductive potential)
(102). Ibrexafungerp, a first-in-class oral triterpe-
noid (101,103,104), has been used for the treatment
of adult and post-menarchal paediatric females with
VVC (and RVVC – FDA label revision expected
soon) (105). Also, the novel echinocandin resafun-
gin (designed to be dosed once weekly) (101), has
recently been designated a qualified infectious dis-
ease product (2022) by the FDA (106). Rezafungin
was also granted the “orphan drug” title for the
treatment of invasive candidiasis and candidemia in
both the USA and EU (106). Ibrexafungerp and
rezafungin target beta-glucan synthase pathways.
Importantly, they have shown to be effective alter-
natives in controlling C. auris biofilm formation (in
vitro and in vivo) (26,101,104). Finally, in experi-
mental phase, there is fosmanogepix (PF-07842805)
for the treatment of candidemia and/or invasive
candidiasis, acting as a prodrug mangopix to target
Gwt1 (glycosylphosphatidylinositol anchored wall
protein transfer 1), an essential enzyme in cell wall
(101,107,108). Together, these new agents offer
promise for managing candidal disease, though
there is limited data on how these behave against
biofilms.

It goes without saying that Candida spp. biofilms
have high levels of tolerance to the most used anti-
septics or antifungal agents (109–111), so finding
alternative strategies for managing them are as
equally attractive to augment new FDA approved
antifungal drugs. Recent approaches include photo-
dynamic therapy (112,113), naturals from plant
essential oils and extracts (114–116) and honey
(117,118), the use of probiotics (111,119,120) and
prebiotics (121,122), marine compounds (123) and
the development of novel compounds as antifungal
drugs or immunotherapies (124–126) or the search
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for possible new drug targets (127,128). Drug
repurposing (drug reprofiling, repositioning, or re-
tasking) libraries, is an additional strategy we can
employ. Studies of antifungal library screens were
the first to identify the antidepressant sertraline
(129) and antibiotic polymyxin B (130) with anti-
fungal properties. Moreover, a screen of the FDA-
approved Prestwick chemical library identified
suloctidil and Ebselen as effective compounds
against C. auris (131). Most recently it was shown
that Toyocamycin and Darapladib showed promis-
ing activity against C. albicans and C. auris biofilms
(132). However, to date, none of the compounds
proved to have antifungal activity in libraries
screening reached clinical settings (133).

ANTIFUNGAL CONSIDERATIONS FOR THE

MANAGEMENT OF BIOFILM INFECTIONS

Oropharyngeal candidiasis

Topical azoles and polyenes in the form of oral sus-
pensions, gels, creams, lozenges and ointment are
usually used to manage oral candidiasis. Micona-
zole and AMB (nystatin) can also be used, both of
which are fungicidal (134). Recurrent or refractory
infections are not uncommon and usually require
the use of systemic antifungals, such as fluconazole,
itraconazole, ketoconazole, and AMB in conjunc-
tion with topical agents to control the infection
(135). Antifungal resistance remains a serious con-
cern with classical azole therapy, so drug combina-
tions may overcome drug resistance. With b-1,3-D-
glucan of fungi being an ideal drug target, combin-
ing drugs that act on this essential cell wall compo-
nent will potentially help in resolving antifungal
resistance. Oral ibrexafungerp (SCY-078) is a semi-
synthetic potent b-1,3-D-glucan synthases inhibitor,
shown to be effective against C. albicans, C. para-
psilosis, C. tropicalis (136).

Respiratory tract

Distinguishing between colonization and active
infection make it difficult to unequivocally advocate
the treatment of C. albicans in the airways (50),
even though there are reported associations
between Candida colonization and declining FEV1
in CF patients (53,54,137). It is though that
bacterial-fungal interactions may be one reason for
this, with the lungs being collaterally damaged
(54,138,139). Therefore, should Candida coloniza-
tion be addressed in order to improve patient out-
comes despite there being not a generally accepted
treatment option for C. albicans in CF? Azole intol-
erance from Candida biofilms is a significant issue,

therefore the use of polyenes or echinocandins may
be a consideration (140). Beyond this, the new echi-
nocandin rezafungin may be a viable option, where
promising effects have been shown against Candida
spp. and Pneumocystis spp. in animal experiments
(141).

Another pre-clinical compound worth consider-
ation is aureobasadin A, which inhibits inositol
phosphorylceramide synthase, an enzyme involved
in spingolipid synthesis. This has activity against
both planktonic and biofilm Candida species (142).
Moreover, T-2307 is a novel arylamidine in phase 1
clinical trials, which causes mitochondrial mem-
brane collapse, has been tested against Candida
spp. and was shown to be more effective than flu-
conazole, micafungin and AMB (143,144).

Recurrent vulvovaginal infection

Treatment for RVVC generally requires prolonged
azole therapy, which is often unsuccessful. We
know that fluconazole treatments are ineffective
against C. albicans biofilms (26), suggesting their
formation could contribute to failed clinical treat-
ment. Treatment for RVVC caused by azole-
resistant C. glabrata involves a 2-week daily treat-
ment with nystatin pessaries or boric acid
(145,146). Alternative treatments include a 2-week
daily topical 17% flucytosine administered alone or
in combination with 3% AMB (147). Although
these suppressive therapies are often sufficient to
relieve symptoms and a re-emergence of the infec-
tion whilst undergoing treatment, RVVC can flare
up and patients may require long term treatment
(26,148,149). Long-term use of azoles can drive
antifungal resistance in Candida (58); however, if
treatment options remain limited for women with
persistent RVVC, this is inevitable.

Ibrexafungerp has potential for the treatment of
RVVC in the presence or absence of biofilms (150).
This orally administered triterpenoid glucan
synthase inhibitor, with tolerability and low toxicity
(151), has shown efficacy against a range of Candida
species, including azole and echinocandin-resistant
isolates (152). There is added value in that it can
inhibit C. albicans and C. glabrata biofilms, albeit
that to date it has only demonstrated in vitro (153).
The topical echinocandin CD101 has also significant
promise against azole-resistant fungal species in
RVVC (154). Probiotics may also be a desirable
approach to management of RVVC (155,156).

Wound management

The standard of care for wounds is initial physical
debridement of the tissue, which facilitates removal
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of the biofilm from the infected area. Much of clini-
cal practice is focussed on empirical antibiotic ther-
apy to manage polymicrobial bacterial infection
(157). Guidance published by the International
Working Group on the Diabetic Foot (IWGDF)
advocates initial treatment based on “likely or
proven causative pathogens” (158). In antibiotic
na€ıve patients, depending on severity, early therapy
often consists of flucloxacillin treatment, and com-
bined with metronidazole for more moderate to
severe infections. Ciprofloxacin is recommended in
severe cases particularly when DFUs are accompa-
nied by osteomyelitis (159). Follow up targeted
therapies may be required based on culture and sus-
ceptibility results and depending on how the
patient’s clinical response (157). Notably, antifungal
therapeutics are not commonly recommended for
DFU despite our knowledge that fungi can be a
key part of these biofilm.

Despite the fungi being disregarded in wound
care, there are a few clinical and preclinical studies
worthy of a mention. It was shown that antifungal
treatment from a combination of fluconazole, flucy-
tosine, itraconazole and terbinafine, resulted in an
improvement in wound healing in antibiotic unre-
sponsive DFU patients (160). Similarly, inclusion
of oral fluconazole alongside a standard package of
care in 38 patients with DFUs resulted in faster
healing than those that received standard care alone
(80). Preclinically it has been demonstrated that
antifungals incorporated into polymer microparti-
cles or calcium sulphate beads can be used to effec-
tively control fungal growth within an in vivo
murine model of cutaneous aspergillosis (161) and
against a wide range of fungal isolates, including
C. auris (162).

Medical devices

The clinical management of medical devices is a
vast constitutes a full review in itself. However, in
general, and where possible, the removal of devices
is the mainstay of treatment. Devices that are easily
removed include catheters, lines, and oral prosthe-
ses. Whereas implanted materials such as those
associated with bony interfaces (hip and knee pros-
thesis), heart valves, artificial breasts, etc, require
removal and can be problematic and costly (13).
The management of these infections maybe sup-
ported with antifungal agents, which for echinocan-
dins and liposomal polyene formulations may
preclude the need for surgery (86). Azoles may pro-
vide the opportunity to slow the progression of
infection, though are unlikely to lead to the resolu-
tion of infection without additional surgical
debridement or augmentative antifungal strategies.

Additionally, in PJI there is a need for moisture
stability and void-filling within the surgical site
(163). Here there is potential for the localized
release of antimicrobial agents to areas of compro-
mised vasculature using drug-loaded calcium sul-
phate (162). Higher effective doses of antimicrobials
can be achieved than would ordinarily only be pos-
sible through a systemic route. This approach sup-
ports the prevention of biofilm formation at the
biomaterial surface, which could be enhanced by
changes to surface topography and electrostatic
charge (164), which may significantly diminish
adhesion and colonization (165,166). Nanotopogra-
phical alterations to surface structure have been
demonstrated that could significantly decrease yeast
adhesion, paving out a promising strategy for
implanted biomaterials (167). Other innovative
strategies include the use of probiotically produced
biosurfactants for treatment of Candida driven
infection of prostheses (168,169).

As stated above, in bloodstream infection there
is unequivocal evidence for the use of echinocan-
dins and liposomal formulations of amphotericin B
for managing central line-associated candidaemia
through clinical and preclinical studies (90,91,99).
Moreover, it has been shown from a series of case
studies that liposomal amphotericin B could be
used a line lock solution in the prevention and
management of fungal line infections (170,171).
These approaches remain limited is due to clinical
apprehensiveness of fungal line infection manage-
ment, apart from line removal. Through the contin-
ued exploration of different approaches using
animal models may offer scope for improving clini-
cal management.

INNOVATIVE AND ACCESSIBLE ANIMAL

MODELS FOR THE STUDY OF CANDIDA
BIOFILMS

Animal models are widely used in the research of
biofilm-associated infections and contribute signifi-
cantly to understanding the pathogenesis of medical
biofilms and investigating control strategies. Clini-
cally relevant models are indeed crucial to study
aggregates and/or biofilm-like structures in animal
tissues or the interplay between the fungal persis-
tence and host immune response. Both vertebrate
(e.g. Zebrafish, rodents) and invertebrate models
(e.g. Drosophila melanogaster, Caenorhabditis ele-
gans, and Galleria mellonella) have been applied to
candidal biofilm studies, each of them having
advantages and disadvantages (172). There are a
significant number of studies using mammalian ani-
mal models, such as the rat indwelling catheter
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model (8) and a rabbit catheter model (173), in
addition to porcine wound models (174). While
these are all immensely useful, they are costly and
can prohibit progress in evaluating new innovative
therapies. Therefore, other more practically amena-
ble models are available and will be briefly
discussed.

Invertebrates lack the adaptive immune
response but display a fully developed innate
immunity that shares several features with the
mammalian one (175,176), including physical bar-
riers (cuticle/skin and midgut/intestinal microvilli)
and two closely interconnected components,
namely the cellular and humoral responses (177).
Besides common traits, each invertebrate model
has specific characteristics, such as infection sus-
ceptibility and route, maintenance conditions, and
standardization tools. Choosing the most appro-
priate is key to having consistent results, as none
can fully recapitulate the mammal host. Neverthe-
less, several authors reported a good concordance
in pathogenicity between mouse and invertebrate
models (178,179), suggesting such mini-hosts can
bridge the gap between in vitro assays and in vivo
vertebrate studies, in agreement with the three Rs
principle (Replacement, Reduction, and Refine-
ment) to reduce animal infection experiments with
vertebrates.

The worm, Caenorhabditis elegans

C. elegans are hermaphroditic nematodes hugely
reported as a useful model for studying host–path-
ogen interactions because of their completely
sequenced genome. According to planned experi-
ments, a variety of C. elegans strains can be
obtained from the Caenorhabditis Genetics Center
(CGC) at the University of Minnesota (MN,
USA), and can be easily maintained in the lab.
As they have a rapid generation time and a trans-
parent cuticle fungal colonization, filamentation
and biofilm formation can be easily appreciated
and investigated (180). C. elegans has been also
optimized for the high-throughput screening of
strain mutants and new antifungals (122), and has
been recently used to study cross-kingdom, that is
Candida albicans-Pseudomonas aeruginosa interac-
tions in polymicrobial biofilms (181). Major limi-
tations to C. elegans use are its growing
temperature, ranging from 15 to 25 °C, not allow-
ing microbes to fully express temperature-
dependent virulence traits, the route of infection
(by ingesting pathogens) and the inability to
recover infected tissues for histology and fungal
load determination (182).

The fruit fly, Drosophila melanogaster

Toll signalling is crucial in fungal infections, and
studies in D. melanogaster were cornerstones for
its discovery (183,184). Drosophila are insect
belonging to the Diptera order, with separate sex
and a short generation time (10–12 days). The
fruit fly, sharing pros (i.e., a fully sequenced
genome) and cons with C. elegans as an animal
model for fungal biofilms, is a reliable tool for
studying treatment options and for elucidating
genes involved in biofilm-formation and pathogen-
esis (185,186). Although most applied to bacterial
biofilms, D. melanogaster has recently proposed as
a convenient model for the emergent yeast Can-
dida auris (186). This model has proved useful in
demonstrating the importance of antigen I/II in
mediating the interaction between Streptococcus
mutans and C. albicans to facilitate colonization in
this model (187). It has also been used in another
co-infection model to show how the phytochemical
plumbago could effectively improve survival in a
classic co-aggregate biofilm model of Staphylococ-
cus aureus and C. albicans (188).

The greater wax moth, Galleria mellonella

The use of G. mellonella larvae for the study of
fungal pathogenesis (reviewed in (189)) has been
introduced by Kavanagh and co-workers in 2000
(190). Since then, many researchers explored this
insect as a surrogate in vivo model. Compared
with the better-known C. elegans and D. melano-
gaster, G. mellonella can survive at a temperature
ranging from 25 to 37 °C and can be systemically
infected by syringe-injecting pathogens into the
hemocoel. The direct injection of pathogens allows
for a controlled inoculum and a better standardi-
zation of the infection conditions. Being 2–3 cm
long, last-instar larvae are easy to manipulate, and
infected tissues can be collected for further ana-
lyses (191).

Different cellular and humoral immune responses
to planktonic and sessile fungi and tissue invasion
could be highlighted in recovered larval tissues
(192,193), and by administering the drug after the
pathogen injection, newer anti-biofilm strategies
can be tested (194,195). We have used this model to
evaluate acetylcholine as a potent biocontrol agent
of C. albicans, where it was shown to successfully
protect and improve survival (196). It has also been
used to assess and screen biofilm mortality potential
from stratified groups of biofilm formers
(59,197,198). Recently, a G. mellonella model for
studying foreign body infections has been estab-
lished (199), broadening the use of invertebrate
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models in biofilm-associated infections. The major
caveat for this invertebrate model is the still ongo-
ing genome sequencing and thus of genetic tools
(5), despite some authors performed G. mellonella
transcriptomics and proteomics focused on the
immune-response to infections (200–202).

Vertebrate models

Zebrafish (Danio rerio)
Zebrafish is the most used non-mammalian verte-
brate model for studying host-pathogen interac-
tions. It combines some invertebrate characteristics
with some mammalian ones. Indeed, D. rerio dis-
plays high fecundity and rapid development, low
maintenance cost (similar to insects and worms)
and offers the possibility of multi-routes of infec-
tions (similar to mammalian models) (203).

D. rerio larvae are transparent and allow direct
visualization of the infection process progressing. It
has been successfully used for investigating immune
responses to both yeast and mould systemic infec-
tions (204). In a recent study, C. albicans isolates,
with a high or low propensity to form biofilms, were
injected in zebrafish larvae to assess in vivo virulence
(205). Although fish survival after strong biofilm-
former isolates was significantly reduced, fungal
burden was similar after tissue recovery. These
models have also been used to assess the antimicro-
bial activity of silver nanoparticles (206), proving
that it would be beneficial for biofilm treatment
studies. Major caveats for zebrafish as an experi-
mental infection model are the growth temperature
optimum (26–28.5 °C), the need for a dedicated
facility for husbandry, and ethical obligations for
animal welfare (207).

CONCLUDING REMARKS

Candida spp., and in particular C. albicans, is a
tenacious biofilm forming yeast. We have demon-
strated that it can be found across a broad range
of clinical environments and will continue to bur-
den the at-risk patient populations. The difficulty
in managing these infections is primarily their tol-
erance to antifungals and penetrations issues, par-
ticularly where access to device removal is
restricted. Despite these hurdles we have reason
for hope in the form of new classes of antifungals,
combined with exploration into innovative anti-
biofilm strategies. The utility of simple animal
models will enhance the capacity to speed up this
innovation and support our clinical colleagues.
Where we will be in a further two decades remains
to be seen.
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online in the Supporting Information section at the
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