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10 A B S T R A C T11

12

In this paper, the statistical finite element method is developed further towards synthesizing13

distributed rail response data with nonlinear finite element model predictions within and outside14

the measured loading range. In the data generating model of the statistical finite element method,15

the distributed sensing data is decomposed into finite element, model-reality mismatch, and16

noise components. Each component is considered uncertain and is represented as a Gaussian17

random vector with a corresponding prior density. The finite element prior density is updated18

using the Bayesian statistical framework in light of the distributed fiber optic sensing data. The19

calculated posterior density enables one to infer the true structural response. The required finite20

element prior density is determined by solving a conventional stochastic forward problem using21

a polynomial chaos expansion of random fields and a non-intrusive pseudo-spectral projection22

approach. In this research, a lab test involving a section of a rail (i.e., a beam-column structural23

member) instrumented with distributed fiber optic sensors and subjected to axial load causing24

progressive lateral buckling is considered to demonstrate the use of the statistical finite element25

method to improve rail response prediction. The results show improved prediction of true26

rail strain in linear and nonlinear regimes compared with a pure finite element model-based27

prediction.28

29

1. Introduction30

Railways play an essential role in the economies of many countries by facilitating the transport of goods and people.31

Continuously welded rail (CWR) has gradually replaced the traditional jointed rail as the preferred track type since the32

early 1950s due to the advantages of higher operating speeds, lower maintenance costs, increased passenger comfort,33

and noise reduction. However, due to the elimination of expansion joints in CWR, longitudinal compression forces34

develop when the track temperature exceeds the stress-free temperature (also known as the rail neutral temperature).35

Once the compression force in the rail exceeds a critical value, the rail will buckle, and large lateral displacements will36

develop that can alter the gauge of the tracks and potentially lead to a train derailment. To avoid train derailments, rail37

network operators do not only need to monitor the railway infrastructure continuously, but they often need to understand38

how the infrastructure will perform under future extreme loading events. This paper investigates the blending of DFOS39

measurement data with a conventional finite element (FE) model to obtain improved structural response predictions40

with sharp confidence bounds. To this end, the statFEM approach recently proposed by Girolami et al. [1] is used and41

developed further, and the theoretical derivations are validated with a lab-based rail progressive buckling test.42

Traditionally, railway engineers have relied on FE modelling to help better understand the rail response under43

longitudinal loads and predict the critical buckling loads [2, 3, 4, 5]. FE modelling allows the rail buckling response44

to be studied without needing expensive and sometimes impractical experiments. Lim et al. [2] developed a three-45

dimensional FE model for extensive buckling analysis of a CWR track system subjected to longitudinal load,46
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considering the geometrical and material nonlinearity in the FE modelling. Pucillo et al. [3] studied the thermal47

buckling and post-buckling responses of CWR through FE modelling and conducted sensitivity analysis to investigate48

the influence of critical structural parameters on the track buckling response. Kang et al. [4] investigated the rail49

response due to compressive axial force on ballastless track systems through both experimental investigation and FE50

modelling. They concluded that the rail behaviour in the lateral direction is less stiff than the longitudinal direction51

under axial load and that the rail deforms non-linearly and rapidly once it reaches a particular load. Miri et al. [5] used52

FE models to study the effect of the shape of concrete sleepers on track buckling load and concluded that the winged53

and frictional sleepers could provide more significant lateral resistance to the track system and hence increase the54

thermal buckling load capacity. These FE models involve assumptions and simplifications about the track system (e.g.,55

the use of beam elements for modelling the rail) and estimates of the geometry (e.g., using sine curves for modelling56

the initial rail misalignment), material properties (e.g., elastic or elastic and perfectly plastic spring for modelling the57

resistance), and boundary conditions, which inevitably introduce uncertainties and inaccuracy into the FE prediction58

of the rail response due to the in-service operation of the railway system under the ever-changing external environment.59

In order to provide a predictive rail management tool, these uncertainties and inaccuracies must be accounted for when60

analyzing and interpreting the FE modelling results so that the potential variation in results can be quantified.61

Recent advances in structural health monitoring (SHM) enable the deployment of advanced distributed sensing62

systems in railway infrastructure, which has introduced new opportunities for more comprehensive monitoring of the63

structural performance [6, 7, 8, 9, 10, 11, 12]. Compared to traditional discrete sensors, the application of distributed64

fiber optic sensors (DFOS) in civil engineering has overcome some disadvantages associated with traditional sensors65

by enabling long-distance, high-resolution, high-accuracy, durable, and robust strain measurements. The data collected66

from the sensors provide the actual rail response information under operational loads, which were so far interpreted67

or used to validate FE models for structural assessment in an ad-hoc manner to support operation and maintenance68

decisions [13, 14, 15]. However, this traditional approach of updating FE models using SHM data is inefficient when69

the amount of structural response data from advanced sensor networks is large, and the modelled structural response70

is complex. This has resulted in the development of data-driven approaches to directly model structural performance71

by learning the nonlinear mapping between the sensor data and the structural response, using machine learning and72

statistical learning approaches, see the recent reviews [16, 17]. Furthermore, Shen et al. [18], for instance, employed73

a Gaussian process regression model to directly infer rail pad and ballast stiffness using frequency response data from74

field hammer tests. Do et al. [19] used an artificial neural network (ANN) to directly evaluate the track modulus75

using the continuous deflection data from a train-mounted vertical track deflection measurement system. The fidelity76

of purely data-driven approaches usually depends closely on the quality of the training data, and usually, it requires77

large amounts of information-rich data to train a sophisticated data-driven model. The challenges associated with78

purely data-driven approaches have instigated research to assimilate numerical modelling based on physical laws79

with data-driven approaches to provide improved predictions of the structural response. Constrained Gaussian process80

regression with physical constraints [20, 21, 22, 23, 24] and physics-informed neural networks [25, 26, 27, 28, 29] are81

two typical approaches to effectively learn from limited data by explicitly taking into account the underlying physical82

laws governing the behaviour of structures. The mentioned methods are framed as a replacement for prevalent finite83

element analysis techniques and are currently only suitable for domains with elementary geometries.84

In contrast, the recently proposed statistical construction of the FE method, dubbed statFEM, allows predictions85

to be made about the actual system behaviour in light of measurement data and a conventional FE model [1, 30].86

Adopting a Bayesian viewpoint, in statFEM uncertainties in the data and model are treated as random variables87

with suitably chosen prior probability densities, which consolidate any knowledge available. Starting from the prior88

probability densities, Bayes rule provides a coherent formalism to determine their respective posterior densities while89

using the likelihood of the observations. An assumed statistical data generating model determines the probability or90

the likelihood that the model produced the observed data. See, e.g., the books [31, 32] for an introduction to Bayesian91

statistics and data analysis. The statFEM generating model is inspired by the seminal Kennedy and O’Hagan [33] paper92

on Bayesian calibration, which introduces a data-driven Gaussian process-based framework for blending data from a93

black-box simulator and observations. Since its inception, numerous extensions and applications of the Kennedy and94

O’Hagan framework have been proposed, far too many to discuss here, see e.g. [34, 35, 36, 37, 38]. A crucial component95

of statFEM is a random discrepancy, or misspecification, term that takes into account the mismatch between the finite96

element model and the actual system. In practice, such a mismatch is inevitable because of the many engineering97

assumptions and simplifications necessary in creating a FE model. The conditioning of the statistical statFEM model98

on the observation data yields a posterior probability density that consistently blends the finite element prior with the99
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observation data. In statFEM, the likelihood and the priors are all considered to be Gaussians so that the posterior100

probability a has a closed form and is a Gaussian, hence simplifying its computations.101

In the original statFEM paper [1] the prior probability density of the FE solution was obtained by solving a102

probabilistic FE problem using a perturbation technique, which is insufficient for structures with highly nonlinear103

responses. Alternatively, the prior probability density can be obtained using commercially available software (e.g.104

Abaqus) through Monte Carlo (MC) sampling. However, in the case of rail buckling, due to the nonlinearity of the FE105

model, evaluating the uncertainties in the FE prediction through commercial software is extremely time-consuming106

and impractical. In recent years, surrogate models developed using machine learning or deep learning, such as Artificial107

Neural Networks (ANN) [39, 40], Gaussian processes [41, 42], Polynomial chaos expansion (PCE) [43, 44], have been108

increasingly used to approximate complex problems in engineering. Those surrogate models can provide sufficiently109

accurate results and have been used to bypass the traditional MC approach for uncertainty quantification. In the present110

work, a PCE-based surrogate model is constructed to approximately model the rail progressive buckling response111

under the axial load for fast uncertainty quantification in the modelled rail response in order to significantly reduce the112

computational cost of modelling the geometrical nonlinearity in the rail response. A simplified rail FE model is first113

established with beam elements in the commercial software (i.e., Abaqus) to generate samples to train the surrogate114

model. The trained surrogate model is further used to obtain the uncertainties in the modelled rail response, which115

are combined with the DFOS data from previously performed controlled lab rail progressive buckling experiments116

to enable improved predictions of rail response and buckling assessment under axial load using the data-informed117

statistical finite element analysis. By introducing the classical Euler-Bernoulli beam theory, the statFEM also enables118

the accurate prediction of lateral rail deflection, which is valuable rail response information that railway owners rely119

on to make decisions on railway operation and maintenance.120

2. Strain data acquisition121

Compared to traditional jointed rail, longitudinal compression force can be developed in the CWR due to the122

elimination of joints, which results in rail buckling once this load is higher than the load carrying capacity of the123

CWR system. In the current proof of concept work, the force in the rail was applied using an actuator rather than124

due to thermal effects. However, the buckling mechanisms are similar and DFOS data can be used to capture the125

mechanism in both cases. A 3.048 m ASCE 12 lb/yd rail was used in this work in order to limit the buckling load of126

the rail to an achievable level based on the available space and actuator capacity. Two different distributed fiber optic127

measurement systems—a long-range Brillouin-based system and a short-range, but more accurate, Rayleigh-based128

system—were used to measure the strains during the loading test. The following subsections describe the experimental129

setup, properties of the two analyzers, and the strain data set. Further details of the experiment can be found in Sun et130

al. [12].131

2.1. Experimental test setup132

The laboratory setup for the rail loading experiments is shown in Figure 1. The geometric and material properties133

of the ASCE 12 lb/yd rail are provided in Table 1. The rail was held in a self-reacting frame, which consisted of two134

steel plates that were connected by four threaded rods. The axial load was applied using an Enerpac hydraulic jack that135

was aligned with the instrumented rail along its neutral axis. A Strainsert universal flat load cell with a 222 kN loading136

capacity was connected to the hydraulic jack to measure the load applied to the rail.137

Two rollers were placed at either end of the rail specimen, and the axial load was applied to the rail through the138

rollers enabling rotation about the weak-axis of bending but restraining rotation about the strong-axis. In all tests, the139

rail was also supported against strong axis buckling by two rollers at 1 m and 2 m along the length. A small amount140

of axial compressive load (approximately 0.4 kN) was applied to the rail before the start of the test to hold the rail in141

place. A linear potentiometer (LP) was installed at the rail’s mid-length to measure the lateral deflection. The axial142

load and LP measurements were recorded using a System 7000 StrainSmart data acquisition system at a rate of 1 Hz.143

A 35 m long nylon-coated fiber optic sensing cable was installed along eight different paths on the surface of the144

rail as shown in Figure 2b. To ensure enough data was obtained for use with the statFEM, the fiber was installed at145

8 separate locations on the rail cross section (F1 to F8, as shown in Figure 2) and monitored with one of either the146

BOTDA or Rayleigh system (it is not possible to attach both systems to the same fiber simultaneously) to enable the147

strain plane at any point along the length of the rail to be fitted (see Sun et al. [12] for details). As a result of this and the148
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Table 1
Geometric and material properties of ASCE 12 lb/yd rail

Property Value
Elastic modulus 207 GPa
Cross-sectional area 761 mm2

Minimum second moment of area 53000 mm4

Figure 1: The setup for the pinned-pinned rail loading experiment. (1) Hydraulic Jack; (2) Load cell; (3) Pin supports; (4)
Rail; (5) Linear potentiometers

fact that no two tests had the same geometric properties, as will be discussed in greater detail later, it was not possible149

to compare the results of the two tests directly.150
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Figure 2: Schematic fiber location a) on cross-section, b) along the rail length

2.2. Measurement systems151

In this study two DFOS measurement systems with different measurement precision and sensor gauge lengths were152

used to acquire strain data during the loading experiments. One system was the Neubrex NBX-6050A Brillouin Optical153

Time Domain Analysis (BOTDA) analyzer, which is referred to as the “BOTDA system” in this paper, and the second154

system was a LUNA ODiSI 6104 Rayleigh backscatter analyzer, which is referred to as the “Rayleigh system” in this155

paper. Strain measurement properties for both analyzers are provided in Table 2. The BOTDA measurements have a156

larger gauge length and lower measurement precision compared to the Rayleigh system; however, the BOTDA system157

is capable of measuring up to 100 km, which is more practical for real rail implementations.158

2.3. Experiments and data sets159

Two loading experiments were conducted with the instrumented rail setup: one test was conducted with the BOTDA160

measurement system and the second test was conducted with the Rayleigh system. In both experiments, the compressive161

load was applied using load steps of 1 kN until the rail buckled or the maximum strain reached 1000 microstrain (𝜇𝜀)162

to avoid plastically deforming the rail. In this range, the non-linear response of the rail could be measured while163

keeping the rail within its elastic stress range to avoid causing irreversible damage. It should be noted that both tests164

were completed in a closed indoor environment within one hour, such that environmental changes during the test were165

neglectable. The rail is considered to be buckled when there is a sudden increase in the lateral deflection accompanied166
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Table 2
Properties of the two FOS measurement systems used in the rail loading experiments.

Property BOTDA Rayleigh
Sensor resolution 50 mm 2.6 mm
Measurement accuracy (1.96*𝜎𝑒) ± 15 𝜇𝜀 ± 3 𝜇𝜀
Maximum sensing distance 100 km 50 m

by a drop in the axial load (explosive buckling). In a less stiff railway system, the rail is also considered to be buckled167

when the axial loads reach a plateau while the lateral deflections increase significantly (progressive buckling) [45].168

Measurements from the load cell and LP corresponding to every DFOS sampling interval were also recorded in each169

test.170

Figure 3 presents the axial load versus the lateral displacement at the mid-length of the rail as measured with171

the linear potentiometers for the two experiments. For the Rayleigh experiment, the nonlinear behaviour begins at an172

axial load, 𝜆, of approximately 6 kN, whereas for the BOTDA experiment, the nonlinear behaviour begins at an axial173

load, 𝜆, of approximately 10 kN. This difference in buckling respons is considered to be the result of different load174

eccentricities and initial geometrical imperfections in each loading experiment, as the rail needed to be reinstalled175

and realigned before each experiment [12]. Since the geometry changed for every test, it was not possible to conduct176

replicate experiments and thus only one test for each DFOS system (i.e., the BOTDA and Rayleigh system) was used177

in the development of the current model. As seen in Figure 3, the rail buckled at around 12 kN in the BOTDA and178

11.2 kN in the Rayleigh tests, respectively. In a real railway system, the buckling load is expected to be higher due to179

the size of the rail and lateral resistance provided by the sleepers and ballast. Additionally, in the field the buckling180

load is created by restrained thermal expansion. However, the fundamental basis of the sensor system (DFOS strain181

measurements along the rail) and the structural behaviour (lateral weak-axis buckling) are the same in both this study182

and in the field. Thus, the experimental results enable the goal of this research (i.e. to perform a proof-of-concept183

evaluation of the application of statFEM to a non-linear structural system monitored with DFOS) to be achieved. The184

restraint provided by the ballast and the thermal loading effects will be considered in a future study.185

Although the data at different fiber locations were collected, the data used for the statFEM analysis is the strain186

measured at the neutral axis for weak axis bending (F3 in Figure 2a). The strain at this location is purely due to the187

axial compression and weak axis bending. This strain location was chosen to avoid the need to remove the effects of188

strong axis bending from the measurements.189
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Figure 3: Axial load vs mid-length lateral displacement in compressive buckling tests.
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3. Review of the statistical finite element method190

In this section, the statistical finite element method (statFEM) is reviewed and its application to rail progressive191

buckling is discussed. To begin with, a statistical model describing the relationship between the experimental DFOS192

strain data and FE data is proposed. Next, the computation of the prior probability distribution of the FE data using a193

polynomial chaos expansion (PCE) is considered. At last, the synthesis of the DFOS strain data and the FE data using194

Bayes rule is described. The possibility to predict the structural response for loadings where only FE prediction but no195

measurements are available is highlighted.196

3.1. Statistical model197

As introduced in Section 2, the strain distribution along the rail specimen is determined by measuring the strains198

at a fixed set of sensor locations and axial loads using the DFOS sensing system. The observed strain vector 𝒚(𝜆)199

collects the strains at the 𝑛𝑦 sensor locations and depends on the (scalar) axial load parameter 𝜆. The observed strains200

are assumed to be additively composed of the true strains 𝒛(𝜆) and the measurement noise 𝒆, i.e.,201

𝒚(𝜆) = 𝒛(𝜆) + 𝒆 . (1)

The Gaussian measurement noise 𝒆 ∼ 𝑝(𝒆) =  (𝟎, 𝜎2𝑒𝑰) is independent of the loading and the sensor locations.202

Furthermore, the parameter 𝜎𝑒 is the standard deviation suggested by the manufacturer of the DFOS sensing system203

and 𝑰 is the identity matrix.204

The unknown true strains 𝒛(𝜆) at the 𝑛𝑦 sensor positions are assumed to be given by205

𝒛(𝜆) = 𝑷𝒖(𝜆) + 𝒅(𝜆) , (2)

where the matrix 𝑷 projects the random FE solution 𝒖(𝜆) at the mesh nodes to the FE strains at locations corresponding206

to the measured strains 𝒚(𝜆). The random model-reality mismatch vector 𝒅(𝜆) takes into account the inadequacy of207

the FE model in reproducing the true structural response, and is assumed to have the zero-mean Gaussian probability208

distribution 𝑝(𝒅(𝜆)) =  (𝟎,𝑪𝑑(𝜆, 𝜆)). As to be specified in Section 3.3, the covariance matrix 𝑪𝑑(𝜆, 𝜆) is obtained209

from a kernel function. The probability distribution of the FE solution 𝒖(𝜆) is approximated with the Gaussian210

probability distribution 𝑝(𝒖(𝜆)) =  (𝒖(𝜆), 𝑪𝑢(𝜆, 𝜆)) as discussed next.211

3.2. Probability distribution of the finite element solution212

The FE probability distribution 𝑝(𝒖(𝜆)) is one of the key components in statFEM and represents the uncertainty213

in the FE solution due to the known uncertainties in model parameters 𝜽 ∼ 𝑝(𝜽), like load eccentricities or material214

properties. The probability distribution 𝑝(𝒖(𝜆)) is obtained by propagating 𝑝(𝜽) through the FE discretized equilibrium215

equations216

𝑮 (𝒖,𝜽) + 𝜆𝑭 = 𝟎 , (3)

where 𝑮 (𝒖,𝜽) is the vector of the internal forces, 𝑭 is the reference external force vector and 𝜆 is the scalar axial217

load parameter. In this paper, the FE solution 𝒖(𝜆∗) at a fixed 𝜆∗ is obtained by modelling the rail as a geometrically218

nonlinear beam and solving the respective equations with the commercial FE package Abaqus [46, 47]. To obtain219

the FE probability distribution 𝑝(𝒖(𝜆∗)) often the Monte Carlo (MC) method is employed with samples drawn from220

the input probability distribution 𝑝(𝜽). The MC method usually requires a large number of samples to obtain a good221

estimate for 𝑝(𝒖(𝜆∗)). Consequently, the MC approach is computationally intractable for most engineering applications222

requiring large FE models or nonlinear problems requiring iterative solution techniques.223

Therefore, a polynomial chaos expansion (PCE) is used to approximate the uncertainties in the FE solution 𝒖(𝜆∗)224

at a fixed axial load parameter 𝜆∗ resulting from the uncertainties in the input parameters 𝜽. In PCE a set of orthogonal225

Hermite polynomials
{

𝚿𝑗
}𝑛𝑃
𝑗=0 is considered for approximating226
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𝒖(𝜆∗,𝜽) ≈
𝑛𝑃
∑

𝑗=0
𝜶𝑗(𝜆∗)𝚿𝑗(𝜽) , (4)

where 𝑛𝑃 is equal to the degree of the orthogonal polynomials. The unknown expansion coefficients
{

𝜶𝑗
}𝑛𝑃
𝑗=0 are227

determined following a pseudo-spectral projection approach [47, 48]. Specifically, at first, a set of a few quadrature228

points
{

𝜽𝑘
}𝑛PCE
𝑘=0 are sampled from the distribution 𝑝(𝜽), and subsequently for each 𝜽𝑘 the respective finite element229

solution 𝒖(𝜆∗,𝜽𝑘) is computed. It is worth emphasizing that the total number of samples is in the order of 𝑛PCE ≈ 10,230

compared with tens of thousands of samples that are required in standard MC. As mentioned, each FE solution231

𝒖(𝜆∗,𝜽𝑘) was determined with the commercial FE package Abaqus. Subsequently, the expansion coefficients {𝜶𝑗(𝜆∗)}232

are determined with the open-source library Chaospy [49].233

Once the polynomial chaos expansion (4) is established, a large set of samples 𝜽𝑘 ∼ 𝑝(𝜽) is sampled to determine234

the approximate Gaussian probability distribution 𝑝(𝒖(𝜆∗)) =  (𝒖(𝜆∗), 𝑪𝑢(𝜆∗, 𝜆∗)) by computing the empirical235

mean 𝒖(𝜆∗) and covariance𝑪𝑢(𝜆∗, 𝜆∗) of the samples. In the present study the probability distribution 𝑝(𝜽) is a Gaussian236

and can be easily sampled.237

3.3. Bayesian inference238

By virtue of the postulated statistical model in Equations (1) and (2), the Gaussian approximate FE probability239

distribution 𝑝(𝒖(𝜆∗) and the Gaussian model-mismatch distribution 𝑝(𝒅(𝜆∗)), the true strain probability distribution at240

a fixed 𝜆∗ reads241

𝑝(𝒛(𝜆∗)) = 
(

𝒛(𝜆∗),𝑪𝑧(𝜆∗, 𝜆∗)
)

= 
(

𝑷𝒖(𝜆∗), 𝑷𝑪𝑢(𝜆∗, 𝜆∗)𝑷 𝖳 + 𝑪𝑑(𝜆∗, 𝜆∗)
)

. (5)

Note that this represents a prior probability distribution and is independent of measurement data.242

The measured strain and axial load parameter pairs =
{

𝒚𝑖, 𝜆𝑖
}𝑛𝜆
𝑖=1 are only known for 𝑛𝜆 distinct axial load values.243

The probability distribution of the true strain 𝒛(𝜆∗) at a axial load value 𝜆∗ can be determined using the Bayes formula.244

However, because all the involved densities are Gaussians it is more expedient to consider instead the following joint245

probability distribution246

⎛
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⎟

⎠

, (6)

and to obtain the inferred true strain probability distribution by computing the conditional distribution 𝑝(𝒛𝜆∗ |) [50].247

For the covariance matrices 𝑪𝑧(𝜆𝑖, 𝜆𝑗) = 𝑷𝑪𝑢(𝜆𝑖, 𝜆𝑗)𝑷 𝖳 + 𝑪𝑑
(

𝜆𝑖, 𝜆𝑗
)

the FE covariance matrix 𝑪𝑢
(

𝜆𝑖, 𝜆𝑗
)

is248

required. As described above, the FE covariance matrix is obtained by first computing the PCE approximations 𝒖(𝜆𝑖,𝜽)249

and 𝒖(𝜆𝑗 ,𝜽), and subsequently calculating their empirical covariances 𝑪𝑢(𝜆𝑖, 𝜆𝑗) using the PCE solution. The250

covariance matrix 𝑪𝑑
(

𝜆𝑖, 𝜆𝑗
)

is determined from the squared exponential kernel251

𝑐𝑑
(

(𝒙𝑚, 𝜆𝑖) , (𝒙𝑛, 𝜆𝑗)
)

= 𝜎2𝑑 exp

(

−
‖𝒙𝑚 − 𝒙𝑛‖2

2𝓁2
𝑑

−
‖𝜆𝑖 − 𝜆𝑗‖2

2𝓁2
𝜆

)

, (7)

where 𝒙𝑚 and 𝒙𝑛 denote the coordinates of the measurement locations. The scaling parameter 𝜎𝑑 and the length scale252

parameters 𝓁𝑑 and 𝓁𝜆 are the three underlying hyperparameters of the proposed statistical model. The hyperparameters253

are learned from the data by minimizing the negative of the log marginal likelihood − log 𝑝(). According to254

Equation (6) and the marginalization property of Gaussians the marginal likelihoood is given by255
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. (8)

Moreover, the inferred true strain probability distribution is given by the conditional probability distribution 𝑝(𝒛𝜆∗ |) =256

 (𝒛
| (𝜆∗),𝑪𝑧| (𝜆∗, 𝜆∗). The conditioned mean 𝒛

| (𝜆∗) and covariance 𝑪𝑧| (𝜆∗, 𝜆∗) are obtained from Equation (6)257

with the aid of standard relations for Gaussian probability densities, see e.g. [51].258

In summary, statFEM can be used to synthesize the FE prediction and the available monitoring data to infer true259

structural response of an instrumented structure. The overall procedure for implementing the statFEM is outlined in260

Table 3.261

4. Results and discussion262

In this study, the prediction of true strains for a section of rail subjected to increasing axial loads using uncertain FE263

predictions and the DFOS strain measurements from either BOTDA system (longer measurement length) or Rayleigh264

system (higher accuracy and sensor resolution) is presented. In the future field application, only the measurements265

from one DFOS system will be considered for the analysis. The analysis involves the distributed rail surface strain266

measurement from fiber F3 (see Figure 2) across multiple discrete axial loads and FE modelling of the physical test, see267

Section 2. All the analyses conducted in this paper are carried out using a computer with 4 cores, 8 GB Random-access268

memory (RAM) and an i5-1035G1 CPU.269

4.1. Forward finite element prediction270

In this section, the prior FE strain distribution 𝑝(𝑷𝒖) at the location of F3 (see Figure 2) due to randomised input271

parameters is presented. As mentioned in Section 3.2, Abaqus is used as the forward FE solver. Figure 4 presents the272

geometrical model used in the simulations. The geometry is discretised into 10 three-node quadratic beam elements273

(Abaqus B22 elements) with 21 nodes and 63 degrees of freedoms. The large displacement effect is considered in the274

analysis in order to include geometrical nonlinearity under increasing axial loads. Similar to the experimental specimen,275

the left end of the beam (Point A) is pinned (displacement constraint in x and y directions with free rotation), while276

the right end (Point B) is supported with a roller constraint (only the y displacement is constrained).277

In this work uncertainty inputs with three statistically independent components 𝜽 = (𝛿𝐿, 𝛿𝑅, 𝜅) are considered,278

where 𝛿𝐿 and 𝛿𝑅 denote the load eccentricities on the left and right end of the beam, respectively, and 𝜅 encapsulates279

the initial geometric imperfections along the rail. Specifically, the load eccentricity 𝛿 is defined as the distance between280

the location where the axial load is applied and the centroid of the beam’s cross-section, while the initial geometrical281

imperfection 𝜅 represents the initial misalignment defect of the track due to manufacturing, see Figure 4. The initial282

geometry imperfection 𝜅 is applied by assigning the scaled first buckling mode to the geometry of the FE model. The283

probability distribution of the three random inputs is defined as a multivariate normal distribution where the means284

(in millimetres) and variances are determined empirically,285

𝑝(𝜽) = 
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1.78
0.27
−3.0

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

0.52 0 0
0 0.52 0
0 0 0.52

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

. (9)

A first order Hermite polynomial was used to obtain a surrogate model for computing the FE solution 𝒖(𝜆∗,𝜽)286

(see Equations (4)) [52]. This surrogate can approximate the probability distribution of the FE strain that one would287

get from a full standard MC analysis up to an error less than 1%. The explicit form of the first order PCE is288

Ψ0(𝜽) = 1 and Ψ1(𝜽) = 𝜽 = (𝛿𝐿, 𝛿𝑅, 𝜅). The respective unknown coefficients associated with the first order PCE,289

𝜶 ∶= (𝛼0, 𝛼1𝜀𝐿 , 𝛼
1
𝜀𝑅
, 𝛼1𝜅), are obtained through numerical integration based on Gauss quadrature. Since a first order290

PCE was used, a total of 8 points need to be evaluated for 3 uncertain inputs (2 Gauss quadrature points for each input).291

Once the PCE surrogate is obtained, the evaluation of 𝒖(𝝀∗,𝜽) becomes computationally inexpensive, allowing for292

evaluation with more samples. Here 𝑛𝑠 = 1000 pseudo-random samples are used drawn from the joint distribution293
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Table 3
Summary of statFEM analysis

Input: Data: DFOS strain measurements  =
{

𝒚𝑖, 𝜆𝑖
}𝑛𝜆
𝑖=1 at 𝑛𝜆 discrete load parameters; standard

deviation of the measurement noise 𝜎𝑒; coordinates  = {𝒙𝑘}
𝑛𝑦
𝑘=1 of the 𝑛𝑦 measurement locations.

FE model: A geometrically nonlinear beam FE model of the rail; axial loading 𝑭 ; probability
distribution of the input parameters 𝑝(𝜽).

Step 1: Establish the strain projection matrix 𝑷 from the sensor coordinates 𝒙𝑖, nodal FE coordinates and
FE basis functions.

Step 2: Determine the PCE approximations 𝒖(𝜆𝑖,𝜽) and 𝒖(𝜆∗,𝜽) in Equation (4) at the 𝑛𝜆 load parameter
values and the load parameter of interest 𝜆∗.

Step 3: Calculate the empirical mean vectors 𝒖(𝜆𝑖) and 𝒖(𝜆∗), and the covariance matrices 𝑪𝑢
(

𝜆𝑖, 𝜆𝑗
)

and 𝑪𝑢
(

𝜆∗, 𝜆𝑗
)

by sampling from the PCE approximations. Note that the covariance matrices are
symmetric.

Step 4: Construct the model-reality mismatch covariance matrices 𝑪𝑑(𝜆𝑖, 𝜆𝑗)) by introducing the sensor
coordinates 𝒙𝑚 and load values 𝜆𝑖 into the covariance function (7).

Step 5: Learn the values of the hyperparameters 𝜽 by minimizing the negative log marginal likelihood
− log 𝑝().

Step 6: Infer true probability distribution 𝑝(𝒛𝜆∗ |) =  (𝒛
| (𝜆∗),𝑪𝑧| (𝜆∗, 𝜆∗) of the strains by determining

the conditional distribution of the joint distribution in Equation (6).

P

κ
δL

δR

A Bz
x

(a)

PA B
ML = PδL

κ
MR = PδR

UAx = 0;
UAz = 0; UBx = 0;z

x

(b)

Figure 4: Mathematical model (a) of the experiments and the corresponding FE mesh (b) with the applied loading and
boundary conditions.

𝑝(𝜽). The Gaussian probability distribution distribution 𝑝(𝑷𝒖) of the FE strain can now be obtained by computing the294

empirical mean and covariance of the samples. Figure 5 presents the comparison of strain distribution 𝑝(𝑷𝒖(11 kN)) at295

𝑥 = {0 m, 1.524 m, 3.048 m} along the length of the rail evaluated with first order PCE and using the MC approach.296

As evident, the first order PCE produces a similar strain probability distribution at different locations in comparison297

with the MC results, which evaluate the strain distribution through exhaustively sampling the individual FE solution298

obtained with Abaqus. The average percent difference between the two methods is 0.06% in the mean 𝑷𝒖 and 0.5%299

in the standard deviation. It is worth noting that at 𝜆∗ = 11 kN the rail load deflection response is highly nonlinear300

and it requires approximately 54 seconds to run an individual FE analysis using Abaqus. Evaluating the probabilistic301
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distribution distribution of the FE strain at 11 kN using PCE takes 9 minutes and 27 seconds, which is about 100 times302

faster than computing 𝑛𝑠 = 1000 times through MC (16 h 40 min). Therefore, in the subsequent analysis, the first order303

PCE will be used to evaluate the prior FE strain distribution 𝑝(𝑷𝒖).304

x = 0 m

(a)

x = 1.52 m

(b)

x = 3.04 m

(c)

Figure 5: FE strain probability distribution at 11 kN evaluated using MC (red) and 1𝑠𝑡 order PCE (blue), a) at left end, b)
at mid-span, c) at right end

Figure 6 shows the comparison between the prior FE strain distribution and the experimental strain measurements305

obtained with the Rayleigh and BOTDA systems at axial loads 𝜆∗ between 0 kN and 11 kN. The rail enters the nonlinear306

regime at different loads in the two progressive buckling tests, which is thought to be the result of different initial307

imperfections in the two tests. According to the strain data acquired from the experiments, the rail response showed308

evident nonlinearity above 6 kN during the Rayleigh system test, and above 10 kN during the BOTDA system test. It309

is evident from Figure 6 that the prior FE strain distribution shows a good agreement with the data in the regime with310

less nonlinearity (below 6 kN) and deviates from the experimental data in the highly nonlinear stage (above 6 kN).311

Moreover, the data in the highly nonlinear regime is not captured within the 95% confidence interval of the prior FE312

strain distribution. This deviation clearly indicates the presence of a mismatch between the reality (experiment) and313

the FE model, which will be captured in the random variable 𝒅 in the statistical model, see Equations (1) and (2). The314

use of PCE as a surrogate model to obtain the FE strain distribution can significantly decrease the computational cost315

while still maintaining high accuracy for the current problem. This can decrease the computational costs associated316

with evaluating the uncertain FE predictions to an acceptable level in order to apply the statFEM approach to practical317

large engineering problems.318
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Figure 6: FE strain at the mid-length of the rail a) for axial loading from 0 kN to 11 kN, b) over the rail length at an
axial load of 6 kN. The blue line represents the mean of the FE solution. The shaded area represents the 95% confidence
interval. The points represent strain measurements at the mid-length of the rail ( ’+’ for the Rayleigh system and ’⋅’ for
the BOTDA system ).

4.2. Prediction of rail strain in the linear regime319

In a railway system, the lateral bending of the rail track under axial force is associated with rail lateral deflection,320

which alters the gauge distance between two adjacent rails or alignment and can potentially result in train derailment.321

The true rail strain 𝒛(𝝀∗) underlying the sensor measurement at the interested axial load 𝜆∗ is unavailable and322

only the strain measurements at 𝑛𝑦 locations and the corresponding 𝑛𝜆 axial loads pairs  are available from both323

the Rayleigh and BOTDA measurement systems. In this section, the statFEM approach is used to infer the true rail324

strain distribution 𝑝(𝒛|) at interested axial load 𝜆∗ based on the uncertain FE strain predictions 𝑝(𝑷𝒖(𝝀∗)), the DFOS325

strain measurements and the axial load parameter pairs  and the corresponding uncertain FE strain predictions by326

determining the conditional distribution of the joint distribution in Equation (6).327

4.2.1. Hyper-parameter learning328

Prior to computing the inferred true strain distribution, the hyperparameters associated with the model-reality329

mismatch term 𝒅 in the statistical model (Equation (2)) need to be derived. For the current implementation, a330

bivariate squared exponential kernel (Equation (7)) was used for the mismatch term 𝒅 [53]. In the nonlinear regime,331

displacements and strains at lower axial loads 𝜆 affect the behaviour at higher axial loads. Hence, we consider a bivariate332

squared exponential kernel (𝒙 and 𝜆, see Equation (7)) instead of its univariate version (only 𝒙) to account for this effect.333

In total three hyper-parameters (𝜎𝑑 , 𝓁𝑑 , 𝓁𝜆) are associated with the bivariate squared exponential kernel, which are334

collected in vector 𝒘.335

Before proceeding, it should be emphasized that the DFOS strain data obtained from the experiments and the336

corresponding 𝑛𝜆 axial load parameter pair  were used in the hyperparameter inference. Specifically, the strain337

measurements obtained at particular axial loads 𝜆 = {1, 2, … , 6} kN were used. The choice of data constrained the338

rail response under chosen axial loads within the linear regime, where the strain increased linearly with the axial load.339

The justification of using only linear data is that in most structural monitoring applications, including rail monitoring,340

nonlinear response data is usually unavailable. The hyperparameter associated with the sensor measurement noise 𝜎𝑒341

was estimated empirically using the reference strain measurement under zero load. For the Rayleigh system, the value342

is 𝜎𝑒 = 1.7𝜇𝜀 and for BOTDA system 𝜎𝑒 = 7.7𝜇𝜀 (See Table 2).343

Due to the lack of information about the hyperparameters, the prior probability distribution of the hyperparameters344

was assumed 𝑝(𝒘) ∝ 1 when inferring the 𝑝(𝒘|), resulting into 𝑝(𝒘|) ∝ 𝑝(|𝒘). The point estimation of the345

hyperparameters 𝒘 can be obtained through either Markov chain Monte Carlo (MCMC) or optimization [1, 30]. In the346

current implementation, the L-BFGS-B method was used to optimize the hyperparameters, due to its efficiency and347

robustness in solving large-scale nonlinear problems [54]. Table 4 gives the optimized values of hyperparameters 𝒘348

using Rayleigh strain measurements with 400 sensors and BOTDA with 48 sensors. Once the optimal values of the349
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Table 4
Optimized hyper-parameters for the Rayleigh system and BOTDA system using 400 sensors and 48 sensors, respectively

Rayleigh BOTDA
𝜎𝑑 (𝜇𝜀) 1.562 23.7
𝓁𝑑 (𝑚) 0.245 0.88
𝓁𝜆 (𝑘𝑁) 0.913 3.72

Computation time 54 min 04 sec 1 min 36 sec

hyperparameters are obtained, the true strain distribution can be inferred by conditioning on the joint distribution in350

Equation (6). Figure 7 shows the FE strain prediction p(𝒖(𝝀∗)) and the inferred true strain prediction 𝑝(𝒛𝜆∗ |) with351

95% confidence interval using statFEM at interested axial load 𝜆∗ = {2, 4, 6} kN for both the BOTDA system and352

Rayleigh system. It is evident from Figure 6 that the confidence interval of 𝑝(𝒛𝜆∗ |) (grey region) obtained using the353

Rayleigh system is narrower than the one using the BOTDA system. One possible explanation is that the BOTDA data354

have less precision, and the number of data points are approximately 10 times smaller than the Rayleigh system.355
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Figure 7: Inferred true rail strain with 400 sensors for Rayleigh system under axial load of a) 2 kN, b) 4 kN, c) 6 kN;
and 48 sensors for BOTDA system under axial load of d) 2 kN, e) 4 kN, f) 6 kN. The blue ’+’ represent the Rayleigh
measurements and the black ’.’ represent the BOTDA measurements. The blue lines represent the mean 𝑷𝒖(𝜆∗) of the FE
strain along the rail length, and the black lines the conditioned mean 𝒛

| (𝜆∗). The shaded areas denote the corresponding
95% confidence bounds.

4.2.2. Influence of number of sensors and strain measurement accuracy356

In this section, the use of a reduced number of sensor data points to infer the true system strain 𝑝(𝒛|) is considered,357

for both Rayleigh and BOTDA systems. It should be emphasised that the two DFOS measurement systems have358

characteristic measurement uncertainty 𝜎𝑒 = 1.7 𝜇𝜀 and 𝜎𝑒 = 7.7 𝜇𝜀 for Rayleigh and BOTDA, respectively. In practice,359

using reduced sensor data is desired to improve the efficiency of the overall monitoring system by reducing the cost of360

investment, operation, and data analysis. For this purpose, three sets of sensor clusters 𝑛𝑦 = {3, 10, 40} are considered361

to infer the true system response. Moreover, the inference for different loads 𝜆∗ = {2, 4, 6} kN are also compared. As362
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usual, prior to the inference of the true strain 𝑝(𝒛|), hyperparameter estimation is performed. In this set of simulations,363

the same set of hyperparameters (𝜎𝑑 , 𝓁𝑑 , 𝓁𝜆) are inferred using L-BFGS-B. The point estimates of the hyperparameters364

for both the Rayleigh and BOTDA systems using a reduced number of sensors are shown in Table 5. According to365

Table 5, the value of the 𝜎𝑑 from the BOTDA system is much higher than that of the Rayleigh system. This is expected366

due to the sensor uncertainty of the BOTDA system being substantially larger than the Rayleigh system. The optimal367

values of 𝓁𝑑 are of similar order between the two systems. Another key observation is that as the sensor resolution368

increases from 10 to 40, the optimized value of 𝓁𝑑 does not change significantly. The value of 𝓁𝑑 for the Rayleigh369

system decreases by 50% as 𝑛𝑦 increases from 3 to 10, while it decreases by only 20% when 𝑛𝑦 increases from 10 to 40.370

In comparison, the optimized value of 𝓁𝑑 using sensor measurements from the BOTDA system varies around 1.35 as 𝑛𝑦371

increased from 10 to 40. The computational cost of optimizing the hyperparameters decreases significantly compared372

to the time spent on optimization using more sensors (see Table. 4), which is expected considering the reduced effort373

required for the matrix inversion when evaluating 𝑝(𝒛|). The difference in runtime for the Rayleigh and BOTDA374

systems is considered to be the result of the different numbers of iteration steps required during the optimization as375

a result of different levels of precision. These findings indicate that it is possible to use a reduced number of sensors376

(i.e., data points) for both systems without affecting the learning of the hyperparameters.377

Figure 8 and Figure 9 present the inferred true strain distribution 𝑝(𝒛|) under interested axial load 𝜆∗ =378

{2, 4, 6} kN using 𝑛𝑦 = {3, 10, 40} sensors from the Rayleigh and BOTDA measurements, respectively. As seen379

in Figure 8, strain prediction 𝑝(𝑷𝒖) is less significant at lower axial load levels. This deviation gradually increases as380

the axial load increases. The inferred true strain distribution using 3 sensors does not capture this deviation effectively381

due to the limited strain information from the 3 sensors. In comparison, the increase in the number of sensors enables382

a more accurate inference of the true strain response. By comparing the results for 3, 10, and 40 sensors, one can383

notice that the rail response using 3 sensors demonstrates a parabolic response along the rail length as the axial load384

increases, while the inference using 10 and 40 sensors indicates a sinusoidal rail response along the rail length. As the385

axial load increases, the rail response transforms from a sinusoidal to a parabolic response. The mean of the standard386

deviation of the inferred true strain decreases from 0.7 to 0.4. Figure 9 shows the inferred rail response using the strain387

data from the BOTDA system. Compared to Figure 8, the inferred strain distribution using 3 sensors has relatively388

large uncertainties at non-sensor locations while the uncertainty decreases with an increasing number of sensors. The389

increase in the number of sensors from 3 to 10 and 40 results in a decrease in the standard deviation from 6.8 to 1.2390

and 1.1, respectively. It is worth noting that with a smaller number of sensors, the inferred rail response may be more391

influenced by individual sensor measurements. These results indicate that for both systems it is possible to use fewer392

sensors to obtain reliable true strain predictions, yet for the BOTDA system, fewer sensors might result in less reliable393

inference due to the lower precision of the measurements.394

4.3. Prediction of rail strain in the nonlinear regime395

When performing structural monitoring of actual rail systems, the captured strain data is usually limited to the396

linear regime, while data captured during the nonlinear rail response that is indicative of buckling is rarely captured.397

To overcome this challenge, the statistical model in Equations (1) and (2) was calibrated in the linear regime and used398

to extrapolate the prediction of the strain response into the interested nonlinear stage. This extrapolation is assisted399

with the prior FE strain distribution prediction 𝑝(𝑷𝒖) in the nonlinear regime (i.e., 𝜆∗ > 6 kN) obtained using the PCE400

as described in Section 3.2.401

The predictions of the true rail strain 𝑝(𝒛|) at the rail mid-length under axial load 𝜆∗ = {0, 1, … , 11} kN with402

95% confidence intervals using reduced number of sensors 𝑛𝑦 = {3, 10, 40} from the Rayleigh and BOTDA systems403

are presented in Figure 10. The predictive strain distribution 𝑝(𝒛|) is evaluated based on the joint distribution in404

Equation (6), where the point estimates of hyperparameters for 𝑪𝒅 obtained in Section 4.2.2 and the same strain405

measurements obtained at particular axial loads 𝜆 = {1, 2, … , 6} kN were used.406

As shown in Figure 10, the predictive strain with 95% confidence interval between 0 and 11 kN covers most407

of the strain measurements below 6 kN, and the mean strain prediction lies mostly through the mean of the data in408

the linear stage and close to the nonlinear FE prediction in the nonlinear regime. This is expected as only the DFOS409

strain measurements within the linear regime (below 6 kN) were used to calibrate the statistical model. However, a key410

observation is that the predictive nonlinear strain distribution inferred using statFEM deviates from the pure nonlinear411

FE prediction 𝑝(𝑷𝒖) towards the measured nonlinear response strain, due to the incorporation of the linear strain412

data. And with increasing number of sensors, the prediction gets closer to the measured nonlinear response strain413

and further from the FE prior prediction. When using the number of sensors 𝑛𝑦 = 40 for the Rayleigh system, the414
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Table 5
Optimized hyper-parameters for the BOTDA system and Rayleigh system using reduced number of sensors 𝑛𝑦 = {3, 10, 40}

𝜎𝑑(𝜇𝜀) 𝓁𝑑(𝑚) 𝓁𝜆(𝑘𝑁) 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒(𝑠𝑒𝑐)

Rayleigh
𝑛𝑦 = 3 2.07 2.1 4.4 1
𝑛𝑦 = 10 2.6 0.98 8.7 6
𝑛𝑦 = 40 1.73 0.7 0.86 39

BOTDA
𝑛𝑦 = 3 9.12 0.363 431.2 4
𝑛𝑦 = 10 16.9 1.35 8.98 10
𝑛𝑦 = 40 18.47 1.38 10.23 98
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Figure 8: Inferred true rail strain with reduced number of sensors 𝑛𝑦 for the Rayleigh system under axial load 𝜆∗ kN: a)
𝑛𝑦 = 3, 𝜆∗ = 2, b) 𝑛𝑦 = 3, 𝜆∗ = 4, c) 𝑛𝑦 = 3, 𝜆∗ = 6, d) 𝑛𝑦 = 10, 𝜆∗ = 2, e) 𝑛𝑦 = 10, 𝜆∗ = 4, f) 𝑛𝑦 = 10, 𝜆∗ = 6,
g) 𝑛𝑦 = 40, 𝜆∗ = 2, h) 𝑛𝑦 = 40, 𝜆∗ = 4, i) 𝑛𝑦 = 40, 𝜆∗ = 6. The black ’+’ represent the Rayleigh measurements. The
blue lines represent the mean 𝑷𝒖(𝜆∗) of the FE strain, and the black lines the conditioned mean 𝒛

| (𝜆∗). The shaded areas
denote the corresponding 95% confidence bounds.

measured strain recorded during the nonlinear loading stage, falls within the 95% confidence interval of the predicted415
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Figure 9: Inferred true rail strain with reduced number of sensors 𝑛𝑦 for the BOTDA system under axial load 𝜆∗ kN: a)
𝑛𝑦 = 3, 𝜆∗ = 2, b) 𝑛𝑦 = 3, 𝜆∗ = 4, c) 𝑛𝑦 = 3, 𝜆∗ = 6, d) 𝑛𝑦 = 10, 𝜆∗ = 2, e) 𝑛𝑦 = 10, 𝜆∗ = 4, f) 𝑛𝑦 = 10, 𝜆∗ = 6,
g) 𝑛𝑦 = 40, 𝜆∗ = 2, h) 𝑛𝑦 = 40, 𝜆∗ = 4, i) 𝑛𝑦 = 40, 𝜆∗ = 6. The black ’+’ represent the Rayleigh measurements. The
blue lines represent the mean 𝑷𝒖(𝜆∗) of the FE strain, and the black lines the conditioned mean 𝒛

| (𝜆∗). The shaded areas
denote the corresponding 95% confidence bounds.

strain. It should be noted here the real rail bending strain measurements in the nonlinear regime are not used to calibrate416

the statistical model and are only used to compare with the predictive nonlinear strain from statFEM. The prediction417

using the the number of sensors 𝑛𝑦 = {3, 10, 40} from the BOTDA system demonstrates similar performance to the418

Rayleigh system. The nonlinear predictive strain response is improved by incorporating the linear strain data into the419

FE prediction. The 95% confidence interval of the predictive strain for the BOTDA system is larger than that for the420

Rayleigh system due to the larger value of the hyperparameter 𝜎𝑑 for the BOTDA system. In the linear region, the strain421

distribution prediction using statFEM lies through the measurement data. The predictive nonlinear strain distribution422

is significantly improved over the FE prior prediction, although this improvement is less significant when only using423

3 sensors. For 𝑛𝑦 = 10 and 𝑛𝑦 = 40 sensors, the predictive mean of the strain response before 9 kN agrees well with424

the strain measurements during the experiment. For the strain predictions made for loading between 9 and 11 kN (i.e.,425

in the non-linear region), although the predictive mean deviates from the strain measurements due to the lack of data426

at those axial loads when calibrating the statistical model, the strain prediction using the statFEM and the linear strain427
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Figure 10: Predicted true strain distribution at the rail mid-length between 0-11 kN (black line + gray shaded area) based
on linear strain measurements (black crossing) and nonlinear FE strain prediction (blue line + blue shaded area) using
number of sensors 𝑎) 𝑛𝑦 = 3, 𝑏) 𝑛𝑦 = 10, 𝑐) 𝑛𝑦 = 40 from the Rayleigh test; and 𝑑) 𝑛𝑦 = 3, 𝑒) 𝑛𝑦 = 10, 𝑓 ) 𝑛𝑦 = 40 from the
BOTDA test. The blue ’+’ and ’.’ represent the nonlinear strain measurements in the Rayleigh and BOTDA test, and are
presented for comparison with the predicted true nonlinear strain distribution

response data is still better than the FE only prediction. The available data in practice is usually limited to the linear428

regime as most railway tracks are operated under normal (unbuckled) conditions, so using the linear data to achieve429

improved predictions of the nonlinear response is desired. Understanding the nonlinear rail response under potential430

loads is critical for helping to inform rail asset managers when to implement future maintenance and repair work.431

The results presented in this section indicate that the statFEM overall can provide improved prediction of nonlinear432

strain by synthesizing the linear measurement data and the nonlinear FE predictions, although the improvement is less433

significant when the number of sensors is small.434

4.4. Prediction of the lateral displacement435

In this section, the inferred true strain distribution from the statFEM are used to derive the rail lateral displacement.436

Ten thousand groups of strain profiles are sampled based on the inferred true strain distribution 𝑝(𝒛|) at a specific437

axial load 𝜆∗ obtained from the statFEM in the previous sections, and the curvature profile 𝒌 corresponding to each438

sampled strain profile 𝝐 is further evaluated, based on elastic beam theory, i.e.,439

𝒌 = 1
𝑦fiber − 𝑦NA

(

𝝐 −
𝜆∗
𝐸𝐴

)

(10)

where 𝑦fiber − 𝑦NA represents the distance of fiber location away from the neutral axis (NA); 𝜆∗ represents axial load440

and 𝐸, 𝐴 represent the elastic modulus of steel and the cross-sectional area of the rail. It should be noted here that the441

𝐸, 𝐴, 𝑃 , 𝑦fiber − 𝑦NA are assumed to be deterministic.442

With the curvature profile 𝒌, the corresponding displacement profile 𝒇 is further evaluated based on double443

integration of the curvature profile 𝒌 using numerical trapezoid integration, assuming no boundary movement.444

The displacement distribution 𝑝(𝒇 ) is obtained through evaluating displacement profiles corresponding to sampled445
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curvature profiles. The predicted displacements with 95% confidence interval were compared with the actual LP446

measured displacements during the experiments.447

Figure 11 shows the displacement mean and the 95% confidence interval. Here, the displacements at an axial load448

of 6 kN are taken as an example for both the Rayleigh and BOTDA systems. The actual displacements measured at449

the mid-length of the rail recorded by the LP are 2.2 mm and 0.66 mm, respectively. According to Figure 11 and450

Table 6, using a larger number of sensors (i.e., 10 and 40 sensors) overall results in the improved estimation of lateral451

displacement, compared with the estimation with only 3 sensors. The lateral displacements inferred using only 3 sensors452

fail to capture the LP measured displacements for the Rayleigh system and demonstrate a significantly higher standard453

deviation (i.e., lower confidence) for the BOTDA system. In comparison, the inferred lateral displacements with 95%454

confidence interval using 10 and 40 sensors for both the Rayleigh and BOTDA systems successfully contain the LP455

measured displacements at the mid-length of the rail, with the predicted mean closer to the LP measured displacements456

and smaller standard deviation than that of the predicted displacement with only 3 sensors. In practical operation, the457

CWR is considered to be at high risk of buckling once the lateral displacement reaches the critical value (i.e., 12458

mm), above which substantial track maintenance work and optimal operational decision would be required to prevent459

track buckling. The inferred true strain distribution using the statFEM enabled accurate displacement evaluations with460

the inherent uncertainties from the sensor measurements and FE predictions, although the confidence is lower when461

the smaller number of sensors is used in statFEM. The inferred displacement with 95% confidence interval enables462

buckling assessment and track maintenance to be undertaken with greater confidence.
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Figure 11: Lateral displacement probability distribution evaluated from inferred posterior true strain probability distribution
for the Rayleigh system with the number of sensors 𝑎) 𝑛𝑦 = 3, 𝑏) 𝑛𝑦 = 10, 𝑐) 𝑛𝑦 = 40; and for the BOTDA system with the
number of sensors 𝑑) 𝑛𝑦 = 3, 𝑒) 𝑛𝑦 = 10, 𝑓 ) 𝑛𝑦 = 40. The black line represents the inferred mean of displacement and the
gray area represents the 95% percent of confidence interval, compared with the actual displacement ’+’ measured during
the experiments with LP

463

4.5. StatFEM using pre-processed data464

The above analysis presents the inferred true strain distribution from statFEM using the distributed strain mea-465

surement from a single fiber F3 (see Figure 2) and the corresponding FE strain distribution. The lateral displacement466

distribution is evaluated from the inferred true strain distribution, see Section 4.4. However, due to the limited strain467
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Table 6
Mid-length lateral displacement prediction using inferred true strain distribution from the statFEM analysis (in millimetres))

Predicted displacement standard deviation Difference from LP measurements

Rayleigh
𝑛𝑦 = 3 2.8 0.46 0.6
𝑛𝑦 = 10 2.21 0.21 0.01
𝑛𝑦 = 40 2.25 0.15 0.05

BOTDA
𝑛𝑦 = 3 3.09 1.39 2.43
𝑛𝑦 = 10 1.08 0.87 0.42
𝑛𝑦 = 40 -0.27 0.49 0.93

information provided by a single fiber, one has to incorporate other information (i.e., the value of axial loads and468

the coordinates of the fiber) to obtain the curvature and displacement, which inevitably induces uncertainties when469

evaluating the curvature and displacement. Failing to consider those uncertainties would result in a deviation between470

the predicted displacement means and the actual displacement (see Figure 11 d, e, f). One way to avoid considering471

the uncertainties in axial loads and the fiber coordinates is to use the curvature data in statFEM obtained from pre-472

processing of the strain data from multiple fiber measurements. With more strain measurements from multiple fibers473

(F1 to F8, see Figure 2), one can pre-process the strain measurements of the fibers (at least three fibers) to derive the474

curvature data including noise along the rail length [12]. This section presents the use of curvature data with noise475

and prior distribution of FE bending curvature in statFEM to infer true rail bending curvature and lateral displacement476

distribution at 6 kN. As the curvature is derived from pre-processing strain data from multiple fibers, the standard477

deviation of the noise 𝜎𝑒 in the curvature data is not directly available from the manufacturer, hence it needs to be478

treated as another hyper-parameter that has to be derived from the data. The PCE is used again to approximate the prior479

FE curvature distribution, and the data used in statFEM is the DFOS curvature data with noise from pre-processing of480

strain measurements of F1-F8. The same process of statFEM analysis introduced in Section 4.2 is used to obtain the481

inferred true bending curvature using the curvature data with noise from the experiments conducted with the Rayleigh482

system and BOTDA system, respectively.483

Figure 12 presents the inferred true bending curvature distribution obtained through statFEM using curvature data484

from 𝑛𝑦 = {3, 10, 40} sensors in the experiment conducted with the Rayleigh system and BOTDA system, respectively.485

As seen in Figure 12, the inferred mean of the true bending curvature passes through the mean of the data and the 95%486

confidence interval covers the variation of the data due to noise from its mean for both systems. As the number of487

sensors 𝑛𝑦 increases from 3 to 10 to 40, the standard deviation of inferred true curvature distribution of the Rayleigh488

system gradually decreases from 0.39 km−1 to 0.26 km−1 to 0.09 km−1, indicating the decreased uncertainties in the489

inferred true curvature distribution as the number of sensors increases. In comparison, the standard deviation of the490

inferred true curvature distribution for the BOTDA system does not demonstrate significant change as the number of491

sensors 𝑛𝑦 increases, with the standard deviation changing from 0.47 km−1 to 0.62 km−1 to 0.56 km−1. Overall, the492

standard deviation of the inferred true curvature distribution decreases as the number of sensors increases.493

Figure 13 presents the inferred lateral displacement with 95% confidence interval at an axial load of 6 kN obtained494

using the inferred true curvature distribution from statFEM, and Table 7 summarizes the inferred mean and standard495

deviation of the lateral displacement. As seen in Figure 13, the probabilistic distribution of lateral displacement with496

95% confidence interval can successfully capture the the LP measured displacement. The difference between the mean497

of the inferred lateral displacement at the mid-length and the LP measured displacement are within 0.13 mm for the498

Rayleigh system and 0.30 mm for the BOTDA system. As the number of sensors 𝑛𝑦 increases from 3 to 10 to 40, the499

standard deviation for the lateral displacement for the Rayleigh test decreases from 0.45 mm to 0.3 mm to 0.1 mm.500

In comparison, the standard deviation for the BOTDA test varies from 0.54 to 0.73 to 0.66 as the number of sensors501

increased from 3 to 10 to 40. Generally, the lateral displacement with 95% confidence bound integrated using the502

inferred true curvature distribution in the test with the Rayleigh system shows a smaller level of uncertainty than that503

with the BOTDA system, which is expected considering the higher precision of the Rayleigh system versus the BOTDA504

system. Figure 12 and Figure 13 show that with pre-processing curvature data from multiple fiber measurements, using505

3 curvature data points only can provide a good inference of the true curvature and lateral displacement. Using more506

than 10 sensors does not significantly influence the mean of the inferred true curvature and lateral displacement but507

generally does decrease their standard deviation, although the decrease is less significant for the BOTDA system due508

to its low precision.509
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Figure 12: The inferred true curvature distribution at axial load 𝜆∗ = 6 kN for the Rayleigh system with the number of
sensors a) 𝑛𝑦 = 3, b) 𝑛𝑦 = 10, c) 𝑛𝑦 = 40; and for the BOTDA system with the number of sensors d) 𝑛𝑦 = 3, e) 𝑛𝑦 = 10, f)
𝑛𝑦 = 40; the blue line and blue shaded area represent the FE curvature prior 𝑝(𝒌) with 95% confidence interval; the black
line and gray shadow area represents the inferred FE curvature prior; the black crossing ’+’ represents the curvature data
used for updating

Table 7
Mid-length lateral displacement prediction using inferred true strain distribution from the statFEM analysis (in millimetres))

Predicted displacement standard deviation Difference from LP measurements

Rayleigh
𝑛𝑦 = 3 2.02 0.45 0.18
𝑛𝑦 = 10 2.15 0.30 0.05
𝑛𝑦 = 40 2.23 0.10 0.03

BOTDA
𝑛𝑦 = 3 0.35 0.54 0.31
𝑛𝑦 = 10 0.87 0.73 0.21
𝑛𝑦 = 40 0.63 0.66 0.03

5. Conclusions510

In this paper the use of the statFEM with DFOS data measured wintin the linear range to infer and predict structural511

response in both the linear and non-linear range is demonstrated for the first time. The use of DFOS measurements512

from a rail buckling experiment is used to demonstrate the approach. By synthesizing available distributed fiber optic513

sensor strain (DFOS) data and an uncalibrated FE model predictions, statFEM provides a principled approach that514

leverages both monitoring data and a physcial model to achieve better rail strain and lateral displacement predictions.515

Based on the results presented in this study, the following conclusions can be drawn:516

1. Polynomial Chaos Expansion (PCE) provides an accurate and computationally efficient way to obtain the prior517

FE probability distribution (while accounting for the relative levels of uncertainties from the governing FE model518

parameters), especially for large nonlinear FE models. For the lab model discussed in this paper, using PCE as519

a surrogate model significantly decreased the computational time using versus Monte Carlo (MC) simulation520
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Figure 13: Inferred lateral displacement at axial load 𝜆 = 6 kN evaluated from inferred posterior curvature probability
distribution for the Rayleigh test with number of sensors, a) 𝑛𝑦 = 3, b) 𝑛𝑦 = 10, c) 𝑛𝑦 = 40; and for the BOTDA test with
number of sensors, 𝑑) 𝑛𝑦 = 3, 𝑒) 𝑛𝑦 = 10, 𝑓 ) 𝑛𝑦 = 40. The black line represents the inferred mean of lateral displacement and
the gray area represents the 95% percent of confidence interval, compared with the actual displacement (’+’) measured
during the experiment with LP

from 16 h 40 min to 9 min. The accuracy of the mean and standard deviation was maintained to within 99.94%521

and 99.50% compared with the mean and standard deviation evaluated from MC simulation.522

2. The effect of both the number of sensing points included and the accuracy of the sensor measurements on the523

statFEM results were evaluated by considering reduced numbers of sensors 𝑛𝑦 = {3, 10, 40}. The use of higher524

accuracy measurements and more sensors enables a more detailed response to be inferred and also decreases the525

associated uncertainty bounds. However, the confidence interval decreased less significantly when considering526

a larger number of sensing points, indicating that even for a reduced number of sensing points, adequate rail527

response inference can still be achieved.528

3. By employing the statFEM, it was possible to improve the predictions of rail strains in the nonlinear loading529

regime. StatFEM provided improved predictions by synthesizing the strain measurement data captured in the530

linear loading regime with the non-linear FE model predictions, compared to the predictions from the nonlinear531

FE model alone. Although the prediction deviates from the experimental measurements as the extrapolation532

gradually deviates from the training data, the use of a larger number of sensors tends to result in improved533

predictions that are closer to the measured nonlinear strain for both of the DFOS sensing systems used in this534

study.535

4. The results from statFEM enabled the evaluation of the lateral displacement along the rail and its corresponding536

levels of uncertainty. The evaluation of the lateral displacement was affected by the number of sensors included537

and the accuracy of the sensing systems. Compared with using the same number of sensors for the BOTDA538

sensing system, the Rayleigh sensing system measurements, with their relatively higher accuracy, resulted in a539

reduced area of the 95% confidence bounds in the inferred lateral displacement (i.e., improved confidence) and540

in mean predictions which more closely matched the LP measurements541

The results of this research have highlighted the application of statFEM for rail strain and displacement predictions542

for the purpose of buckling evaluation. Building on the Bayesian framework, the statFEM enables the fusion of data543
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from different sources and accuracy (i.e., sensor data and modeling data) for the improved prediction of true structural544

response. As the first step toward constructing a digital twin of an existing railway system, this paper presented545

the challenges associated with the application of statFEM to evaluating rail systems monitored using DFOS and546

offered several solutions. In future work, the influence of temperature on longitudinally restrained rail systems will be547

incorporated into both lab tests and the accompanying statFEM models. After this further evaluation work is conducted,548

a digital twin of an existing railway system will be constructed to help significantly improve current railway monitoring549

and buckling evaluation processes.550
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