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Seismic Reliability Analysis of Structures by an Adaptive Support Vector 

Regression-based Metamodel 

The dual metamodeling approach is usually adopted to tackle the stochastic nature of 

earthquakes in seismic reliability analysis relying on the lognormal response 

assumption. Alternatively, a direct response approximation approach where separate 

metamodels are constructed for each earthquake is attempted here avoiding prior 

distribution assumption. Further, an adaptive support vector regression-based 

metamodeling is proposed that selects new training samples near the failure boundary 

with due consideration to accuracy and efficiency. The effectiveness of the approach is 

elucidated by comparing it with the results obtained by the direct Monte Carlo 

simulation technique and a state-of-the-art active learning-based Kriging approach. 

Keywords: Seismic Reliability Analysis, Metamodel, Support Vector Regression, 

Adaptive Sampling, Monte Carlo Simulation.  

1. Introduction  

The performance-based earthquake engineering (PBEE) is receiving much importance 

nowadays for seismic safety assessment of structures due to its ability to integrate the effect 

of the stochastic nature of earthquakes and uncertainty about various system parameters 

characterizing the behaviour of a structure (Porter, Kennedy, and Bachman 2007). Basically, 

the approach conducts seismic reliability analysis (SeRA) of a structure, i.e., obtains the 

probability that the seismic demand of the structure exceeds its capacity for a target hazard 

level. From the structural engineering viewpoint, SeRA is primarily a time-varying reliability 

analysis problem for a given limit state function (LSF).  Thus, SeRA mainly requires solving 

an outcrossing problem in classical random vibrations theory considering seismic motion as a 

stochastic process. However, statistical variations of seismic responses obtained by the 

random vibration approach are noted to be significantly lower than the response variances 

obtained by the more accurate direct Monte Carlo simulation (MCS) technique  (Pinto 2001). 

Furthermore, the frequency domain approach typically applied in the random vibration setup 

may not be appropriate for SeRA in the PBEE framework as the approach involves the 
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nonlinear response behaviour of a structure. The reliability analysis problem in the PBEE 

framework is usually simplified to obtain the failure probability that the maximum seismic 

response exceeds an allowable value over the entire duration of an earthquake (Buratti, 

Ferracuti, and Savoia 2010) to ensure a specific performance level. Hence, the LSF is 

expressed as,  

  ( ) min ( ) ( )C D
t

g C ,t D ,t= −X X X   (1) 

In the above, LSF is based on the difference between the seismic demand (D) and capacity 

(C) of a structure considering uncertainty due to the vectors XC and XD representing the 

seismic demand and capacity-related random variables, respectively and t is the time 

parameter. The primary task of SeRA is to estimate the failure probability based on an LSF 

as described by Eq. (1). The failure occurs when g(X) < 0 and the probability of failure can 

be obtained based on the available reliability analysis methods. The analytical method is most 

widely adopted (Günay and Mosalam 2013) for its efficiency. However, the FORM-based 

analytical approach requires an assumption of the shape of a performance function. 

Moreover, its level of accuracy may not be acceptable, particularly when the magnitude of 

randomness is large. The brute-force MCS technique is noted to be quite simple in concept 

and the most accurate in this regard. This approach is most preferred for the SeRA of 

structures without the assumption of the specific distribution of involved LSFs. However, the 

approach needs to perform a large number of repetitive nonlinear dynamic seismic response 

analyses (NDSRA) to obtain an acceptable number of sample responses (Kwon and Elnashai 

2006) for meaningful statistical analysis. The metamodeling approach has emerged as a 

viable alternative to alleviate such computational burden while conserving the maximum 

possible accuracy. 

The application of the metamodeling approach is quite beneficial in replacing the 

complex model of a structure to largely reduce the number of NDSRAs involved in the brute 
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force MCS technique. The application of the MCS technique in the framework of 

metamodeling-based reliability analysis methods is well known  (Bucher and Bourgund 

1990). The use of the polynomial response surface method (RSM) for structural reliability 

analysis (SRA) is the simplest approach  (Bucher and Bourgund 1990). Various advanced 

metamodeling techniques like artificial neural networks (ANN), Kriging, support vector 

machine (SVM), multivariate adaptive regression splines (MARS), radial basis function 

networks (RBFN) etc. are frequently employed for SRA efficiently (Afshari et al. 2022; Xu 

and Saleh 2021). Among different metamodeling approaches, the SVM-based metamodels 

are founded on the structural risk minimization principle and small sample learning theory. 

As a result, these metamodels have the generalization capability in approximating an implicit 

function (Vapnik 1998; 2000). In the early studies, the SVM-based classification approach 

was utilized for SRA (Hurtado 2004; 2007; Rocco and Moreno 2002).  The application of 

support vector regression (SVR), an extension of SVM for regression that can overcome the 

curse of dimensionality, is quite notable for SRA (H. S. Li et al. 2006; Moura et al. 2011; Dai 

et al. 2012; Richard, Cremona, and Adelaide 2012; Dai, Zhang, and Wang 2015; Bourinet 

2016; Roy, Manna, and Chakraborty 2019; Roy and Chakraborty 2020; Keshtegar et al. 

2021; Roy and Chakraborty 2022; 2023).  

Regarding the application of the metamodeling approach, it is not an easy task for 

SeRA like metamodeling-based reliability analysis of structures under static and 

deterministic dynamic loads as discussed above where the random loads are represented by 

single or multiple but finite numbers of random variables. However, for the SeRA of 

structures, the stochastic nature of loading cannot be described by a finite number of 

parameters (i.e., random variables) to consider the record-to-record variation of earthquake 

ground motion. To evade this difficulty, the input variable can be separated into two groups 

i.e. the structural system parameters and the stochastic sequences e.g. SeRA by RSM with 

random factor (Buratti, Ferracuti, and Savoia 2010). Following such a concept, the dual RSM 
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(Lin and Tu 1995) was used for SeRA of structures (Towashiraporn 2004; Seo et al. 2012; 

Seo and Linzell 2013; Park and Towashiraporn 2014; Saha, Matsagar, and Chakraborty 2016; 

Gaxiola-Camacho et al. 2017; Shyamal Ghosh and Chakraborty 2017; Shyamal Ghosh, 

Ghosh, and Chakraborty 2018; Zhang and Wu 2019; Yan Xiao, Ye, and He 2020). However, 

such dual metamodeling approach for SeRA of structures requires prior distributions 

assumption of seismic responses. Alternatively, metamodels are also constructed by 

decomposing the nonlinear input-output relation with high-dimensional model representation 

(HDMR) to approximate the relation between seismic responses and uncertain inputs of the 

structural models for SeRA (Unnikrishnan, Prasad, and Rao 2013; Zentner and Borgonovo 

2014). On the other hand, earthquake accelerations are also used directly as inputs to the 

metamodel to predict structural response time histories (Mai et al. 2016).  Recently, a similar 

approach has been explored for SeRA of structures using deep neural networks (Kundu, 

Ghosh, and Chakraborty 2022).  

The application of metamodeling approaches in SeRA of structures is notable starting 

with the polynomial RSM (Franchin et al. 2003; Möller et al. 2009; Buratti, Ferracuti, and 

Savoia 2010; Seo et al. 2012; Seo and Linzell 2013; Park and Towashiraporn 2014; Saha, 

Matsagar, and Chakraborty 2016; Gaxiola-Camacho et al. 2017). The successful application 

of various advanced metamodeling techniques includes moving least-square method-based 

RSM (Shyamal Ghosh and Chakraborty 2017), ANN (Nikolaos D. Lagaros and Fragiadakis 

2007; Nikos D. Lagaros et al. 2009; Wang et al. 2018), Kriging (Gidaris, Taflanidis, and 

Mavroeidis 2015; Shyamal Ghosh, Roy, and Chakraborty 2021), Bayesian networks (Gehl 

and D’Ayala 2016), Lasso regression (Mangalathu, Jeon, and DesRoches 2018), SVM 

(Sainct et al. 2020),  SVR (Shyamal Ghosh, Roy, and Chakraborty 2018) etc.  J. Ghosh, 

Padgett, and Dueñas-Osorio (2013) compared the performances of polynomial RSM, MARS, 

RBFN, and SVR for seismic vulnerability assessment of highway bridges. A comparative 

study of polynomial RSM, MARS, RBFN, SVR, adaptive basis function construction and 
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random forest for regression is also worth noting for seismic fragility analysis of concrete 

gravity dams  (Segura, Padgett, and Paultre 2020). 

Most of the studies of metamodeling-based SeRA of structures employed a design of 

experiments (DOE) selected by one-shot sampling approaches where the sample size and 

training points from the input space of the considered random variables are determined once 

in a single stage. In this regard, the adaptive sampling approach has emerged to construct 

metamodel iteratively for improved SRA (Bucher and Bourgund 1990; Rajashekhar and 

Ellingwood 1993; Echard, Gayton, and Lemaire 2011; Richard, Cremona, and Adelaide 

2012; Pan and Dias 2017; Bourinet 2016; Marelli and Sudret 2018; N. C. Xiao, Zuo, and 

Zhou 2018; X. Li et al. 2018; Cheng and Lu 2020; Roy and Chakraborty 2020; 2022; Ren et 

al. 2022). Teixeira, Nogal, and O’Connor (2021) surveyed the adaptive sampling strategies 

for metamodeling-based SRA. Among different adaptive sampling strategies, the branch of 

active learning-based SRA approach has drawn significant attention. An early use of the 

learning function for adaptive sampling is noted in efficient global optimization (Jones, 

Schonlau, and W. J. Welch 1998). The most applied active learning-based algorithms 

(Echard, Gayton, and Lemaire 2011; Bichon et al. 2008) and a recent review article on active 

learning in SRA (Moustapha, Marelli, and Sudret 2022) provide a complete overview of the 

field.  

In this regard, it may be realized that an adaptive sampling scheme to construct a 

metamodel for SeRA is not an easy task. As already mentioned, the record-to-record 

variation of earthquake time history needs to be considered to replicate the stochastic nature 

of earthquake motion. It is important to note that each ground motion in the bin has separate 

failure surfaces for an LSF of interest at a particular intensity level. Thus, there could be 

variability in the locations of the failure planes due to such record-to-record variations of 

ground motions. Now, these failure surfaces shift when the intensity of the earthquake 

changes. Therefore, the reduced space to select the adaptive training samples is not unique 
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for different intensity levels. Nevertheless, the reduced spaces are also different for different 

ground motions in the bin, as the responses corresponding to each ground motion are 

approximated by a separate metamodel. As already mentioned, there are many adaptive 

sampling strategies for metamodeling-based SRA, but most of the adaptive sampling 

schemes or active learning approaches of SRA deal with static reliability analysis of structure 

where all the uncertain parameters are modelled as scalar random variables. However, the 

input seismic load for metamodeling-based SeRA is no longer a scalar quantity but a vector 

process and stochastic. Hence, applying an active learning approach for SeRA is not 

straightforward like SRA analysis under static load as it involves a large number of input 

parameters due to the high-dimensional nature of earthquakes. There are attempts to apply 

active learning approaches for reliability analysis of structures under a deterministic seismic 

load (Zhou, Peng, and Li 2019; Roy, Chakraborty, and Adhikari 2023) which can be treated 

like traditional SRA problems. Thus, such studies are not considered in the context of 

metamodeling-based SeRA. To the best of our knowledge, a limited number of studies on 

adaptive sampling strategies for metamodeling-based SeRA are noted. Yanjie Xiao, Yue, and 

Zhang (2021) proposed an adaptive Gaussian process regression-based metamodeling 

approach for SeRA. Besides, there are few recent studies on active learning-based seismic 

fragility analysis e.g., an active learning-based dual metamodeling approach (Yanjie Xiao et 

al. 2022) and an active learning reliability approach using gradient boosting classifiers (Jeddi 

et al. 2022). However, these approaches involve prior distribution assumption of seismic 

responses like the usual dual metamodeling approach (Towashiraporn 2004). Thus, it seems 

to be important to develop an efficient adaptive sampling-based metamodeling approach for 

the SeRA of structures that avoids a prior distribution assumption of seismic response. In 

doing so, a direct metamodeling approach where responses of each ground motion are 

approximated by adaptive metamodels would be attempted. For adaptive metamodeling, 

adaptive SVR algorithms (Roy and Chakraborty 2020; 2022) could be employed. However, it 
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can be realized that adopting such adaptive SVR algorithms (Roy and Chakraborty 2020; 

2022) that are predominantly developed for reliability analysis of structures under static loads 

will involve a large number of actual function evaluations for SeRA where one needs to 

update several failure planes for the LSF of interest to address the record-to-record variation 

of earthquakes to consider its stochastic nature. This needs special consideration for the 

development of an efficient adaptive SVR approach for SeRA of structures. 

The present study proposed an adaptive metamodeling approach of SeRA where the 

metamodels are constructed directly avoiding the distribution assumption. In doing so, the 

SVR model is chosen as the metamodel considering its generalization capability with better 

accuracy that can circumvent overfitting compared to empirical risk minimization-based 

metamodeling methods, e.g., polynomial RSM and ANN (Shyamal Ghosh, Ghosh, and 

Chakraborty 2018). Unlike the dual RSM, the present study proposes a direct approach where 

separate SVR models are constructed for the approximation of response for each ground 

motion in the considered ground motion bin. This was explored previously by using Kriging 

(Shyamal Ghosh, Roy, and Chakraborty 2021) and SVR (Shyamal Ghosh, Roy, and 

Chakraborty 2018) based metamodels for SeRA. However, the metamodels in those studies 

were trained by a one-shot DOE. It is already discussed that the adaptive sampling approach 

to construct a metamodel for static SRA is well-versed to ensure better accuracy of reliability 

analysis. However, no such adaptive sampling-based metamodeling approach for the SeRA 

of structure is studied where the metamodels are constructed directly without the distribution 

assumption of responses. Thus, the present study is expected to contribute significantly to 

SeRA as it proposes an innovative adaptive sampling strategy with better efficiency than the 

existing approaches (Yanjie Xiao, Yue, and Zhang 2021; Yanjie Xiao et al. 2022; Jeddi et al. 

2022). The proposed approach updates the training samples for each SVR model from an 

initial DOE to obtain reliabilities for different seismic intensities. This involves 
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considerations of separate failure surfaces for each LSF at a given intensity level. Moreover, 

the variability in the locations of the failure planes due to record-to-record variations of 

ground motions is addressed appropriately. In detail, separate reduced spaces for each ground 

motion in the bin are constructed in the proposed adaptive scheme for each seismic intensity. 

For this, a cross-validation-based error norm is employed to identify the candidate samples 

that have a high chance of being predicted in the wrong domain (safe sample in failure 

domain or vice-versa). From such a reduced space, the sample located at the maximum 

distance from its nearest training sample is selected as the new training sample. This goes on 

iteratively until the failure estimate stabilizes. The effectiveness of the proposed approach is 

elucidated by considering three numerical examples considering the MCS-based SeRA 

results as the benchmark for comparative study. Furthermore, results are also compared with 

the state-of-the-art active learning-based SeRA approach (Yanjie Xiao, Yue, and Zhang 

2021). 

2. Metamodeling-based seismic reliability analysis of structures 

Unlike SRA under static or deterministic dynamic loads, the application of the metamodeling 

approach for SeRA is a difficult task. The reason is that it will involve a large number of 

input parameters due to the high-dimensional nature of earthquake input force. The dual 

RSM is generally applied to circumvent this difficulty (Lin and Tu 1995). A suite of ground 

motions is considered so that the effect of record-to-record variations can be implicitly 

included in the analysis. At each DOE point, the values of any desired response at a specific 

seismic intensity level are evaluated for all the input ground motions in the suite to compute 

the mean value of the desired response quantity, Y  and its standard deviation (SD), Y . 

Now, to approximate the mean and SD of the response, the metamodels for the mean 

response ( )ĝ x  and its SD, ( )ĝ x are constructed for predicting these quantities at any 

combination of structural parameters, x. Finally, the response quantity of interest is obtained 
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based on the assumption that the overall response follows a lognormal probability density 

function (PDF). 

Instead of the dual RSM approach as briefed above, the present study constructs the 

metamodels directly for each ground motion in the bin for response approximation. This will 

be advantageous because, unlike the dual RSM approach, the lognormal assumption for 

overall response approximation is not necessary. A similar approach was also explored by 

using Kriging (Shyamal Ghosh, Roy, and Chakraborty 2021) and SVR (Shyamal Ghosh, 

Roy, and Chakraborty 2018) methods based on the training data obtained by a one-shot DOE 

approach. The metamodel ˆ ( )kg x  for approximating the responses of the k-th ground motion 

( ky ) can be obtained as,  

 ˆ , 1, 2,  .....( ) ,k ky g k m= =x   (2) 

where x represents the vector of structural parameters, m is the total number of ground 

motions considered in the bin. The conventional notion to consider the record-to-record 

variation to reflect the stochastic nature of earthquake motion is implicitly incorporated by 

random selection of metamodel. Note that the seismic response approximation does not 

require a prior assumption on its distribution. Further, the peak ground acceleration (PGA), 

considered as the earthquake intensity parameter, is also taken as one of the predictors in the 

metamodel. Thereby, Eq. (2) is rewritten as,  

 ˆ ˆ, PG( )A ( )k k ky g g= =x X   (3) 

The input vector X in the above comprises structural parameters (x) as well as the PGA 

values.  
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3. Proposed Adaptive SVR-based MCS framework for seismic reliability analysis 

The present study explores an adaptive metamodeling approach for SeRA of structures, 

where the metamodels are constructed directly. It avoids the distribution assumption as is 

necessary for the usual dual metamodel-based approach (Towashiraporn 2004). Specifically, 

an adaptive SVR approach for the SeRA of structures in the MCS framework is attempted 

and presented in this section. 

3.1 Support vector regression 

The SVR-based metamodeling approach is first briefed in this section as the present study 

hinges on the SVR-based metamodel. The SVR is based on the principle of structural risk 

minimization of statistical learning theory (Vapnik 1995; 1998). The SVR can be applied for 

both linear and nonlinear regressions. For the sake of a concise presentation, the 

mathematical details are skipped here. However, the basic concept of SVR is briefly 

discussed in the Appendix. More details can be found in Smola and Schölkopf (Smola and 

Schölkopf 2004). The SVR can be readily implemented in MATLAB using the Gunn toolbox 

available at http://www.isis.ecs.soton.ac.uk/resources/svminfo/. The fitting of an SVR model 

based on the ε-insensitive loss function involves a regularization parameter, C, apart from the 

loss function parameter  . These parameters control the complexity and degree to which 

deviations larger than a specified value are tolerated. Further, the Gaussian radial basis 

function (GRBF) adopted as kernel function in the presented study to develop SVR-based 

metamodel to tackle nonlinear response approximation involves another unknown parameter 

 i.e., the extent of the GRBF kernel also has a significant effect on the training process. The 

optimum choices of these parameters can be decided by cross-validation techniques. A 

simple yet effective algorithm proposed by Roy, Manna, and Chakraborty (2019) is applied 

to obtain the values of C, ε and  to construct the SVR model. The algorithm solves an 

http://www.isis.ecs.soton.ac.uk/resources/svminfo/
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optimization sub-problem to minimize the generalized root mean square error (GRMSE) 

value obtained by the cross-validation method. The GRMSE can be defined as, 

 ( )
p 2

i-1

i i

i=1

1 ˆGRMSE f - f
p

=    (4) 

where, i-1

if̂  represents the prediction at the i-th sample point based on the metamodel 

constructed using all the sample points in the DOE except the i-th sample point, p is the total 

number of sample points in the DOE and if  is the actual response at the i-th sample point. 

3.2 Adaptive sampling scheme of the proposed approach 

An initial DOE is selected first to start the proposed adaptive SVR-based metamodeling 

approach of SeRA of structures. Based on the initial DOE, separate SVR models are 

constructed for each ground motion. The initial SVR model for a particular ground motion is 

identical for different seismic intensities. However, as the adaptive SVR modelling process 

progresses, separate models are constructed for each seismic intensity. Consequently, after 

undergoing individual active-learning processes, these final adaptive SVR models do exhibit 

variations corresponding to different seismic intensities. Therefore, separate reduced spaces 

are to be constructed to obtain adaptive training samples to construct the SVR model 

iteratively. The stopping condition of updating each adaptive SVR metamodel also needs to 

be judged separately. The algorithm is presented in the following sub-sections. 

3.2.1 Initial DOE and initial SVR metamodels 

In SeRA problems involving implicit LSF, the position of the failure plane is not known a 

priori. An initial DOE should be constructed using samples that are distributed as uniformly 

as possible over the entire input space until an approximated location of the failure boundary 

is obtained. This can be achieved by a space-filling design (Santner, Williams, and Notz 

2003) that is suitable for computer experiments where replication error is absent, unlike 
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physical experiments. The uniform design (UD) (Fang et al. 2000) is preferred over other 

space-filling designs for its minimum discrepancy from the theoretical uniform distribution. 

In order to construct an initial DOE, a number of training samples (say, 0p ) are selected 

following a UD over the entire physical domain of the input variables. The physical domain 

for PGA is considered as 0.1 g to 1.0 g. The ground motion bin consists of m  numbers of 

scaled earthquake time histories. Now, the responses are evaluated at 0p sample points using 

each earthquake time history to construct the corresponding SVR-based response prediction 

model. Thus, total m  numbers of initial SVR models are constructed for the m numbers of 

ground motion records in the bin. As discussed earlier, each SVR model is built by 

optimizing an ε-insensitive loss function. The hyperparameter tuning algorithm proposed by 

Roy, Manna, and Chakraborty (2019) is applied here by replacing the leave-one-out cross-

validation method with the holdout cross-validation method. In the holdout cross-validation 

method, one-third of the samples of the DOE having lesser LSF magnitude are held out for 

the test set and the remaining samples as the training set. The leave-one-out cross-validation 

method approximately takes p (number of data points) times higher computational time than 

the holdout cross-validation method. Thus, the holdout cross-validation method instead of the 

leave-one-out cross-validation method is employed for efficiency. The minimum GRMSE 

value is noted for each of the m numbers of SVR models, i.e., min min min

,1 ,2 ,, ,...,GRMSE GRMSE GRMSE me e e  are 

the m numbers of minimum GRMSE values noted sequentially for each of the m metamodels 

corresponding to each of the ground motions in the bin. 

3.2.2 Reduced space and adaptive SVR metamodels 

For a particular SVR model, reduced spaces are constructed with samples having a predicted 

magnitude of LSF less than the corresponding noted minimum GRMSE value. For example, 

for a certain value of PGA, a set of MCS points, Ωk is identified as the reduced space for the 

k-th SVR model corresponding to the k-th ground motion record as,  
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  min

,
ˆ| ( )k k GRMSE kg e = X X   (5) 

where X  represents an MCS sample point that is randomly assigned to the k-th ground 

motion, ˆ ( )kg X is the magnitude of the approximated LSF at that point, and min

,GRMSE ke  

represents the noted minimum GRMSE value for the k-th ground motion. Then, a new 

training sample is selected from the set Ωk by the maximin distance criterion (Johnson, 

Moore, and Ylvisaker 1990) to avoid data clustering. The actual response is evaluated at the 

selected point for the k-th ground motion record and the selected value of PGA. By including 

the new training data into the existing DOE for the k-th ground motion record and the 

selected value of PGA, the associated SVR model is updated. Then, the SVR model 

hyperparameters are obtained by the holdout cross-validation-based approach as described in 

the previous sub-section. Subsequently, the min

,GRMSE ke value is updated. Then, the set Ωk is 

reconstructed following Eq. (5). Again, a new training sample selected by the maximin 

distance criterion from the updated reduced space is added to the adaptive DOE to update the 

SVR model. The updating of the SVR model is iteratively continued until a convergence 

criterion is satisfied. For MCS points randomly assigned to the k-th ground motion record, 

the number of failures at two consecutive iterations obtained by the adaptive SVR models are 

considered for the stopping condition. The convergence criterion in the present study is taken 

as, 

 1 0 05k k k

f ,i f ,i f ,i
ˆ ˆ ˆn n n .−−    (6) 

where, 
1

k

f ,in̂ −
and k

f ,in̂ are the values of the number of failures at (i−1) and i-th iterations, 

respectively. The threshold for relative change of reliability estimate between two 

consecutive iterations can be typically chosen between 10−4 and 10−1 (Wong, Hobbs, and 

Onof 2005). This threshold range is also recommended for the stopping condition of the 
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adaptive SVR method (Dai et al. 2012).  The value of 0.05 is within the range and is effective 

on a similar adaptive SVR approach for SRA (Roy and Chakraborty 2022). Besides this 

stopping condition, if there is no new sample left in the updated set Ωk to add to the adaptive 

DOE, then iteration also stops.  

3.3 Outline of the proposed adaptive SVR approach 

The values of Pf are required to obtain at various PGA values for seismic vulnerability 

assessment of structures. Thus, to obtain Pf values, an MCS population of NMC points 

consisting of randomly generated samples of the structural parameters (x) is considered. The 

control variable PGA is kept constant, for which Pf needs to be calculated. Then, each of the 

NMC points is randomly assigned to an earthquake time history from the bin of m number of 

ground motion records. Without loss of generality, it is assumed that Nk points are assigned to 

the k-th ground motion. The step-by-step procedure of the proposed adaptive SVR approach 

to approximate the seismic response corresponding to the k-th ground motion at a certain 

value of PGA is as follows: 

Step 1 – Select an initial DOE with 0p number of training samples by a space-filling 

design over the entire input space.  

Step 2 – Obtain the SVR hyperparameters by minimizing the GRMSE value obtained 

by the holdout cross-validation approach. Note the minimum GRMSE value. 

Step 3 – Obtain the approximate values of the LSF at the Nk points from the SVR 

model. Estimate the number of failure points based on the SVR model.  

Step 4 – Built the reduced space following Eq. (5) with the noted GRMSE and the 

predicted LSF values. 

Step 5 - To add one new training sample, select a point from the reduced space by the 

maximin distance criterion. If no new training point is left in the reduced 

space, go to step 9. 
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Step 6 – Update the SVR model by adding the selected new training sample to the 

DOE.  

Step 7 – Obtain the number of failure points based on the updated SVR model.   

Step 8 - If the number of failure points in the previous iteration is within ±5% of that 

of the present iteration, then updating of the SVR model is stopped; otherwise, 

go to step 2.  

Step 9 - The latest value of the number of failure points is considered as the 

converged result (say, k

f ,convergedn̂ ).  

Thus, starting from a common initial DOE, m numbers of adaptive SVR models for m 

number of ground motion records are updated until the convergence. The probability of 

failures at the desired value of PGA is finally estimated by the proposed SVR approach in the 

MCS framework as,  

 1 1

1

m m
k k

f ,converged f ,converged
SVR k k
f ,PGA m

MC
k

k

ˆ ˆn n

P̂
N

N

= =

=

= =
 


  (7) 

For different PGA values, the iterations start from the same initial DOE. However, the 

reduced spaces and adaptive samples are different. In the case of multiple damage levels, the 

initial DOE is also identical for all LSFs but reduced spaces are different. Thus, different new 

training points are added. Hence, separate adaptive SVR models are constructed. A flowchart 

of the proposed adaptive SVR approach for SeRA is shown in Figure 1. 
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Figure 1 The flowchart of the proposed adaptive SVR approach of SeRA. 
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5. Numerical Study 

The effectiveness of the proposed adaptive SVR approach for SeRA of structure is elucidated 

numerically by considering three examples. The first example is a simple nonlinear single-

degree of freedom (SDOF) system. Because of its simplicity, it is feasible with reasonable 

time to obtain a large number of nonlinear responses of the SDOF system with random 

system properties and earthquake inputs necessary for reliability computation by brute force 

MCS. Thus, this problem has been taken up to make a comparative study of the accuracy 

possible to achieve in SeRA by the proposed approach compared to that obtained by the brute 

force MCS technique.  The other two examples are more realistic, i.e., a typical bridge pier of 

a multi-span simply supported river bridge and a four-storied reinforced concrete building 

frame considered to be located in the Guwahati city of India. The second example is a 

comparatively higher-dimensional problem having eight random variables. The ground 

motion bin consists of eight recorded accelerograms, eight artificial accelerograms consistent 

with the design spectrum of the considered location and the rest eight are synthetically 

generated for Guwahati city (Shyamal Ghosh, Ghosh, and Chakraborty 2018) and readily 

available in Swarup Ghosh (2020). The same 24 earthquake time histories (eight recorded, 

eight artificial, and eight synthetic) are considered for all the example problems of the present 

study. 

5.1 Example 1: A nonlinear single degree of freedom system 

The nonlinear SDOF, as shown in Figure 2 (a), is considered as the first example to illustrate 

the proposed adaptive SVR approach for SeRA. It is characterized by a nonlinear spring 

connecting a lumped mass. The nonlinear force-deformation (F-u) behaviour of the spring is 

defined in Figure 2 (b). The mass and stiffness proportional damping is considered for the 

dynamic analysis. The frequency (ω), damping (ξ), yield force (Fy) and the ratio of post-yield 

to elastic stiffness of the nonlinear spring (α) are considered random variables. The statistical 
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properties of the random variables assumed to be truncated Gaussian are depicted in Table 1. 

The PGA value is considered as the control variable whose range varies from 0.1 g to 1.0 g.  

A bin of 24 ground motions, as mentioned at the beginning of the numerical study section, is 

considered. The maximum displacement of the mass is taken as the output response variable. 

Two different damage states (slight and complete damages) with respect to two different 

threshold displacement values (0.4 m and 0.8 m) are considered to demonstrate the proposed 

SeRA approach. 

 

Figure 2 (a) The SDOF system and (b) the force-deformation behaviour of the nonlinear 

spring. 

Table 1 The statistical properties of the random variables of the SDOF system 

Random 

variables 

Unit Mean Coefficient 

of variation 

Truncation limits 

Upper Lower 

ω rad/s 6.28 0.2 9.27 3.29 

ξ - 0.02 0.25 0.03 0.01 

Fy N 1.974 0.2 2.913 1.035 

α - 0.05 0.25 0.075 0.025 

 

An initial DOE is constructed first following UD over the entire physical domain of 

the input variables to implement the proposed adaptive SVR approach. The training points of 
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the initial DOE are taken within the range of all the five variables (the four random variables 

and PGA) by arranging 30 equidistant levels of each variable according to the UD table, 

U30(305) readily available at https://www.math.hkbu.edu.hk/UniformDesign/. It implies that 

30×24 = 720 responses are evaluated to build 24 initial SVR models. Now for different PGA 

values, the reliability is estimated by the proposed adaptive SVR approach for both the 

damage states. The value of NMC is taken as 30000 to apply the proposed adaptive SVR 

approach. For each PGA value, 24 different adaptive SVR models are constructed for a 

particular damage state. The procedure of obtaining the SVR models for each intensity of 

earthquakes and each ground motion in the considered bin is generic in nature. However, the 

underlying details, e.g., the number of iterations and the total samples added to the DOE to 

obtain the adaptive SVR model for each ground motion could be different. The maximum 

number of iterations required by the proposed adaptive SVR approach to obtain the reliability 

of the system for each PGA value in cases of slight and complete damage states are shown in 

Figures 3 (a) and (b), respectively. Further, the performance of the proposed approach is 

studied with different stopping thresholds (i.e., 5%, 1%, and 10%). It is observed that the 

number of maximum iterations involved for different cases is quite different and does not 

follow any trends.  

 

Figure 3 Numbers of maximum iterations required by the proposed adaptive SVR approach 

for SeRA of the SDOF system for varying PGA at (a) slight and (b) complete damage states. 

https://www.math.hkbu.edu.hk/UniformDesign/
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The total number of adaptive samples required for a damage state at a particular PGA 

level is further noted. The numbers of adaptive samples added by the proposed approach for 

SeRA of the SDOF system for ten different PGA values for slight and complete damage 

states are shown in Figures 4 (a) and (b), respectively. In addition, the absolute errors in 

estimating the failure probabilities for each case are compared in Figures 5 (a) and (b) for 

three different stopping thresholds. As expected, the number of maximum iterations and the 

number of adaptive samples required decreases with the relaxation of the threshold. 

However, an increased number of iterations does not always provide better accuracy. It is 

generally expected that a tighter stopping threshold yields a smaller error. However, 

reliability results oscillate during the iteration process and sometimes results cross the zero-

error line i.e., from the positive error side to the negative error side or vice-versa. In this 

regard, tighter stopping thresholds guarantee only a lower amount of oscillation, not smaller 

errors. Therefore, a relaxed stopping threshold (e.g., 10%) can stop the iteration early when 

the oscillation magnitude is high, and there is always a chance that it may stop when it is very 

close to the zero-error line. This happens in a few cases of complete damage state. Based on 

the observation of the overall performance, the 5% threshold is found to be an optimum 

trade-off between accuracy and computational demand. The total number of adaptive samples 

added to estimate the Pf values corresponding to the ten different PGA values are 494 for the 

slight damage case and 94 for the complete damage case. Thus, a total of 588 numbers of 

adaptive samples is required. Thereby, the total number of actual response evaluations 

required by the proposed adaptive SVR approach is 720 + 588 = 1308 for the estimation of 

reliabilities for ten different PGA values.  
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Figure 4 Numbers of adaptive samples added by the proposed adaptive SVR approach for 

SeRA of the SDOF system with varying PGA at (a) slight and (b) complete damage states. 

 

 

Figure 5 Absolute deviation in estimation of seismic reliability of the SDOF system with 

varying PGA at (a) slight and (b) complete damage states. 

 

To study the efficiency of the proposed adaptive SVR-based approach in estimating 

seismic reliability, a comparative study is further made with the reliability results obtained by 

the state-of-the-art active learning approach for SeRA (Yanjie Xiao, Yue, and Zhang 2021) in 

combination with the Kriging-based metamodel considering the direct MCS-based reliability 

results as the benchmark. The active learning approach for SeRA (Yanjie Xiao, Yue, and 

Zhang 2021) employs the expected feasibility learning function and if the maximum expected 

feasibility function value of candidate points is less than a specified tolerance (e.g., a value of 
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approximately 1/20 of the SD of the function values at the initial training samples), the 

metamodel is considered to have sufficient accuracy and the sampling can be stopped.  For 

SeRA by the direct MCS, the simulation is performed for any desired PGA level. The 

random structural parameters are simulated corresponding to their respective PDF and are 

combined at random to generate a large number (thirty thousand herein) of the SDOF system. 

The maximum displacement is obtained for each of such SDOF systems by randomly 

selecting a ground motion from the bin (following the assumption that each earthquake is 

equally likely to occur) for the considered seismic intensity level. The same procedure is 

repeated for all the simulated samples of the SDOF system. The probability of exceeding a 

given threshold displacement is obtained accordingly from the ensemble yielding the 

probability of failure for the considered level of seismic intensity. The results obtained by the 

direct MCS (denoted as DMCS), the proposed adaptive SVR approach and the mentioned 

active learning-based Kriging approach (denoted as Active Kriging) are compared for slight 

and complete damage states in Figures 6 (a) and (b), respectively.  The improved 

performance of the proposed adaptive SVR approach over the active Kriging approach for 

most of the PGA levels for both the damage states can be readily observed from these plots. 

The computational time for each method is reported in Table 2. However, the computation 

time of a method may vary for different CPU configurations. In this regard, reporting the 

number of function evaluations seems to be a better alternative for comparing the 

computational cost as it is independent of the execution platform (e.g., CPU configuration, 

coding software, etc.). Thus, the number of function evaluations required is also reported in 

addition to computation time. The number of function evaluations (therefore also the 

computation time) for obtaining the common initial DOE for each PGA should not be over-

counted. Therefore, this computation cost is counted only once for calculating the total 

computation cost of metamodeling approaches to get the complete reliability curve. In the 

case of the direct MCS technique, the reliability results are noted to be converged at 30000 
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simulations. Thus, 30000 actual function evaluations are involved for each PGA; thereby, 

3×105 actual function evaluations for all the ten PGA values are needed to get the complete 

reliability curve. Whereas a total of 1308 and 104448 actual function evaluations are required 

for SeRA by the proposed adaptive SVR approach and the active Kriging approach, 

respectively. The computation time of the proposed adaptive SVR approach is observed to be 

the least for all cases. This clearly revealed the effectiveness of the proposed approach.  

 

 

Figure 6 The comparisons of seismic reliability of the SDOF system with varying PGA at (a) 

slight and (b) complete damage states. 
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Table 2 Comparison of computation time and required number of actual function evaluations 

for SeRA of the SDOF system by different approaches 

 

PGA Proposed adaptive SVR Active Kriging DMCS 

 Computation 

time 

(s) 

No. of 

function 

evaluations 

Computation 

time 

(s) 

No. of 

function 

evaluations 

Computation 

time 

(s) 

No. of 

function 

evaluations 

0.1 g 1045 721 525 1920 1749 30000 

0.2 g 1070 723 556 2304 1750 30000 

0.3 g 1271 739 873 5280 1760 30000 

0.4 g 1346 745 2682 13296 1804 30000 

0.5 g 1597 765 2953 13896 1789 30000 

0.6 g 1936 792 3518 15240 1785 30000 

0.7 g 2112 806 3535 15264 1812 30000 

0.8 g 2640 848 3219 14544 1824 30000 

0.9 g 2125 807 3348 14784 1780 30000 

1.0 g 2564 842 3187 14400 1751 30000 

Total 13817 1308 20507 104448 17804 300000 

 

5.2 Example 2: A multi-span simply supported bridge pier 

A critical pier of a multi-span simply supported river bridge, considered to be located in the 

Guwahati city of India, is taken as the next example problem. The longitudinal profile of the 

bridge is shown in Figure 7 (a). The details geometry of the bridge, the bent columns, the 

supporting bent cap, and the pile caps are given in Shyamal Ghosh, Ghosh, and Chakraborty 

(2018). The concrete and steel grades are considered as M25 (characteristic compressive 

strength of 25 N/mm2) and Fe 250 (yield strength of 250 N/mm2), respectively. The elevation 
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of the pier and its OpenSees model are shown in Figures 7 (b) and (c), respectively. The 

NDSRA is performed in the OpenSees software (McKenna et al. 2016). Further details about 

the displacement-based beam-column elements with associated fibre sections for the bent cap 

and columns with associated concrete (cover and core separately), modelling of 

reinforcement and that of pile resistance including soil-structure interaction effects can be 

seen in Shyamal Ghosh, Ghosh, and Chakraborty (2018). 

The random variables considered for SeRA are the characteristic compressive 

strength of concrete (fck), the elastic modulus of concrete (Ec), the yield strength of steel (fy), 

the elastic modulus of steel (Es), translational spring constants (KG,h), rotational spring 

constants (KG,r) and the structural damping (ξ). The properties of these variables are shown in 

Table 3. The same ground motion bin consists of 24 earthquake time histories considered in 

the previous example is taken for NDSRA. The permissible drift ratio (i.e. the maximum 

displacement of the pier divided by its height) associated with slight, moderate, extensive and 

complete damage states are taken as 0.01, 0.025, 0.05 and 0.075, respectively (Kim and Feng 

2003). 
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Figure 7 The details of the considered bridge: (a) the longitudinal profile of the bridge, (b) 

the elevation of the considered multi-column bent and (c) the OpenSees FE model of the bent 

(Shyamal Ghosh, Roy, and Chakraborty 2018). 

Table 3 Statistical properties of the random variables of the bridge pier. 

Random 

variables 

Unit Distribution 

type 

Mean Coefficient 

of variation 

Truncation limits 

Lower Upper 

fck MPa Gaussian 35 0.064 32.76 37.24 

Ec MPa Lognormal 29580 0.077 27302.34 31857.66 

fy MPa Gaussian 500 0.064 468 532 

Es MPa Lognormal 2×107 0.08 1.84×107 2.16×107 

KG,h kN/mm Uniform 130.5 0.289 65.25 195.75 

KG,r kN-m/rad Uniform 6.06×105 0.289 3.03×105 9.09×105 

ξ - Gaussian 0.045 0.278 0.0325 0.0575 
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According to the UD table, U30(308) readily available at 

https://www.math.hkbu.edu.hk/UniformDesign/, 30 training points are considered within the 

range of all the eight variables by arranging 30 equidistant levels of each variable to construct 

an initial DOE. Then, 30×24 = 720 responses are evaluated, and 24 initial SVR models are 

constructed. Now, Pf is obtained by the proposed adaptive SVR approach for four different 

damage states for different values of PGA. The number of maximum iterations required for 

ten different PGA values is shown in Figure 8. Like the previous example, it is observed that 

these numbers do not have any trend. Furthermore, the numbers of adaptive samples added 

by the proposed adaptive SVR approach for each PGA value and for each damage state are 

shown in Figure 9. The number of adaptive samples added to obtain Pf values for all the ten 

PGA values are 114, 88, 104 and 50 for slight, moderate, extensive and complete damage 

states, respectively. The total number of adaptive samples to obtain the final SVR model is 

114 + 88 + 104 + 50 = 356. Thus, the number of actual response evaluations by the proposed 

adaptive SVR approach is 720 + 356 = 1076 for this problem. 

https://www.math.hkbu.edu.hk/UniformDesign/
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Figure 8 Numbers of maximum iterations required by the proposed adaptive SVR approach 

for SeRA of the bridge pier with varying PGA at (a) slight, (b) moderate, (c) extensive and 

(d) complete damage states. 
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Figure 9 Numbers of adaptive samples added by the proposed adaptive SVR approach for 

SeRA of the bridge pier with varying PGA at (a) slight, (b) moderate, (c) extensive and (d) 

complete damage states. 

 

For estimating Pf values by the direct MCS method, a limited number of simulations 

(5000 MCS samples for each PGA value) study is performed to get the trend of the brute-

force MCS-based solution so that the quality of seismic reliability results can be judged for 

different approaches. It may be noted that with 5000 simulations, the Pf value obtained 

cannot be claimed as the final converged value. The number of simulations required could be 

more than 5000 for getting the final converged Pf value by the brute-force MCS. However, 

this needs enormous computation time. Even, for such limited simulation, a total of 5000×10 

= 50000 simulations (approximately, 4 to 5 s for each simulation resulting in 206933 s or 

57.5 h of computation time on a CPU with Intel i5-3570 3.40 GHz processor and 16 GB 

RAM) are required. It is realized that the Pf values obtained based on 5000 simulations give 
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the trend of the failure probability results and will be helpful to judge the quality of reliability 

results obtained by the metamodeling approaches. Thus, to study the nature of the variation 

of Pf, the variation of Pf with the number of simulations is shown in Figure 10 for PGA of 0.5 

g for moderate and extensive damage states. 

 

Figure 10 Convergence study of failure probability at 0.5 g PGA for (a) moderate and (b) 

extensive damage states. 

 

Like the previous example, the Pf values are also obtained by the active learning-

based Kriging approach. The Pf values obtained by different approaches are compared in 

Figure 11 for four damage states with varying PGA. In most of the cases, the reliability 

results obtained by the proposed adaptive SVR approach are much closer to the results of the 

direct MCS. At the same time, the results of the active learning-based Kriging approach in 

many cases are far away from the reference results. On the other hand, the proposed adaptive 

SVR approach performs well for any PGA value for all damage states. Thus, it is expected to 

be a better choice. Further, the computation time and the number of function evaluations 

required for each method are compared in Table 4.  It may be noted that the direct MCS 

method, even with limited MCS study, 5000 actual function evaluations for each PGA and 

50000 actual function evaluations for all PGA is needed to develop the reliability curve. 

Whereas a total of 1076 actual function evaluations are required by the proposed adaptive 
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SVR approach for SeRA. On the contrary, 37800 actual function evaluations are required by 

the active Kriging. In this regard, it is to be noted that the active learning-based Kriging 

approach requires 24 NDSRA for adding one new training sample and this is the reason for a 

larger number of required function evaluations.   

 

 

Figure 11 Comparisons of seismic reliability of the bridge pier with varying PGA at (a) 

slight, (b) moderate, (c) extensive and (d) complete damage states. 
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Table 4 Comparison of computation time and required number of actual function evaluations 

for SeRA of the bridge pier by different approaches 

 

PGA Proposed adaptive SVR Active Kriging DMCS 

 Computation 

time 

(s) 

No. of 

function 

evaluations 

Computation 

time 

(s) 

No. of 

function 

evaluations 

Computation 

time 

(s) 

No. of 

function 

evaluations 

0.1 g 4526 736 14219 4128 17573 5000 

0.2 g 5058 768 15071 4224 19560 5000 

0.3 g 5024 765 15847 4272 21284 5000 

0.4 g 4737 748 16327 4344 20851 5000 

0.5 g 4882 756 17034 4536 22555 5000 

0.6 g 4846 754 17646 4800 22267 5000 

0.7 g 4830 754 18141 4992 19788 5000 

0.8 g 4790 751 16577 4584 21421 5000 

0.9 g 5336 784 15892 4416 20757 5000 

1.0 g 4604 740 14351 3984 20877 5000 

Total 21003 1076 133477 37800 206933 50000 

 

5.3 Example 3: a four-storied building frame 

A four-storied reinforced concrete building frame previously studied by Shyamal Ghosh, 

Roy, and Chakraborty (2018) is taken as the next example problem. The building is 

considered to be located in the Guwahati city of India. The building plan and the extracted 

transverse frame considered for SeRA are shown in Figures 12 (a) and (b), respectively. The 

details of the assumed fibre discretization of beams and columns are depicted in Figures 12 

(c) and (d), respectively.  The NDSRA of the frame is executed using the OpenSees software 
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(McKenna et al. 2016). The concrete characteristic strength (fck), steel yield strength (fy), and 

structural damping values (ξ) are considered to be random and assumed to be uncorrelated 

normal. Table 5 shows the statistical values of these parameters. The SeRA are performed for 

three structural performance levels i.e., the Immediate Occupancy (IO), Life Safety (LS) and 

Collapse Prevention (CP).  The permissible maximum storey drift ratio values for IO, LS and 

CP levels are 1%, 2% and 4%, respectively as per the FEMA-356 (2000).   

 

 

 

Figure 12 The details of the considered building: (a) The building plan, (b) the details of the 

extracted frame, the details of the fibre-discretization of (c) the beams and (d) the columns 

(Shyamal Ghosh, Ghosh, and Chakraborty 2018). 
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Table 5 The statistical properties of the random variables of the building frame 

Random 

variables 

Unit Mean Coefficient 

of variation 

Truncation limits 

Upper Lower 

fck MPa 25 0.2 30 20 

fy MPa 250 0.2 300 200 

ξ % 5 0.4 7 3 

 

According to the UD table, U30(304), 30 training points are considered within the 

range of all four variables (fck, fy, ξ and PGA) by arranging 30 equidistant levels of each 

variable to construct an initial DOE. Then, 24 responses at each of the 30 points are evaluated 

to construct 24 initial SVR models. Like the previous examples, Pf values are obtained by the 

proposed adaptive SVR approach, the active learning-based Kriging approach and the direct 

MCS technique considering 5000 samples at each PGA level. The number of maximum 

iterations required by the proposed adaptive SVR approach for ten different PGA values is 

shown in Figure 13. The observation is similar to the previous examples, i.e., these numbers 

do not follow any trend. Figure 14 shows the number of adaptive samples required by the 

proposed adaptive SVR approach for each case. For IO, LS and CP levels, the total number 

of adaptive samples required to obtain the final SVR model is 151, 110 and 99, respectively. 

Thus, 720 initial samples and 360 (= 151 + 110 + 99) adaptive samples, i.e., a total of 1080 

(= 720 + 360) actual response evaluations are needed for the proposed adaptive SVR 

approach. 
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Figure 13 Numbers of maximum iterations required by the proposed adaptive SVR approach 

for SeRA of the building frame (a) at IO level, (b) at LS level and (c) at CP level. 

 
Figure 14 Numbers of adaptive samples added by the proposed adaptive SVR approach for 

SeRA of the building frame (a) at IO level, (b) at LS level and (c) at CP level. 
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The Pf values obtained by different approaches for three damage states with varying 

PGA levels are compared in Figure 15. The reliability results obtained by the proposed 

adaptive SVR approach are much closer to the reference results. On the other hand, the 

results of the active Kriging approach in many cases are far away from the direct MCS 

results. Like the previous examples, the computation time and the number of function 

evaluations required for each method are compared in Table 6. The direct MCS and the 

active Kriging approach require 50000 and 11424 function evaluations, respectively. 

Whereas only 1080 function evaluations are needed for the proposed adaptive SVR approach. 

Thus, the better efficiency and accuracy of the proposed adaptive SVR approach than the 

active learning-based Kriging approach is clearly observed for this example as well.  

 

Figure 15 Comparisons of seismic reliability of the building frame (a) at IO level, (b) at LS 

level and (c) at CP level.  
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Table 6 Comparison of computation time and required number of actual function evaluations 

for SeRA of the building frame by different approaches 

 

PGA Proposed adaptive SVR Active Kriging DMCS 

 Computation 

time 

(s) 

No. of 

function 

evaluations 

Computation 

time 

(s) 

No. of 

function 

evaluations 

Computation 

time 

(s) 

No. of 

function 

evaluations 

0.1 g 5944 784 7774 1848 33600 5000 

0.2 g 5764 780 7742 1848 24098 5000 

0.3 g 5761 774 7531 1800 31819 5000 

0.4 g 5197 746 6695 1560 25704 5000 

0.5 g 5177 748 7200 1704 19429 5000 

0.6 g 5253 751 6826 1608 25889 5000 

0.7 g 5140 742 8004 1920 33004 5000 

0.8 g 4983 736 7849 1848 26909 5000 

0.9 g 5194 746 8243 1920 34523 5000 

1.0 g 5349 753 8183 1848 25440 5000 

Total 19265 1080 41550 11424 280415 50000 

 

6. Summary and conclusions 

The present study proposed an adaptive metamodeling approach of SeRA where the 

metamodels are constructed directly to avoid the distribution assumption of seismic 

responses as is necessary in the usual dual metamodeling approach. The effectiveness of the 

proposed approach to estimate seismic reliability is demonstrated by considering the most 

accurate direct MCS-based results as the benchmark. In addition, results are also obtained by 

the state-of-the-art active learning-based Kriging approach for comparative study. The 
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computation time and the number of function evaluations are noted for each example to 

compare the computational involvement of different approaches. The proposed adaptive SVR 

approach is observed to be quite efficient. The reliability results obtained by the proposed 

adaptive SVR approach are noted to be relatively close to the seismic reliability results 

obtained by the direct MCS technique in most of the PGA levels and damage states for all the 

examples studied. The improved performance of the proposed approach over the active 

learning-based Kriging approach in estimating seismic reliability is clearly observed. In fact, 

a large deviation is noted between the result obtained by the active learning-based Kriging 

approach and the direct MCS-based result in many cases. However, the approach is 

consistent and performs well for most of the PGA values at each damage state with a much 

smaller number of function evaluations. Thus, the approach seems to be an effective 

alternative for SeRA of structures. The proposed adaptive SVR approach is investigated for 

the SeRA of structures where the LSF is simplified by considering the maximum seismic 

response. However, it should be further explored for more general time-dependent SRA 

problems under other stochastic loadings e.g., wind, wave, blasts, etc. Active learning in 

combination with the proposed adaptive direct approach of response approximation can be 

explored further. 
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Appendix 

A. Support vector regression 

For p number of training data pairs, ( ) ( ) ( ) 1 1 2 2, , , , , ,p py y yx x x , 
nx R  and y  R , 

where, x is the input vector, y is the corresponding output, R denotes the set of all real 

numbers; n is the input dimension.  For a linear mapping, the regression function f is 

expressed as,  

 ( ) , , ,nf b b= +  x w x w R R  (A.1) 

where, ,w x  is the dot product of w and x ; w  and b  represent weight vector and bias, 

respectively. The best f  is mathematically searched by minimizing the norm 
2

,=w w w  

and, for this, the optimization problem is defined as follows,  

 
2 ,1

min s.t.
2 ,

i i

i i

y b

b y





 − − 


+ − 

w x
w

w x
 (A.2) 

where,   is a non-negative precision tolerance. However, this optimization problem is to be 

only applicable if the function f  can approximate the output at all the training samples 
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within   from the actual value. Nevertheless, the above condition can be hardly achievable 

for all the training points. Therefore, two slack variables ,i i    are introduced in the above 

optimization problem to relax the precision tolerance. The modified optimization problem is 

expressed as follows (Vapnik 1995), 

 ( )
2

1

, ,1
min s.t. , 0

2 , ,

p
i i i

i i i i

i i i i

y b
C

b y

 
   

 

 


=

 − −  +
+ + 

+ −  +


w x
w

w x
(A.3) 

where, C is the regularization constant that regulates the trade-off between the flatness of f  

(represented by the norm 
2

w ) and the relaxation on the fitting error.  

For brevity, the final outcome of Eq. (A.3) is directly provided here. The detailed 

solution procedure may be seen in Smola and Schölkopf (2004). The best regression function 

( )f x  is obtained as follows,  

 ( ) ( )  
1

, , , 0,
p

i i i i i

i

f b C    

=

= − + x x x  (A.4) 

where, i  and 
i
  are the Lagrange dual variables (Smola and Schölkopf 2004). The SVR 

method can be readily extended to nonlinear regression cases by replacing the dot product 

, ix x
 
in Eq. (A.4) with a kernel function ( ), iK x x as, 

 ( ) ( ) ( )
1

, .
p

i i i

i

f K b  

=

= − +x x x  (A.5) 

A function which satisfies the Mercer’s condition can be selected as the kernel function 

(Schölkopf, Burges, and Smola 1999). The GRBF kernel adopted in the present study is 

defined as follows, 
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 ( )
2

2
, exp

2

i
iK

  − 
= − 

 

x x
x x  (A.6) 

where,   is a parameter of the GRBF kernel function. 
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