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A B S T R A C T   

Study Region: The Upper Blue Nile (UBN) basin, Ethiopia. 
Study Focus: In efforts to accurately close the water balance equation for the UBN basin using 
remote sensing products, river runoff is calculated as a residual from the water balance equation 
by incorporating Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage 
(TWS) and remote sensing products for precipitation (P) and evapotranspiration (ET). The 
calculated river runoff is then compared to the gauge records located at the basin’s outlet. The 
best performing combination among the various combinations is chosen by aggregating rankings 
attributed to both error and linear fit metrics. The errors associated with each satellite product 
were assessed by forcing the In-Situ runoff to estimate the P, ET, and TWS. This methodology 
helps in addressing the uncertainty linked with each hydrological component. 
New Hydrological Insights for the Region: The best P, ET, and TWS combination performance 
products to estimate runoff are SM2RAIN-CCI, GLEAM, and GRACE Spherical Harmonic products, 
respectively. The statistical results for the six metrics are R2 

= 0.7, slope = 1.6, y-intercept = - 0.5 
cm, RMSE = 3 cm, MAE = 2.8 cm, and PBIAS = 36%. The uncertainty from each hydrological 
component was quantified and showed that improving the accuracy of P and ET estimation is a 
crucial step to successfully close the water balance.   

1. Introduction 

The accurate quantification of water cycle components over a large-scale basin is an essential step towards improving the un
derstanding of water balance and responses of river basin to different hydrologic extremes, such as droughts and floods (Sheffield et al., 
2009). The water cycle components are primarily controlled by precipitation (P), evapotranspiration (ET), runoff (R), and terrestrial 
water storage (TWS) changes. A dense In-Situ network of hydro-meteorological datasets is required to simulate the hydrologic cycle 
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parameters and their heterogeneity (Archfield et al., 2015; Crochemore et al., 2020; Eagleson, 1986). However, ungauged basins set a 
new challenge for water resource scientists to monitor water cycle components until the launch of the Gravity Recovery and Climate 
Experiment (GRACE) satellites in 2002 (Rodell and Famiglietti, 2001), which provided a key parameter for the terrestrial water storage 
estimation. GRACE mission was to provide a monthly estimate of TWS changes on Earth from gravimetry. The TWS components are 
surface water storage, groundwater storage, snow water storage, and soil moisture storage (Tapley et al., 2004). 

The recent advances in satellites have enabled researchers to monitor water balance components regionally. A considerable effort 
at the international level has helped provide global gridded datasets for the water cycle components. These gridded datasets are based 
on In-Situ data, satellites, and reanalysis models. Prior to incorporating these products in the water budget calculation, it is recom
mended to assess their performance over the studied basin (Zambrano-Bigiarini et al., 2017; Zandler et al., 2019). Various studies have 
attempted to close the water balance equation with remote sensing data coupled with land surface models, but it was concluded that it 
is challenging to be achieved (Abolafia-Rosenzweig et al., 2021; Chen et al., 2020; Ferreira et al., 2013; Gao et al., 2010; Moreira et al., 
2019; Pan et al., 2012; Penatti et al., 2015; Sahoo et al., 2011; Sheffield et al., 2009; Sneeuw et al., 2014; Syed et al., 2009; Syed et al., 
2005; Tan et al., 2022; Wang et al., 2014a; Wang et al., 2014b; Yao et al., 2014) due to the uncertainties associated with satellite data 
and the limitation of land surface models to account for anthropogenic activities, coupled with the coarse resolution of GRACE. 
Additionally, this imbalance, referring to the disparity between water budget inflow and outflow, is inherited from signal processing 
uncertainties and different algorithm assumptions (Aires, 2014; Long et al., 2014; Pan et al., 2012; Sheffield et al., 2009). 

Numerous studies have investigated the source of imbalance and uncertainties associated with each water budget component by 
applying different methods. Sheffield et al. (2009) estimated the uncertainty for each component of the water balance and removed the 
systematic bias for the precipitation, as it showed a high level of overestimation. Syed et al. (2009) combined the water balance 
equation with the atmospheric moisture budget to estimate the river runoff. The estimated river discharge was then utilized as an 
inflow for the global ocean mass balance to address the residual. Munier et al. (2014) employed the Simple Weight integration and the 
Post Processing Filter to enforce the water budget closure. Additionally, they applied a linear regression model (closure correction 
model) to reduce the residual from the water budget components. 

Several studies have assigned a weight proportionally to the error variance of each product, and then applied a Constrained Kalman 
Filter data assimilation approach to close the water budget (Aires, 2014; Pan et al., 2012; Pan and Wood, 2006; Sahoo et al., 2011; 
Wong et al., 2021; Zhang et al., 2018). Abolafia-Rosenzweig et al. (2021) utilized three closure constraint techniques: the Constrained 
Kalman Filter, the Proportional Redistribution and the Multiple Collocation at the water budget level, rather than correcting each 
component of the water budget. Luo et al. (2021) provided an approach to assess the accuracy of the water budget closure for sixty 
different combinations from satellites by applying the omission error and employing the first order reliability method. Fok et al. (2023) 
applied the geographically weighted averaging approach to each gridded runoff value to account for the geographical heterogeneity of 

Fig. 1. (a) shows the geographic location of the UBN basin in the Nile basin (b) DEM obtained from the Shuttle Radar Topography Mission (SRTM) 
in meter above sea level (Farr et al., 2007). The blue line represents the Blue Nile River and the outlet of the basin is located at the El Diem as seen in 
red line. 
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each grid. Other research compared the water budget components estimated from satellite products with in-situ gauges for validation 
and applied various statistical approaches to evaluate the trends of the water balance components (Azarderakhsh et al., 2011; Chen 
et al., 2020; Ferreira et al., 2013; Lehmann et al., 2022; Liu et al., 2018; Mohanasundaram et al., 2021; Moreira et al., 2019; Oliveira 
et al., 2014; Syed et al., 2005). 

The water budget analysis requires a detailed analysis to quantify the water fluxes entering, leaving, and stored in a basin. Several 
studies concluded that the largest errors in the imbalance are mainly attributed to evapotranspiration due to the heterogeneity of land 
cover (Abera et al., 2017; Soltani et al., 2020), coupled with the numerous parameters influencing its variations. These parameters 
include vegetation types, soil moisture, air temperature, relative humidity, wind speed, solar radiation and surface albedo (Martens 
et al., 2017; Mu et al., 2007; Zhang et al., 2019). Other researchers claimed that the deviation in water balance closure is caused by 
precipitation (Sheffield et al., 2009; Wang et al., 2014b; Wong et al., 2021). This discrepancy arises from the intense spatial variation of 
precipitation influenced by a complex topography, the uneven distribution of gauges, and the climatic condition (wind, air temper
ature, radiation, humidity), which affect the ability of precipitation devices to take accurate measurements (Schreiner-McGraw and 
Ajami, 2020; Sivapalan et al., 2003; Wang et al., 2014a; Wrzesien et al., 2019). Others argue that the imbalance is inherited from the 
terrestrial water storage signals captured by GRACE (Fok et al., 2023; Syed et al., 2005; Wang et al., 2015) due to the coarse resolution 
of GRACE and the signal leakage during postprocessing phase (Watkins et al., 2015; Wiese et al., 2016). 

Quantifying the hydrological variables of the water budget on a regional scale will enhance our understanding of the water cycle. 
The UBN basin, also known as the Abbay basin, contributes more than 60% of the streamflow to the main River Nile annually (Conway, 
2005; Senay et al., 2014). It is located in the Ethiopian highlands and has a drainage area of 175,000 km2. The basin’s outlet is near El 
Diem at the border with Sudan (Fig. 1). Hundreds of millions of people living downstream in Sudan and Egypt rely on the water coming 
from the UBN. In 2011, the construction of the hydroelectric dam known as the Grand Ethiopian Renaissance Dam in Ethiopia began 
upstream on the Blue Nile River and has been a concern for downstream countries (Sudan and Egypt), where it could reduce water 
availability during filling and will change the flow regime. Once the dam filling is completed, the dam will be the largest dam in Africa 
with a storage capacity of 74 billion cubic meters to generate a power capacity of 5150 Megawatts (Ezega News, 2019). Thus, accurate 
quantification of the hydrological cycle fluxes will help manage the water resources in an effective and sustainable manner. 

In the UBN basin, the estimation of individual components of the hydrological cycle, such as P (Abebe et al., 2020; Abera et al., 
2016; Ayehu et al., 2018; Bayissa et al., 2017; Dinku et al., 2011; Lakew et al., 2017; Lakew et al., 2020; Worqlul et al., 2018), ET 
(Allam et al., 2016; Weerasinghe et al., 2020), and TWS (Seyoum, 2018; Shamsudduha et al., 2017), using remote sensing are 
examined, whereas other research papers have studied the UBN basin using the water balance model (Abebe et al., 2022; Conway, 
1997; Johnson Peggy and Curtis, 1994; Kim and Kaluarachchi, 2009; Mishra and Hata, 2006; Steenhuis et al., 2009; Tekleab et al., 
2011). 

To date, there are no satellite products capable of estimating runoff except by using altimetry and multispectral (optical and radar) 
sensors, which provide key parameters as an input for the hydraulic equation or to apply empirical approach. The hydraulic pa
rameters obtained from remote sensing for the discharge estimations are water height (Koblinsky et al., 1993; Kouraev et al., 2004; 
Zakharova et al., 2020; Zakharova et al., 2006) and river width (Smith et al., 1996), but could have uncertainties and limitations. The 
recent launch of surface water ocean topography (Durand et al., 2010; Fu et al., 2012) will provide a promising product for river water 
surface elevation, width, and slope for rivers ≥ 100 m width which could be converted to river discharge. Other than that, researchers 
have estimated the runoff from satellites using the water budget closure approach. 

Over the entire UBN basin, a few studies have focused on closing the water budget using satellites and reanalysis datasets to 
quantify runoff (Jung et al., 2017; Koukoula et al., 2020; Siam et al., 2013). Abera et al. (2017) applied the JGrass—NewAGE system, 
incorporating remote sensing solutions to estimate P, discharge, ET, and TWS, and then compared the estimated ET with the 
satellite-based ET. Lazin et al. (2020) simulated the water budget components using coupled routing and excess storage 
soil-vegetation-atmosphere-snow over the UBN and compared the simulated components with In-Situ data and global models. Jung 
et al. (2017) employed land surface models (LSMs) coupled with Hydrological Modeling and Analysis Platform (HyMAP) river routing 
schemes to generate an estimate for the hydrological components over the UBN basin. In situ gauges for river discharge were 
incorporated in the calculation and revealed that the Catchment LSM version Fortuna 2.5 (CLSMF2.5) outperformed Noah version 3.3 
in the estimation of the water budget components. The above studies coupled modeling techniques with remote sensing products for 
the estimation of the water budget components. There is no research that purely assesses the closure of the water budget using remote 
sensing nor estimates the runoff at the UBN using satellite products. The availability of various remote sensing products for the 
estimation of the water budget components poses a challenge for researchers and users to decide what product one can rely on. 
Therefore, an assessment for these remote sensing products is required. 

Although the evaluation of water budget closure has been widely applied to validate its credibility (Mohanasundaram et al., 2021; 
Moreira et al., 2019), there is no single correct approach for the evaluation of remote sensing products. Incorporating In-Situ gauges in 
the water budget closure will help verify the analysis and address the uncertainty associated with the calculation. Thus, inferring river 
runoff as a residual from the water budget closure can provide better information about the accuracy of satellites and their un
certainties. Compared to previous research, this research will assess river runoff derived from multiple satellites products not only by 
stating the statistical results, but with summing up the performance rankings for the chosen linear and error metrics, without relying 
solely on one metric. The Unified metrics (UM) will indicate which runoff combination among all the estimated runoffs from remote 
sensing products has less discrepancy. The Overall Unified metrics (OUM) are proposed in this study to assess the performance of an 
individual satellite product depending on the runoff score derived from the UM approach. This research assesses the majority of remote 
sensing products available within a similar temporal resolution of the available in situ discharge gauge to conclude which remote 
sensing products are better to be used for water management or research purposes. Since runoff data are available at the outlet of the 
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UBN basin, the target of this paper is to estimate runoff from the water budget equation and diagnose the estimated runoff with the El 
Diem gauge records. Moreover, our study showcases a comprehensive approach for uncertainty quantification of water budget 
components. 

In summary, a collection of satellite measurements was acquired to quantify the runoff, which was compared with the runoff at the 
El Diem gauge station over 2003–2014. The questions this research aims to address are as follows: 1) What is the most suitable P, TWS, 
and ET combination of satellites and reanalysis products that can accurately estimate the runoff at the outlet of the UBN basin?; 2) How 
reliable is the applied approach for assessing the accuracy of remote sensing products?; 3) What satellite-derived component of the 
water budget causes the most discrepancies?. These questions are answered by employing the unified metrics (UM) and the overall 
unified metrics (OUM) approach for the assessment. Additionally, the El Diem river discharge gauge was forced in the water balance 
equation to estimate the TWS and subsequently compared with the TWS derived from GRACE. Similarly, the river discharge was forced 
again to estimate ET and P. These steps will help intuitively in evaluating the errors in the water budget closure and the uncertainties 
associated with the hydrological data products. 

2. Data 

2.1. Study Area 

The River Nile is a transboundary river flows through 11 African countries- Burundi, Democratic Republic of Congo, Egypt, 
Ethiopia, Eritrea, Kenya, Rwanda, Sudan, South Sudan, Tanzania and Uganda, including three major rivers contributing to its supply 
namely: the Blue Nile, the White Nile, and the Atbara River (Fig. 1). The White Nile originates at a height of 1600 m above mean sea 
level in Northern Burundi, whereas the Blue Nile source comes from the Ethiopian Highlands near Lake Tana, 1800 m above sea level. 
The Atbara River headwater is also sourced from the Ethiopian highlands and close to the Blue Nile headwater which is north of Lake 
Tana (Williams, 2019). The UBN basin has a drainage area of 175,000 km2 with a complex topographic distribution, which also results 
in variations in the climate. The elevation ranges from 4260 m in the highlands to 480 m in the lowlands near the Ethiopia-Sudan 
border (Fig. 1b). The topography of the northeastern parts from the basin is characterized by hills and highlands, while the south
ern and western parts are described as valleys. The climate of the UBN is semiarid to humid and considered relatively wet from June to 
September, while the dry season spans from October to May. It is estimated that 74% of the annual rainfall occurs from June to 
September during the wet season (Abtew et al., 2009). The mean annual rainfall of the UBN basin is estimated to be in the range of 
1200–1600 mm (Conway, 1997), whereas the annual potential ET is in the range of 1000–1800 mm (Conway, 2000). The spatial 
distribution of annual rainfall shows high rainfall events on the southern tip and low over the north-eastern area. 

2.2. Datasets 

2.2.1. Terrestrial water storage 
GRACE has twin satellites following each other at a specific distance of ~ 220 km, and a change in the distance is due to a change in 

Earth’s gravity field (Rodell and Famiglietti, 2001). The gravity field maps are derived from the spherical harmonic coefficient up to a 
maximum degree-1 (generally 60), which provides a spectral representation of the Earth’s gravity field (Sun et al., 2016; Swenson and 
Wahr, 2006). The monthly gravity field was transformed to interpret the changes as a change in the terrestrial water storage after 
applying multiple corrections which are glacial isostatic adjustment (Peltier et al., 2018), atmospheric and oceanic corrections using 
the Atmosphere and Ocean De-liasing Level 1-B model (Flechtner et al., 2015). In the latest version of GRACE (RL06), the degree-2 
zonal term ΔC20 was substituted with the satellite-laser ranging, offering more accurate measurements with less noise (Cheng and 
Ries, 2019). These steps are applied for the two forms of GRACE solutions, which are the spherical harmonics form (SH) and mass 
concentration solutions (mascon). 

Multiple processing centers provide GRACE data in SH form (e.g., University of Texas Center for Space Research (CSR), German 
Research Center for Geosciences (GFZ) and Jet Propulsion Laboratory (JPL) (Chambers, 2006; Tapley et al., 2004) and mascon (JPL 
and CSR). The steps discussed earlier were applied for both SH and mascon solutions. 

The decorrelation filtering and 300-km Gaussian smoothing was employed for the SH-based solution to calculate the surface mass 
change and remove the correlated errors in gravity solutions, whereas JPL mascon applies constraints obtained from geophysical 
models (Scanlon et al., 2016). Thus, the major difference between the two products is in the postprocessing technique. GRACE TWS is 
subject to leakage during postprocessing and the application of filters for the SH solutions, and additional leakage could occur where 
coastal mass variation signals leak into the land and result in large uncertainties (Watkins et al., 2015). As for the mascon solution, the 
Coastline Resolution Improvement filter is applied to minimize the leakage between the land and ocean boundaries (Wiese et al., 
2016). The leaked signal is returned and adjusted for the SH-based products by incorporating TWS derived from models. The Global 
Land Data Assimilation System-NOAH is incorporated to quantitively estimate errors (Rodell et al., 2004b). The scale factor is derived 
based on the root mean square difference between the unfiltered and filtered TWS. This factor is multiplied with the GRACE-filtered 
TWS. As for the mascon solutions, the scale factor obtained from the National Centre for Atmospheric Research’s Community Land 
Model 4.0 (NCAR CLM 4.0) (Lawrence et al., 2011) is incorporated with applying the least squares fit to enhance the resolution from 3◦

to 0.5◦ and reduce the leakage (Wiese et al., 2016). 
The latest dataset release of GRACE RL06 from CSR, GFZ, JPL, and JPL mascon are used. The following four solutions have been 

used: (1) GRCTellus Land RL06 release of GRACE (Landerer, 2021; Landerer and Swenson, 2012) and (2) GRACE mascon solution 
obtained from JPL release 06 Version 02 (Watkins et al., 2015; Wiese et al., 2016). It is suggested to use GRACE for areas larger than 
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100,000 km2, and the UBN basin complies with GRACE native resolution. In this study, the three SH GRACE products were averaged to 
reduce the uncertainties associated with data processing. Thus, GRACE mascon and averaged SH GRACE were utilized for the water 
balance components estimation. The first-order derivative of TWS was computed from GRACE monthly TWS to represent the storage 
flux (Eq. 1). 

ds
dt

= TWSt+1 − TWSt (1)  

where ds/dt represents the TWS flux between two consecutive months. Due to battery issues, GRACE has missing data for certain 
months, and it was linearly interpolated as suggested by the GRACE handbook (Landerer and Cooley, 2021). 

2.2.2. Precipitation 
Previous research has concluded that the water budget closure faced an imbalance error as a result of the overestimation of 

remotely sensed precipitation products (Oliveira et al., 2014; Sheffield et al., 2009; Sneeuw et al., 2014; Xie et al., 2019). Seven 
precipitation products are chosen for assessing the water budget closure. These products are Climate Hazards InfraRed Precipitation 
with Stations data version 2.0 (CHIRPSv2), which is developed by the US Geological Survey and the Climate Hazards Group of the 
University of California (Funk et al., 2015); Climatic Research Unit Time-Series version 4.06 (CRU TS4.06) (Harris et al., 2020); the 
European Centre for Medium-Range Weather Forecasts ERA5 reanalysis dataset (ERA5) (Hersbach et al., 2020); Tropical Rainfall 
Measuring Mission (TRMM) Multi-satellite Precipitation Analysis TRMM 3B43 V7 (Huffman et al., 2019; Kummerow et al., 1998); the 
Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM Final Run (IMERGv6) (Hou et al., 2014); the 
Climate Forecast System Reanalysis and Reforecast (CFSR) (Saha et al., 2010); and the Soil Moisture to Rain derived from the European 
Space Agency Climate Change Initiative (SM2RAIN-CCI) (Ciabatta et al., 2018). 

These precipitation datasets are either derived from satellites, In-Situ gauges, or combined reanalysis. CHRIPS synthesizes infrared 
satellite imagery with In-Situ rainfall gauges, and the utilized infrared satellites are derived from global gridded satellite data of the 
National Oceanic and Atmospheric Administration (NOAA) spanning 1981–2008 (Knapp et al., 2011) and the 2000-present datasets 
sourced from the Climate Prediction Center of NOAA (Janowiak et al., 2001). The In-Situ rainfall gauges used in generating CHIRPS 
data are collected from multiple public sources consisting of around 14,000 gauges with monthly records and 200,000 gauges with 
daily records. The CRU is a global gridded gauge analysis product that relies on 10,000 gauges and is derived by using the 
angular-distance weighting interpolating method for a dense network of weather station observations (Harris et al., 2020). The ERA5 
reanalysis dataset is derived from combining Earth system model estimates with observations through data assimilation. ERA5 is the 
fifth-generation reanalysis product replacing the previous version ERA-Interim. ERA5 dataset includes significant atmospheric im
provements (e.g., convection, radiation, orographic drag, wind, pressure gradient), with several schemes and parametrizations applied 
during assimilation. It has a temporal resolution of one hour and ranges from 1950 to the present with a spatial resolution of ~ 25 km 
(Hersbach et al., 2020). 

The TRMM is the first satellite with a mission to measure P in tropical and subtropical areas through infrared sensors and mi
crowave, including a P radar. Several instruments were on the spacecraft, including the precipitation radar, the TRMM Microwave 
Imager, an optical-infrared radiometer, a lightening detection sensor, and a cloud radiation radiometer (Haddad et al., 1997). It is a 
joint project between the Japan Aerospace Exploration Agency and the US National Aeronautics and Space Administration and was 
launched in 1997 (Kummerow et al., 1998). The 3B43 algorithm is applied on a monthly scale to generate the best-estimated pre
cipitation rate by coupling the precipitation data from the Global Precipitation Climatology Centre (GPCC) gauges with the 3-hourly 
merged infrared estimates derived from multiple satellites. Then, the corrected monthly best-estimated precipitation is combined with 
the rain gauges data by applying the inverse error variance weighting (Huffman et al., 2007). The TRMM 3B43 V7 product from TRMM 
was used for the calculation in this study. GPM is a satellite to measure precipitation and snowfall globally every three hours. It is a 
successor to the TRMM with improvements in the precipitation radar (dual-frequency precipitation radar) to detect the rain drop 
distribution. TRMM’s precipitation radar operates at a single frequency of Ku-band (13.8 GHz) whereas the GPM operates at Ku-band 
(13.6 GHz) and Ka-band (35.5 GHz) (Hou et al., 2014). The high frequency channels on the precipitation radar and the microwave 
imager aboard the GPM will improve the detection of light intensity precipitation, falling snow and frozen precipitation (Field and 
Heymsfield, 2015; Mugnai et al., 2007). It provides rainfall data at a high spaciotemporal resolution using the progressive precipitation 
retrieval algorithms obtained from several satellite sensors. 

The CFSR is a reanalysis dataset with a resolution of ~38 km from 1979 to present. It is a global product coupling the atmosphere- 

Table 1 
Summary of the precipitation products used in this study.  

Product Spatial resolution Temporal resolution Time period 

CHRIPSv2 0.05◦ daily 1983-present 
CRU TS4.06 0.5◦ monthly 1901-present 
CFSR 0.5◦ hourly 1979–2017 
ERA5 0.25◦ monthly 1981-present 
GPM-IMERGv6 0.1◦ daily 2000- present 
SM2RAIN-CCI 0.25◦ daily 1998–2015 
TRMM 3B43 V7 0.25◦ monthly 1998–2019  
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ocean-land surface-sea ice system to simulate those components in an hourly time resolution and a horizontal resolution of 0.5◦

latitude × 0.5◦ longitude. The atmospheric model takes into account the carbon dioxide concentration and solar variation, with 
applying bias correction for radiance data obtained from NOAA (Saha et al., 2010). Finally, the SM2RAIN rainfall dataset developed by 
Brocca et al. (2013) is an approach to estimate rainfall from In-Situ and satellite-based soil moisture. The data are provided in a global 
scale with a daily time span. The applied method in the SM2RAIN-CCI is based on the “bottom-up” approach that incorporates surface 
soil moisture readings from multiple sensors for the estimation of precipitation. Active and passive microwave satellite soil moisture 
products are combined to estimate precipitation (Dorigo et al., 2017) using the SM2RAIN algorithm (Brocca et al., 2014). Additional 
details related to these seven rainfall products are summarized in Table 1. 

2.2.3. Actual evapotranspiration products 
Three gridded actual ET (ETa) products were chosen, and each has a different technique to estimate ETa. The selected products are 

the Global Land Evaporation Amsterdam Model GLEAMv3.6a (Martens et al., 2017; Miralles et al., 2011); MOD16 obtained from 
Moderate Resolution Imaging Spectroradiometer (MODIS) (Mu et al., 2007; Mu et al., 2011); and the Penman-Monteith-Leuning 
(PMLv2) model (Gan et al., 2018; Zhang et al., 2019; Zhang et al., 2016). Table 2. 

The two versions of GLEAM are different in their forcing data and have different temporal coverage. GLEAM products are based on 
the Priestley and Taylor equation (Priestley and Taylor, 1972) and driven by the daily satellite dataset (GLEAMv3.6a) and reanalysis 
(GLEAMv3.6b) dataset (air temperature, humidity, net radiation, and air pressure). Additional to the Priestly and Taylor model, 
GLEAM incorporates the Gash analytical model to simulate the forest interception loss by considering the vegetation and the pre
cipitation characteristics. GLEAM also employs an evaporative stress formula to depict the response of soil and vegetation throughout 
the evaporation process (Miralles et al., 2011). Multi-source precipitation products are forced for the calculation of GLEAM ET namely 
the TRMM 3B42v7 (Huffman et al., 2007) and the Multi-Source Weighted Ensemble Precipitation (MSWEP) (Beck et al., 2017). 
Furthermore, the other forced in variables in the GLEAM model, such as radiation, air temperature, soil moisture, snow-water 
equivalent and vegetation optical depth are also retrieved from remote sensing products (Miralles et al., 2011). It also employs the 
European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis- ERA-Interim data for the ETa estimation 
(Dee et al., 2011). 

The calculation of ETa from MOD16 is constructed based on the energy-balance schemes using the Penman-Monteith equation. This 
ETa calculation is driven by the Global Modeling and Assimilation Office (GMAO) meteorological reanalysis data (Global Modeling 
and Assimilation Office, 2004) and MODIS data for albedo, leaf area index, land cover, and vegetation index. The improved version of 
ETa derived from MOD16 considers additional inputs in the applied algorithm which are soil heat flux, vegetation cover fraction, 
evapotranspiration during both daytime and nighttime. Further advancements have been made in the estimation of aerodynamic 
resistance, stomatal conductance and boundary layer resistance (Mu et al., 2011). 

Both GLEAM and MOD16 rely on the energy-balance method to estimate ET. The PMLv2 model couples the carbon and water fluxes 
through canopy conductance and integrates the leaf area index obtained from MODIS. It was developed by Leuning et al. (2008) and 
further improvements were applied by Zhang et al. (2010). The input meteorological reanalysis data in PMLv2 is retrieved from the 
Global Land Data Assimilation System Version 2.1 (GLDAS 2.1) (Zhang et al., 2019). PMLv2 requires fewer parameters compared to 
MOD16 and GLEAM products (Gan et al., 2018). 

All three ET products (GLEAM, MOD16, and PMLv2) were validated against the eddy flux towers. For example, GLEAM product 
underwent a comparison with soil moisture records obtained from 2325 devices, and the evaporation fluxes involved a comparison 
with 91 eddy-covariance towers. The correlation between GLEAM soil moisture and the In-Situ soil moisture records resulted in a 
coefficient of 0.64. Similarly, a correlation of 0.81 occurred between the eddy covariance-tower and GLEAM ETa. The daily ETa 
derived from MOD16 was validated against 46 eddy flux towers distributed globally. The mean absolute bias ranged from 
0.31 mm day− 1 to 0.33 mm day− 1. In a parallel manner, the assessment of PMLv2 involved a comparison with 95 flux towers, resulting 
in a PBIAS and RMSE values of − 1.8% and 0.69 mm day− 1, respectively (Zhang et al., 2019). Additional details related to the vali
dation of ETa datasets can be found in Gan et al. (2018); Miralles et al. (2011); Mu et al. (2011). To keep in line with the spatial 
resolutions of the different remote sensing products, an average of the entire basin was taken into the water budget closure, and the 
temporal resolutions of all the products were converted to a monthly resolution. 

2.2.4. Observed discharge 
The daily streamflow records of the El Diem station were obtained from the Ministry of Irrigation and Water Resources of Sudan 

(MoIWR) spanning from 1990 to 2014. Since the MoIWR conducts continuous water level measurements, the discharge at El Diem is 
calculated using the rating curves method. Conversely, due to the Roseires dam’s filling practice occurring downstream between June 
and October, which could adversely impact the water level measurements at the El Diem gauge station, the water balance approach is 
applied for estimating the discharge solely during the filling phase. Notably, the reason of choosing the period for the analysis from 

Table 2 
Summary of ETa products.  

Product Estimation Method Spatial resolution Temporal resolution Time period 

GLEAMv3.6a Priestley-Taylor 0.25◦(~28 km) daily 2003-present 
MOD16 Penman-Monteith 0.0043◦ (~500 m) 8 days 2000-present 
PMLv2 Penman-Monteith-Leuning 0.05◦ (~5.6 km) 8 days 2002-present  
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2003 to 2014 is to ensure a match in the temporal resolution between the observed discharge and satellite products, particularly with 
the terrestrial water storage component derived from GRACE. 

3. Method 

3.1. Evaluation of the water budget closure 

To assess the performance of different satellite products, the monthly runoff data were estimated as a residual from the water 
budget closure using remote sensing products and compared with the runoff gauge at the outlet of the basin (El-Diem) (Eq. 2). Given 
that the data accessible from the El Diem gauge is from 2003 to 2014, the analysis is carried out within a similar timespan of the gauge 
records. 

R = P − ET −
ds
dt

(2) 

We examined the best performance combination to estimate the runoff at the outlet of the basin by considering multiple criteria. 
One statistical measure may not be sufficient to validate the calculated runoff from satellites. Thus, the discrepancy between the 
calculated and observed monthly runoff required a series of statistical measures to judge which remote sensing combination perform 
the best. The statistical metrics used in the assessment were three linear fit metrics (the coefficient of determination (R2; Eq. 3), the y- 
intercept (Eq. 4) and the slope (Eq. 5)), and three error metrics (the Root Mean Squared Error (RMSE; Eq. 6), the Mean Absolute Error 
(MAE; Eq. 7) and the Percent Bias (PBIAS; Eq. 8) (Gupta et al., 1999)). 
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RMSE (mm) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Si − Gi)

2

√

(6)  
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(7)  

PBIAS(%) =
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(Si − Gi) × 100

∑n

i=1
(Gi)

(8)  

where Gi is the observed monthly runoff from the El Diem gauge station, Si is the estimated runoff using the water balance equation, n 
is the number of data records, G is the mean of the observed runoff, and S is the mean of the calculated runoff. 

The coefficient of determination R2 explains the relationship between the dependant and independent variance, and the value 
ranges from 0 (no correlation) to 1 (perfect match). A high R2 value indicates low error variance. However, a high uncertainty has been 
observed in relying on regression statistics due to the assumption of linear relationship between the observed and the simulated values 
which are rare to occur (N. Moriasi et al., 2007). The slope indicates whether the estimated runoff overestimates (>1) or un
derestimates (<1) the observed runoff. Moreover, the y-intercept indicates whether a lag exists (y-intercept‡0) or not (y-intercept = 0). 
Thus, the error metrics (RMSE, MAE, PBIAS) are applied in the analysis. The RMSE and MAE indicate the discrepancy magnitude 
between the estimated and real runoff records data. It is suggested that acceptable RMSE and MAE occur when their values are less 
than half of the standard deviation of the measured data. The PBIAS measures the average tendency of the runoff derived from remote 
sensing and whether it is smaller or larger than the In-Situ discharge (Gupta et al., 1999). 

Once all the statistical metrics are calculated, a method based on summing up the performance rankings was applied herein to 
decide what combination is the best on estimating the runoff. The Unified Metric (UM) method was applied previously and showed a 
significance contribution on choosing the best satellites products when compared with In-Situ gauges (Ali et al., 2023; Basheer and 
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Elagib, 2019; Elagib and Mansell, 2000). The UM will give an indication of the best-performing product of runoff combination derived 
from the TWS, ETa, and P (Eq. 9). 

UMc =
∑M

i=1
Rc,mi (9)  

Where UMc is the unified metric score, Rc,mi is the rank of the combination c based on the performance metric mi, and M is the number 
of the performance metrics which are six metrics used in this analysis. Since we used 7 precipitation, 3 ETa, and 2 TWS flux, we 
evaluated 42 runoff combinations as shown in Fig. 2. To know which datasets are more reliable and accurate to estimate the runoff, a 
score was given for each combination. The runoff combinations are classified based on the score given from the UM which ranges 
between 6 and 252 indicating the best and worst performance in all metrics, respectively. The UM is a simple and informative way to 
evaluate the 42 estimated runoff and to give insight on the most reliable runoff combination among the tested ones. Furthermore, to 
assess the performance of an individual product (e.g., CHIRPS, GLEAM) compared to all other similar products for P, ETa, and TWS, the 
Overall Unified Metric was applied: 

OUMp =
∑

UMcϵp (10)  

where OUM is the overall unified metrics for a product p. UMcϵp is the UM values of all combinations belong to the product. Therefore, 
the range of OUM depends on the product type (P: 36 – 1512; ETa: 84 – 3528; TWS: 126 – 5292). For example, each product for the 
precipitation has six possible combinations which each can have a UM value ranging from 6 and 252 resulting in OUM range between 
36 and 1512. Additional to the UM and OUM, the boxplot was estimated for the 42 monthly and annual discharge combination. This 
method will contribute on providing further understanding on the water budget closure. 

3.2. Uncertainty analysis 

The uncertainty associated with runoff calculation is addressed in this research by computing the 95% confidence bounds of the 
monthly and the annual records of precipitation, evapotranspiration, runoff, and terrestrial water storage. In other words, the un
certainty of each product will be assessed individually then as a combination. To quantify the level of uncertainty related to each of the 
three variables (P, ET, and TWS flux), we analyse the variation in model performance caused by changes in product selection for each 
variable. In simpler terms, the greater the change in performance due to product selection changes, the higher the level of uncertainty 
associated with the variable. When examining the combinations, we elaborate on the uncertainty arising in the estimation of runoff as 
a response to alterations in the 42 selected combination of products. Further evaluation was applied by calculating the standard 
deviation and the standard error. These analyses are informative on giving an indication of how the data are spread and its deviation 
from the mean. 

To conduct a more comprehensive examination of the uncertainty associated with ET, TWS flux and P, we undertake a reverse 

Fig. 2. Selected remote sensing products, possible combinations, and chosen performance metrics.  
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calculation of ET, TWS flux and P in correspondence with the observed runoff at the El Diem gauge station (Robs). This calculation is 
executed employing the revised water balance Eqs. (11–13) provided below. By undertaking such estimations, we gain valuable in
sights into the temporal occurrence of heightened uncertainty and the associated constraints inherent to these variables. The calculated 
TWS flux was then compared with TWS flux from GRACE SH and GRACE mascon, while the estimated ETa was compared with GLEAM, 
MOD16 and PML. This comparative analysis was also applied to the P. Subsequently, the 95% confidence bound was estimated to 
evaluate the ET, ds/dt and P obtained from the reverse water balance calculations using In-Situ runoff with the satellite products. This 
comparison will help in the selection of the most optimum satellite products which will then be compared with the UM and OUM 
output. 

ET = P − Robs −
ds
dt

(11)  

ds
dt

= P − Robs − ET (12)  

P = Robs +ET +
ds
dt

(13) 

This rearrangement will give a better insight on the water fluxes of the hydrological cycle to address the uncertainty associated with 
each product. Once the ETa, ds/dt and P are calculated by forcing the In-Situ river runoff, the uncertainty range for the hydrological 
components are calculated in a combination and individually. The most dominant source of errors is identified by finding the largest 
percentage of total non-closure errors among the three hydrological components (ETa, ds/dt and P). This approach is compared with 
the previous approaches for the purpose of addressing the source of uncertainty and if all the approaches are consistent. 

Last, previous research applied in different catchments concluded an existence of imbalance (Sahoo et al., 2011; Sheffield et al., 
2009) while closing the water budget, therefore; it is also expected herein this study. The wate budget imbalance is usually defined as a 
residual (ΔRe) when closing the water budget equation (ΔRe = P − ET − R − ds

dt). Thus, we conducted an extensive analysis to furtherly 
assess the imbalance and the uncertainties associated with the remote sensing products used in this research. A conclusion will be 
drawn on stating the reason of the imbalance. Furthermore, this will help on the validation of TWS flux from GRACE and determining 
which GRACE products performed the best, since TWS flux is difficult to estimate using observed data. 

Fig. 3. Monthly precipitation, actual evapotranspiration, and terrestrial water storage data from multiple remote sensing products.  
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4. Results and Discussion 

4.1. Monthly values of remote sensing products 

Fig. 3 illustrates the monthly values of the different products. The seven precipitation products (see Table 1) have similar trend 
variations with different magnitudes as shown in Fig. 3. All precipitation data showed consistency in variation with peak events 
occurring in July or August (R2 ranges from 0.6 to 0.9), indicating the rainy season, while January has the lowest monthly mean 
rainfall. The differences in the precipitation magnitudes between the precipitation products can be attributed to the differences in (1) 
the revisiting time of the incorporated satellites, (2) the methods employed for calibration (3) the utilized algorithm to derive the 
precipitation rate, and (4) the specific types of satellites employed to capture precipitation in either liquid or frozen forms (Donat et al., 
2014; Huffman et al., 2007). Such differences affect the reliability of the precipitation for discharge simulations and would possibly 
constrain their use for some hydrological applications (e.g., flood forecasting). 

The actual evapotranspiration (ETa) showed consistency between the PML and GLEAM (R2 =0.8) whereas MOD16 algorithm 
showed a different trend variation due to its limitation to account for the evaporation from water bodies. Lake Tana and the Blue Nile 
river contribute significantly to the water evaporation process over the UBN basin; thus this is a drawback for MOD16 to accurately 
estimate the ETa. This could be the cause of the difference in the trend variation when compared with GLEAM and PML. Furthermore, 
the incorporated parameter for each ETa dataset has different forcing products, so it is expected to have inconsistent trends and 
magnitudes among the ETa products. It is important to mention that the three ETa products GLEAM, MOD16 and PMLv2 utilize 
different meteorological reanalysis data as input in the ETa estimation namely: ECMWF, GMAO, and GLDAS 2.1, respectively (Martens 
et al., 2017; Mu et al., 2011; Zhang et al., 2019). Based on literature, ETa is difficult to estimate due to the spatial heterogeneity of land 
cover (Giorgi and Avissar, 1997) and large source of uncertainty inherited from the input parameters (e.g., vegetation characteristics, 
surface temperature, and radiation) where it is difficult to assess its accuracy (Ferguson et al., 2010). TWS flux obtained from GRACE 
mascon and the averaged GRACE SH showed strong agreement (R2 =0.9). Both TWS products showed annual seasonality, however, a 
wider range was found in case of GRACE mascon (i.e., lower minimum and higher maximum values). 

Fig. 4. The performance metrics for all the satellites products based on the runoff estimation when compared with the El-diem gauge station. The 
dashed red line represents the optimum result. Each boxplot includes the combinations belong to each product (6 for each P, 14 for each ETa, and 21 
for each TWS product). 
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4.2. Product selection uncertainty in runoff estimation 

The performance metrics of the estimated runoff from all possible combinations are detailed in Table S.1. It should be noted that 
various metrics were taken into account to ensure a comprehensive evaluation. Moreover, Fig. 4 displays the performance metrics of 
the combinations that each product belongs to. This analysis allows the investigation of the uncertainty of runoff estimation caused by 
the selection of the different input types (P, ETa, or TWS flux). 

Many key findings could be extracted from Fig. 4. The runoff was found to be most sensitive to the selection of the precipitation 
product. Compared to the evapotranspiration and GRACE statistical metrics (Fig. 4), one can see that the precipitation products 
derived from remote sensing have different magnitudes which signified the variation in the statistical metrics. The runoff was found to 
be less sensitive to the evapotranspiration and almost not sensitive to the terrestrial water storage. 

This significant difference in rainfall is caused due to multiple reasons which are the adopted satellite algorithm, the mismatch in 
the temporal and spatial resolution between the used remote sensing products, the model parameterization, and the interpolation and 
calibration process (Donat et al., 2014). In other words, each rainfall product has a different technique on estimating the rainfall rate. 
Based on the OUM and Fig. 4, the SM2RAIN was the best performance product while the CFSR was the least. The SM2RAIN is based on 
the novel “bottom up” approach using the soil moisture satellites to accurately quantify the rainfall amount (Brocca et al., 2013) 
whereas the CFSR relies upon model-derived analysis and surface observation stations (Saha et al., 2010). ERA5 is a reanalysis data, 
and it has been observed that it underestimated convective precipitation and overestimated precipitation in a complex topographic 
area (Amjad et al., 2020; Beck et al., 2019). This complies with our research and the runoff combinations that incorporated ERA5 had 
the largest PBIAS and slope indicating an overestimation (see Fig. 4). This high variation between the satellite products is expected 
since the region is mountainous where complex terrain could result in high uncertainty in estimating the precipitation (Mei et al., 
2014) and this was also observed in East Africa (Cattani et al., 2016). 

4.3. Evaluation of estimated runoff combinations 

All the possible combinations of the selected 12 remote sensing products were used to estimate the runoff using water budget closer 
which plotted as a 95% confidence interval as show in Fig. 5. Among the 42 combinations and based on the UM calculations 
(Table S.2), we found that the best combination is SM2RAIN-CCI + GLEAM + GRACE SH. The statistical results for the six chosen 
metrics are R2 = 0.7, slope = 1.6, y-intercept = - 0.5 cm, RMSE = 3 cm, MAE = 2.8 cm, and PBIAS = 36%. Table S.2 presents the UM 
values for all combinations in order of performance, with the best-performing combination at the top and the worst-performing at the 
bottom. 

Results show that all the calculated runoff overestimated the amount of runoff during the rainy seasons and the monthly runoff 
were either overestimated or underestimated with a PBIAS ranges from − 80–296% (Fig. 5.b and Table S.1), while during the dry 
season, the runoff was slightly outperforming. Previous research have shown an overestimation of runoff when satellites products are 
incorporated in the UBN basin (Koukoula et al., 2020). Furthermore, Chen et al. (2020) observed that in the wet season, river runoff 
obtained from In-Situ gauge underestimated the runoff derived from remote sensing products in the Amazon. Such discrepancies 
during the wet season could reflect the underestimation of the In-Situ gauge when flood water overflows riverbanks (Chen et al., 2020; 
Eom et al., 2017). This will require field investigation to investigate if any uncertainties are associated with the In-Situ measurements. 

In general, the statistical analysis results of monthly runoff during the dry season (October-May) were more accurate than the 
results during the wet season (June-September). Not surprisingly, previous research has also shown that closing the water budget in 
mountainous region (Wang et al., 2014b) and over the UBN (Ali et al., 2023) exhibited the largest water imbalances. Considering if the 
imbalance in the water budget closure caused by the groundwater outflow from the basin; therefore, it should be examined. There is no 
major aquifer over the UBN basin and even if so, the slow movement of groundwater relative to surface water is minimum to consider 
in causing a dramatic change and impacting the GRACE signal (Rodell et al., 2004a; Rodell et al., 2011). Another important finding is 
that the runoff estimation derived from remote sensing was able to capture the runoff events and was within the 95% confidence bound 
on the years of 2006, 2008, 2011 and 2012 (Fig. 5.a). 

Fig. 5. The shaded colour represents the 95% confidence bound for the R, TWS and ETa (a-b) the 42 runoff combinations overestimated the runoff 
in the wet season. The best combination is based on SM2RAIN-CCI+GLEAM+GRACE SH. 
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Furthermore, to assess which individual product of the P, ETa and TWS performed best in the estimation of runoff, the overall 
unified metrics (OUM) was calculated for each satellite product (Table 3) and revealed that SM2RAIN-CCI, GLEAM, and GRACE 
mascon are the best individual products compared to the considered ones in this study. The OUM indicates how the individual remote 
sensing product performs when coupled with other remote sensing products only. This approach revealed that GRACE mascon out
performed GRACE SH. Thus, further analysis is required since both GRACE mascon and GRACE SH have different preprocessing 
methods as discussed earlier. Forcing the In-Situ runoff into the water balance equation will help furtherly investigating the most 
optimum solutions from GRACE. 

4.4. In-Situ runoff forced in the water balance equation 

To furtherly examine the imbalance in the water budget closure, the In-Situ runoff data was forced in the water balance equation in 
three different instances. First, it was employed to estimate the terrestrial water storage and compared it with the two TWS products. 
Second, it was forced again to estimate the evapotranspiration for the comparison with the ETa products obtained from GLEAM, 
MOD16, and PML. Last, it was also employed to calculate the precipitation for the comparison with satellite-based P (Fig. 6). All 
precipitation records retrieved from remote sensing products overestimated the precipitation calculated from the forced river runoff in 
the water budget equation, as indicated in Fig. 6 (panels a and b). Similar to the estimated runoff from satellites (Fig. 5), it is shown that 
all the precipitation products exhibited an overestimation during the wet season and was able to be within the 95% confidence bound 
during the dry season. Based on the 95% confidence bound, the precipitation values obtained from SM2RAIN-CCI is the most optimum 
products. This finding corresponds with the results from UM and the OUM. Consequently, the three different methods showed similar 
outcomes. The SM2RAIN-CCI performed very good when compared with the observed rainfall data over Africa (Ciabatta et al., 2018). 

It is clearly shown that the estimated TWS in good agreement with GRACE mascon and GRACE SH. This is an indication that GRACE 
products are reliable and have less uncertainty. In terms of the 95% confidence bound, the GRACE mascon outperformed the SH as 
demonstrated in Fig. 6 (panels e and f). The TWS derived from GRACE mascon outperformed SH both in the monthly analysis and 
seasonal analysis. This result contradicts with the Unified Metric and matches with the OUM. Thus, the 95% confidence bound output 
should be prioritized in this analysis if a user is interested in monitoring the TWS flux during the rainy season. Previous research has 
demonstrated that GRACE mascon outperformed GRACE SH (Alghafli et al., 2023; Bhanja et al., 2016; Fok et al., 2023; Neves et al., 
2020; Scanlon et al., 2016; Wong et al., 2021). This aligns with the OUM method and when rearranging the water balance equation for 
the TWS flux estimation as displayed in Fig. 6. 

The ETa is difficult to measure directly and has large uncertainties at the basin scale. Thus, the second step is to force the In-Situ 
runoff gauge in the water budget closure to estimate the ETa. The analysis revealed high uncertainties in the ETa derived from satellites 
products when compared with the ETa derived from the forced In-Situ gauge Fig. 6 (panels c and d). The satellite products showed a lag 
of 1 month compared to the estimated ETa with underestimated magnitudes. This discrepancy indicates that ETa requires further 
investigation and analysis. Our findings align with previous studies that assessed the ETa over the Blue Nile basin and concluded that 
GLEAM and MOD16 tend to underestimate the ETa (McNamara et al., 2021; Trambauer et al., 2014; Weerasinghe et al., 2020). ETa 
obtained from MOD16 is driven by meteorological reanalysis data from GMAO and MODIS data. To address the ETa uncertainty 
obtained from MOD16, Heinsch et al. (2006) compared GMAO meteorological data and MODIS datasets for land cover and leaf area 
index with in In-Situ measurements and revealed an overestimation. Due to the various parameters incorporated in MOD16 and even if 
all the MOD16 parameters are accurately estimated, the leaf area index inaccuracy could lead to biases and a misrepresentative values 
for ETa (Mu et al., 2011). In-Situ measurements for the ETa plays a key role in the calibration process. It is important to highlight that in 
Africa, only six flux towers are available for the ETa estimation, indicating a limited coverage. None of these flux towers are located in 
the UBN basin (Baldocchi, 2008). 

The performance of the different products against the calculations forced by In-Situ runoff is summarized in Table 4. The median R2 

and RMSE values were used to evaluate the different products. The main difference between GRACE mascon and SH is the higher error 
resulted from the latter product. The median R2 score for both GRACE products was similar, but there was a difference of 6.82 mm in 
the median RMSE. This finding aligns with the OUM results and contradicts with the UM findings. The UM objective is to find the most 
optimum runoff combination rather than investigating the performance of individual products. Thus, the mentioned details are for the 
purpose of analysing different satellite products. For the ETa products, it aligned with the rank of the products showed in Table 3. 
GLEAM resulted in the highest R2 and lowest RMSE medians compared to PML and MOD16. The median R2 was not high for the three 
products. This indicates the complexity of estimating ETa, given the many factors impacting its variations. In a similar manner, the 

Table 3 
The Overall Unified Metric (OUM) score for each remote sensing product based on the runoff estimation when compared with the In-Situ gauge (El 
Diem).  

Rank P (Product Name) OUM Eta (Product Name) OUM TWS (Product Name) OUM 

1 SM2RAIN-CCI  510 GLEAM  1502 GRACE mascon  2566 
2 GPM  651 PML  1895 GRACE SH  2852 
3 TRMM  663 MOD16  2021    
4 CHIRPS  677       
5 CRU  776       
6 ERA5  1013       
7 CFSR  1128        
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median R2 for the six precipitation products were within a close range, but the major difference occurs when analysing the RMSE. The 
SM2RAIN-CCI showed the most optimum results in terms of the Median RMSE (48.78 mm). The best median R2 is scored by CHIRPS 
followed by SM2RAIN-CCI. Considering the coefficient of determination (R2) as the sole metric to assess the performance of one 
product can result in high uncertainty due to the assumption of linear relationship. The median RMSE revealed that GPM, TRMM and 
CHIRPS have a similar median RMSE. However, the UM showed that CHIRPS and GPM have an equal score (Table S.2). CHIRPS 
incorporate TRMM Multi-satellite Precipitation Analysis version 7 (TMPA 3B42 v7) data for the calibration process of the global Cold 
Cloud Duration precipitation estimates (Funk et al., 2015). Since this product is derived from TRMM, this indicate how these remote 
sensing products are not independent and consider other datasets for the calibration. 

This research focused on estimating the runoff using multiple satellites products and investigated the uncertainty associated with 
these products. The reason of forcing the In-Situ runoff gauge and estimate the TWS, ETa and P is to assess where the imbalance is 
inherited from. Based on this rearrangement, one can conclude that the P and ETa are the main sources of the imbalance regionally 
over the UBN basin. Various research papers demonstrated that the ETa is the largest source of uncertainties in the water budget 
closure (Abera et al., 2017; Soltani et al., 2020). Others claimed that the largest error attributions in closing the water budget is 
inherited from precipitation which in an agreement with our findings (Sheffield et al., 2009; Wang et al., 2014a; Wong et al., 2021). 

In this study, GRACE showed the least error and uncertainty. It is important to mention that GRACE uncertainty arises over glacier 

Fig. 6. Panels (a,c,e) demonstrate the estimated P, ETa, and TWS based on reverse water balance calculations using In-Situ runoff in comparison to 
the different considered products. Panels (b,d,f) illustrate the average monthly values for each variable. The shaded areas represent the 95% 
confidence bound estimated and the dashed line is the median of the different possible combinations at each case. 
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regions and basins near the coast due to the limitation of GRACE to model the ice mass balance (Wiese et al., 2016). The UBN is an inner 
basin which should have low errors and uncertainty. Restoring the leaked signals from the post processing step could results in an 
uncertainty too, but both GRACE mascon and SH adjust the signal leakage during the postprocessing steps by incorporating the Na
tional Centre for Atmospheric Research’s Community Land Model 4.0 (NCAR CLM 4.0) (Lawrence et al., 2011) and GLDAS Noah, 
respectively (Rodell et al., 2004b; Wiese et al., 2016). The postprocessing for both GRACE forms are discussed in detail in Section 2.2.1. 

Table 4 
The performance of TWS, ETa and P selected products against calculations forced by In-Situ runoff.  

Component Product Performance 

Median R2 Median RMSE (mm) 

TWS mascon  0.72  51.12 
SH  0.72  57.94 

ETa GLEAM  0.38  54.91 
PML  0.17  58.34 
MOD16  0.01  71.15 

P CHIRPS  0.82  56.92  
ERA5  0.79  107.77  
CFSR  0.77  117.22  
CRU  0.79  60.69  
GPM  0.8  56.91  
TRMM  0.77  56.49  
SM2RAIN-CCI  0.81  48.78  

Fig. 7. Uncertainty analysis of water budget components. (a) Total and combined uncertainty ranges, (b) Uncertainty range of individual com
ponents, and (c) Relative uncertainty contribution of each individual component (Precipitation, Evapotranspiration, and Terrestrial Water Storage). 
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4.5. Uncertainty range and relative contribution 

The estimated water budget components, namely runoff, precipitation (P), evapotranspiration (ETa), and total water storage 
(TWS), provide the means to assess both uncertainty and relative contributions. By considering the uncertainty range of runoff across 
the 42 possible combinations (Fig. 5), one can determine the overall uncertainty, as depicted in Fig. 7.a. Additionally, leveraging the 
estimated precipitation from Fig. 6.a, we calculated the collective uncertainty range encompassing ETa + TWS, as illustrated in Fig. 7. 
a. Analogously, we evaluated the combined uncertainty of P + TWS and ETa + TWS using the estimated evapotranspiration and TWS 
shown in Fig. 7, respectively. Evidently, an annual pattern of these uncertainties emerges, with high total uncertainty during the wet 
season (reaching 400 mm) and low uncertainty during the dry season (up to 40 mm). 

Subsequently, we proceed to quantify the uncertainty associated with each individual component by subtracting the total un
certainty and the combined uncertainties, as depicted in Fig. 7.b. For example, the precipitation uncertainty is determined based on 
both the total uncertainty and ETa + TWS. Finally, we calculate the relative contribution of uncertainty for each component as a 
percentage of the total error (Fig. 7.c). 

Quantifying the annual average uncertainty contribution of each component reveals that the primary source of uncertainty is 
precipitation (45%), followed by evapotranspiration (36.6%), while the remaining 18.4% is attributed to TWS. Analysing the average 
monthly relative contributions in Fig. 8, it becomes evident that from November to February, uncertainty due to ET is dominant, 
peaking at 59% in January and December. For the rest of the year, precipitation takes the lead, with the highest value (75.5%) 
occurring in August. A large discrepancy in satellites to estimate precipitation is observed in arid and semi-arid regions (Cattani et al., 
2016). This complies to our finding that P is the main source of uncertainties in the UBN basin. 

4.6. Further discussion on monthly and annual runoff estimation 

Additional to the (1) unified metric techniques (2) the 95% confidence bound, and the (3) water balance rearrangement, the 
monthly and annual boxplot was conducted for the 42-runoff combination (Fig. 9). The monthly and annual boxplot showed a large 
variation within the rainfall products. This agrees with the previous analysis discussed earlier that precipitation is very sensitive as 
compared to the other hydrological parameters (Oliveira et al., 2014; Sheffield et al., 2009; Sneeuw et al., 2014; Wang et al., 2015; Xie 
et al., 2019). The average monthly observed runoff and the estimated runoff from the best combination (i.e., SM2RAIN-CCI + GLEAM 
+ GRACE SH) are 26 ± 2.6 mm/month and 34 ± 4.9 mm/month, respectively, whereas the annual runoff are 306 ± 44 mm/year and 
383 ± 37 mm/year. It is clearly shown that a large bias occurs for the runoff combinations that used CFSR and ERA5 (Fig. 9). This is 
also shown in the analysis derived from Fig. 4 where the highest slope is for the CFSR and ERA5 products. 

Multiple research papers have investigated what an acceptable statistical outcomes are when evaluating the models performance 
(N. Moriasi et al., 2007; W. Van Liew et al., 2005). The proper selection of evaluation metric is related to the problem the researcher is 
trying to solve. Since the unified metrics and the overall unified metrics gave a very comprehensive conclusion by relating all the error 
indexes and the standard regression statistical metrics, it is important to address the best results based on each statistical metric. By 
examining each statistical metric individually, one can conclude that the statistical weight or priority should be awarded for the 
statistical metrics with the high variation in the results or for the purpose of the research. For example, the R2 in this study varies from 
R2 = 0.57 to R2 = 0.85 (Table S.1). Both the least and the highest score are acceptable in this study therefore, it worths noting that R2 is 
not a strong criteria to rely on for this study. The RMSE, MAE and PBIAS are the most reliable and important metrics to focus on when 
evaluating the error indices. The most optimum runoff combination result with the least RMSE and MAE are scored when using the 
following combinations: SM2RAIN-CCI (P), GLEAM (ETa), and GRACE SH (TWS). This complies with the results obtained from the 
Unified Metrics. This step is crucial to ensure that the score is not based solely on the weight from the R2, slope and y-intercept whereas 
RMSE, MAE, and PBIAS are important metrics to consider in hydrology filed. The PBIAS is important in judging whether to consider 
this runoff combination or not. For example, an acceptable PBIAS for the monthly runoff estimation is classified as satisfactory when 
PBIAS ≤ 25% (N. Moriasi et al., 2007) or ≤ 40% (W. Van Liew et al., 2005). In our research, the most optimum PBIAS was scored for 
the runoff combination when SM2RAIN-CCI + GLEAM + GRACE mascon is used with a PBIAS of 30%. This outcome aligns with the 

Fig. 8. Average monthly contribution of water budget components to the total uncertainty.  
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findings obtained from the overall unified metrics approach and the 95% confidence bound analysis. 
Previous research over the UBN basin demonstrated that the most optimum satellites products to estimate the precipitation is 

CHIRPS (Ali et al., 2023; Ayehu et al., 2018; Bayissa et al., 2017; Jung et al., 2017), and in terms of capturing the total precipitation 
volume, SM2RAIN-CCI (Abera et al., 2016; Abera et al., 2017), which matches with our analysis if (not) considering the precipitation 
product derived from SM2RAIN-CCI. These studies did not incorporate the SM2RAIN-CCI in their analysis. The studies that incor
porated the SM2RAIN-CCI in the analysis concluded that it outperformed the other products. Various research papers showed that 
SM2RAIN-CCI datasets outperforms other satellite-based precipitation products due to its unique approach on estimating the pre
cipitation (Brocca et al., 2019; Paredes-Trejo et al., 2019; Pradhan and Indu, 2020). 

In terms of the ETa products, certain studies showed that GLEAM and MOD16 caused large discrepancies in estimating the runoff 
(Abera et al., 2017) whereases one research validated that PMLv2 outperformed MOD16 and GLEAM3.5b over the UBN (McNamara 
et al., 2021). In our research, the result revealed that the recent version from GLEAM 3.6b outperformed MOD16 and PMLv2. GLEAM 
and MOD16 were evaluated over 837 catchments over the globe and revealed similar results to our finding that GLEAM outperformed 
MOD16 (Miralles et al., 2016). GLEAM outperformed PMLv2 and showed lower uncertainty as compared to PMLv2 when compared 
with the flux towers (Li et al., 2022). The discrepancies between the different ET products are caused by the bias in the forcing 
meteorological data, lack of validation data, and the mismatch in the spatial and temporal resolution. 

As for the terrestrial water storage, most studies have either averaged the SH from different centres or used GRACE mascon for 
validation purpose. However, neither of the two GRACE products has been assessed nor validated over the UBN basin (Abera et al., 
2017; Koukoula et al., 2020). Conversely, in our study, we found that GRACE mascon slightly outperformed GRACE SH when tested 
using the OUM (Table 3). In terms of the individual assessment of satellite products, GRACE mascon is slightly closer than GRACE SH to 
the optimum values of the performance metrics (Fig. 4). However, when the goal is to estimate runoff, the combination having 
SM2RAIN-CCI, GLEAM, and GRACE SH is the most optimum solution. The difference in choosing the best products is subjective to the 
unique objective or question the author is trying to answer. The spatial distribution of the water balance components is beyond the 
scope of this research; therefore, the assessment of the satellites products in this research was within the frame of quantifying the runoff 
at the outlet of the UBN basin. The use of remote sensing, leveraging GRACE, to estimate the runoff showed to be a promising potential 
to provide runoff information for ungauged basins or basins with no ground measurements. 

5. Conclusion 

The water budget closure using remote sensing products provided an opportunity to estimate the runoff and gave a useful infor
mation on the hydrological fluxes (runoff, evapotranspiration, and terrestrial water storage) over the UBN basin, Ethiopia. The as
sessments of satellite products and reanalysis datasets were achieved by estimating the runoff at the basin’s outlet. The Unified Metric 
and Overall Unified Metric assisted in the evaluation of the reliability of runoff estimations over the basin. The assessment was 
implemented by incorporating multiple criteria without the reliance on one statistical approach. The different investigated criteria 
concluded that the best-performing combination using terrestrial water storage, actual evapotranspiration, and precipitation products 

Fig. 9. The monthly and annual runoff magnitudes for the El Diem gauge station and the estimated runoff from 42 remote sensing combinations 
showing imbalance of the water budget closure. The columns indicate the used TWS product (left: GRACE mascon, right: GRACE SH). The temporal 
scale is monthly in the first row and annually in the second row. 
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are GRACE SH, GLEAM, SM2RAIN-CCI respectively. Moreover, they were also best-performing individual products expect for TWS 
where GRACE mascon slightly outperformed GRACE SH in terms of the 95% confidence bound. The difference between both GRACE 
forms is considered minimum. Forcing the In-Situ runoff to estimate the P, TWS flux, and the ETa attributed to reveal source of un
certainties. The study also conclude that precipitation and evapotranspiration are the largest source of uncertainties. The water 
balance offset was demonstrated in this study using multiple statistical approaches and all the approaches showed similar output 
except for the TWS flux. Even though the satellites products provided a promising result, access to meteorological data over the UBN is 
expected to improve the calculation. The intense hydrological network observation is required to have a better management of the 
recent built dam over the Upper Blue Nile basin. Overall, the analysis and evaluation demonstrated the potential of remote sensing for 
estimating runoff, which could help address the ongoing challenges in ungauged basins and basins lacking ground information. 
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