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Abstract 

Inflammageing is a persistent low-level inflammatory burden that accompanies age-related 

dysregulation of the immune system during normative ageing and within the diseasome of 

ageing. A healthy diet containing a balanced amount of macronutrients, vitamins and 

minerals, adequate in calories and rich in poly(phenols), has an essential role in mitigating 

the effects of inflammageing and extending healthspan through modulation of the activity of 

a range of factors. These include transcription factors, such as nuclear factor erythroid-

derived 2 related factor 2 (Nrf2) and nuclear factor-κB (NF-kB), the inflammasome and the 

activities of the gut microbiota. The aim of this narrative review is to discuss the potential 

of food to ameliorate the effects of the diseasome of ageing. 
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Introduction 

Ageing is a time-dependent, multi-factorial biological process that facilitates a 

progressive physiological deterioration across organ systems, leading to multiple 

dysfunctions (P. G. Shiels et al. 2017; Maduro, Luís, and Soares 2021). All physiological 

functions are interconnected and perturbed during the ageing process, including both the 

structure and microbial composition of the gut, the activity of the immune system, antigen-

induced proliferation, mitochondrial activity and regulation of the epigenetic landscape. 

Chronological age is involved with the chronic burden of lifestyle diseases, such as cancer 

(De Magalhães 2013), neurodegenerative diseases (Hou et al. 2019), cardiovascular diseases 

(CVD) (Mozos et al. 2021), metabolic syndrome (Yu et al. 2020) and chronic kidney disease 

(CKD) (Kooman et al. 2014; Stenvinkel and Shiels 2019).  

Ageing can be characterised by a range of hallmarks such as genomic instability, 

mitochondrial dysfunction, telomere attrition, and loss of proteostasis, among others that are 

common across taxa, indicating that the associated underlying fundamental biological 

processes are critical to how physiological deterioration occurs and progresses (López-Otín 

et al. 2013; P. G. Shiels et al. 2019). Targeting these hallmarks, using a range of natural and 

synthetic agents provides a template for preventing a host of multiple age-related diseases 

(Kooman et al. 2014; P. Shiels and Ritzau-Reid 2015; Maduro, Luís, and Soares 2021; 

Shannon et al. 2021).  

Most age-related chronic diseases in mammals share similar features, including decreased 

Nrf2 expression, oxidative stress, mitochondrial dysfunction, metabolic imbalance, cellular 

senescence, tissue hypoxia, gut dysbiosis and chronic low-grade inflammation 

(inflammageing) (Koppula et al. 2021; P. G. Shiels et al. 2019). Inflammageing is related to 

complex biochemical pathways altered during ageing and inherent within the diseasome of 

ageing, which includes chronic diseases that accumulate with age such as CKD (Kooman et 
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al. 2017; Franceschi et al. 2018; Ferrucci and Fabbri 2018). Inflammageing is also an 

inherent feature of immunosenescence, which is characterised by loss of energy and the 

accumulation of memory T cells. It is accompanied by hallmarks of normative ageing, 

including telomere attrition, epigenetic dysregulation and accumulation of senescent cells 

(Weyh, Krüger, and Strasser 2020; Y. J. Kim et al. 2015; P. G. Shiels et al. 2017). However, 

physiological ageing and its molecular and cellular components do not fully explain 

immunosenescence.  

Increased longevity and longer healthspan are more prevalent in certain parts of the world. 

Five regions of the world, including Okinawa (Japan), Sardinia (Italy), Nicoya Peninsula 

(Costa Rica), Ikaria (Greece) and Loma Linda (California), have been named "blue-zones”, 

a term for a place or region with a high percentage of people who have reached an age >100 

years, without diseases or age-related complications when compared to other areas of the 

world (Buettner 2015; Poulain et al. 2021). This difference in health and life span between 

populations, observed even in monozygotic twins, has been linked to specific exposome 

factors (P. G. Shiels et al. 2021), such as diet and socioeconomic position and lifestyle. Only 

three exposome factors, tobacco smoking, air pollution and diet, have been responsible for 

approximately 50% of annual global deaths (Lim et al. 2012; Afshin et al. 2019). Of these 

exposome factors, an unhealthy diet appears to be the strongest lever for affecting morbidity 

and mortality (Willett et al. 2019). Indeed, diet toward a healthy pattern such as DASH, 

Mediterranean diet, Japanese cuisine-based DASH and cuisine-based Chinese healthy diet 

improves the health status (Umemoto et al. 2022). 

In keeping with the ancient adage “let food be their medicine”, a misquote of the Greek 

physician and philosopher Hippocrates (460BC-370BC), 2500 years later, this thesis has 

been supported by results from the Global burden of disease study (Afshin et al. 2019). This 

landmark study has shown that unhealthy diets, characterised by a high intake of sodium and 
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sugar, and a low intake of vegetables, fruits and whole-grain, contribute to most of the burden 

of lifestyle diseases within the diseasome of ageing (Stenvinkel and Shiels 2019). 

This narrative review will now discuss the mechanistic pathways through which food 

can be used as medicine to prevent or treat the diseasome of ageing. It will describe potential 

interventions concerning specific hallmarks of ageing and two classical features of 

mammalian ageing (gut dysbiosis and diminished Nrf2 expression), which are expected 

within the diseasome. 

Drivers of cellular Senescence and Inflammageing 

Senescence is derived from the Latin "senex", meaning "old". First described by 

Hayflick and Moorhead (1961)(Hayflick and Moorhead 1961), cellular senescence is a state 

of growth arrest, accompanied by specific changes in chromatin organisation, gene 

transcription and protein secretion resulting from DNA and mitochondrial damage. There is 

no gold-standard biomarker to characterise what constitutes cellular senescence. However, 

cyclin-dependent kinase inhibitor 2A (CDKN2A) transcriptional expression (in 

chromosome 9p21) that encodes proteins p16ink4a (Krishnamurthy et al. 2006) has proven to 

be a consistent feature of cells in stable growth arrest, a characteristic of senescent cells. 

Typically, this is accompanied by increased expression of lysosomal senescence-associated 

β-galactosidase activity (SA-β-gal)(Dimri et al. 1995), since in senescent cells, the lysosomal 

biogenesis is increased due to the increased expression of gene GLB1, which encodes the 

lysosomal enzyme. 

Senescence can be induced by a range of stressors, including internal and external 

sources of reactive oxygen species (ROS) such as ionising and UV radiation, environmental 

toxins, oncogenic, genotoxic chemicals, and heat shock, among others that activate both 

p16ink4a and p14ARF expression. P14ARF is a nuclear tumour suppressor protein located within 

the CDKN2 locus that binds to ubiquitin ligase, which ubiquitinylates p53 (a tumour 
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suppressor) for proteasomal degradation and induces apoptosis. The p16ink4a protein prevents 

the phosphorylation of the retinoblastoma tumour suppressor protein (Rb), blocking the 

activity of CDK4/CDK6 (kinases that promote the Rb phosphorylation and are critical for 

cell cycle progression). Thus, p16ink4a and p14ARF are upregulated in senescent cells and are 

hallmarks of ageing, contributing to the cell cycle arrest (Leon et al. 2021; Dimri et al. 2000; 

Ziegler, Wiley, and Velarde 2015; D. Zhu et al. 2002). 

Senescent cells (SC) release a cocktail of pro-inflammatory cytokines as part of a 

senescence-associated secretory phenotype (SASP), or secretome responsible for “bystander 

effects”, which poison the surrounding tissue and promote dysfunction. This contributes to 

inflammation, stem cell exhaustion and modification of cells in the immune system. The 

latter includes T- and B-lymphocyte responses, granulocyte and macrophages activity, 

reduction of hematopoietic tissue and secretory IgA, oxidation of polyunsaturated fatty acids 

in the membrane of immune cells and impaired phagocytosis (Ferrucci and Fabbri 2018; 

Franceschi et al. 2018; Robinson et al. 2013; Wiley et al. 2017; McHugh and Gil 2018; Abiri 

and Vafa 2020). 

SASP production (chemokines, proteases, cytokines) is stimulated by many pathways, 

including the p38, p53 and MAPK pathways and non-coding RNAs regulators. 

Inflammageing also intersects with a range of senescence-associated features, such as 

nuclear factor-κB (NF-κB) signalling and the Nod-like receptor pyrin domain containing 3 

(NLRP3) inflammasome, both of which contribute to age-related inflammatory burden 

(Chan and Schroder 2020; L. Alvarenga, Cardozo, Borges, et al. 2020). 

ROS and the SASP stimulate a feedback loop that results in increased ROS production, 

mostly in the mitochondria, elevating the intracellular ROS and facilitating the development 

of a senescent phenotype through telomere nucleoprotein complex dysfunction (Ziegler, 

Wiley, and Velarde 2015). Telomeres are nucleoprotein structures rich in guanine bases that 
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can act as a sink for scavenging reactive oxygen species (ROS), thus mitigating oxidation 

and DNA damage (Freitas-Simoes, Ros, and Sala-Vila 2018). Telomere shortening occurs 

in every cell division cycle in primary somatic cells (Sanders and Newman 2013). Telomere 

shortening progresses with age advanced and has been reported to shorten in multiple human 

cell types from 11-15kb in youth to 4-7kb in the elderly (Chandrasekaran, Idelchik, and 

Melendez 2017). The rate of telomere shortening is usually accelerated with the disease. 

Despite some questions regarding whether telomere shortening is a reliable biomarker of 

ageing, it remains widely used as an important biomarker; however, methods to evaluate it 

should be improved (Vaiserman and Krasnienkov 2020). Figure 1 depicts biological 

mechanisms involved in cellular senescence. 

 With increasing age, the capacity to mitigate the effects of the accumulation of senescent 

cells relates to a loss of the maintenance of physiological homeostasis. This results in loss of 

physiological function as a reflection of the burden of wear and tear (i.e., allostatic (over) 

load) before the onset of the diseasome of ageing is eventually facilitated. The biochemical 

pathways altered during the ageing process associated with inflammation result in the 

production of a low-grade, chronic sterile inflammatory phenotype, termed 'inflammageing’, 

which is a component of many chronic diseases (Kooman et al. 2017; Ferrucci and Fabbri 

2018). Also, inflammageing is closely associated with gut membrane barrier integrity and 

gut microbiota composition (Kühn et al. 2020; Takiishi, Fenero, and Câmara 2017; Larrick 

and Mendelsohn 2020). 

 

The gut microbiota and the diseasome of ageing 

Ageing sees a general reduction in levels of Bacteroidetes, Tenericutes and 

Bifidobacteria in the gut and an increase in Firmicutes and Actinobacteria; increasing 

the Firmicutes to Bacteroidetes ratio (Fransen et al. 2017; Thevaranjan et al. 2017). In 
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general, lower microbial diversity and relative abundance accompany ageing (Claesson et 

al. 2012; Santoro et al. 2018). A reduction in saccharolytic bacteria and an increase in 

proteolytic bacteria, along with increased colonisation by pathobionts, is linked to 

inflammageing through increased toxin production and generation of lipopolysaccharides 

(LPS) (Rampelli et al. 2013). Inosine (a metabolite that regulates mucosal and systemic 

immune cells) is produced by specific gut microbiota, which links microbe-induced 

metabolite synthesis and the efficacy of immunotherapy (Mager et al. 2020). A recent meta-

analysis with metagenomics datasets to evaluate possible interactions between age and the 

microbiome in different diseases concluded that age is a major confounder in studies linking 

the microbiome to disease (Ghosh et al. 2020). 

As the gut microbiota changes with ageing and/or disease, toxins produced by the 

gut microbiota, such as indole-3-acetic acid (IAA), indoxyl sulfate (IS), p-cresyl 

glucuronide, p-cresyl sulfate (PCS), phenylacetylglutamine (PAG) and trimethylamine N-

oxide (TMAO) accumulate. Moreover, the altered microbiota leads to increased production 

of LPS, systemic endotoxemia and reduced short-chain fatty acid (SCFA) production, 

contributing to inflammageing (O’Toole and Shiels 2020; Thevaranjan et al. 2017; Fransen 

et al. 2017; D. Mafra et al. 2019). Among these microbially generated toxic metabolites, 

TMA (W. Zhu et al. 2016) and PAG (Nemet et al. 2020) have received much recent interest 

as they promote CVD and thrombotic risk. Since the susceptibility to atherosclerosis is 

transmitted via gut microbial transplantation, gut microbes may represent a novel therapeutic 

target for modulating the risk of atherosclerosis (Gregory et al. 2015).  

Inflammation per se can also cause changes in the gut microbiota composition, 

reducing the abundance of strict anaerobic Firmicutes and increasing the prevalence of 

“pathobionts” in the gut (Santoro et al. 2018; Candela et al. 2014). Indeed, germ-free mice 

transplanted with gut microbiota from old mice presented an increased inflammation burden 
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(Fransen et al. 2017; Thevaranjan et al. 2017), supporting this thesis. LPS and toxins 

produced by the microbiota can activate NF-κB and p16ink4a expression (K. A. Kim et al. 

2016), contributing to cellular and physiological senescence. A recent study in a mouse 

model of kidney disease has shown that dietary changes led to the posttranslational 

modification of microbial proteins that reduced the generation of uremic toxins (Lobel et al. 

2020). Thus, the functional processes that underlie the interactions between the host and the 

microbiota need more attention. 

While there is a shift in the microbiota to a more “pathobiont profile” in old age, this 

can be counterbalanced by other microbes generating a lower potential pathobiont profile 

and maintaining a good “mutualistic pact” in extreme longevity (such as in people 105-109 

years old), (Santoro et al. 2018; Biagi et al. 2016) (Table 1). These changes are related to 

good immunological health, the energy source of colonocytes, lean body mass and superior 

lipid profile and metabolic system (Kong et al. 2016; Moraes, Borges, and Mafra 2016; 

Schnorr et al. 2014; Tuikhar et al. 2019). 

Intestinal alkaline phosphatase (IAP), expressed in the apical microvilli of the brush 

border of enterocytes, also has an essential role in the gut (L. Alvarenga, Cardozo, Lindholm, 

et al. 2020). Kühn et al. (2020)(Kühn et al. 2020) have reported that mice supplemented with 

IAP had an altered microbiota associated with reduced frailty, improved gut barrier 

dysfunction, reduced endotoxemia and inflammation, critically, increased lifespan. 

Preservation of barrier function (preserved by ZO-1 and occludin proteins) is involved in 

slowing the ageing process and reduction of inflammageing, as the reduction in its activity 

leads to increased gut permeability, increasing levels of pro-inflammatory metabolites, such 

as LPS, flagellin and toxins produced by the gut microbiota (Kühn et al. 2020; Takiishi, 

Fenero, and Câmara 2017; Larrick and Mendelsohn 2020). Whereas the gut microbiome 

contributes to the generation of pro-inflammatory metabolites, dysbiosis can also influence 
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metabolism and reduce the production of short-chain fatty acids (SCFAs), such as butyrate. 

Reduction in SCFA production has been linked to exacerbation of inflammageing (Figure 

2). 

 Nrf2 expression and the diseasome of ageing 

As an endogenous antioxidant system, the Nrf2-Kelch-like-ech-associated protein 1 

(Nrf2-Keap1) signalling pathway is critical for cytoprotection. In response to cytostressors, 

there is a conformational change in the structure of the cysteine-containing regions in the 

Keap1 (a protein with 627 amino acid and possess five domains) in the cytoplasm. Then, 

Nrf2 is translocated to the cell nucleus and heterodimerises with the small 

musculoaponeurotic fibrosarcoma (sMaf) proteins (leucine zipper-type transcription factors) 

that bind to antioxidant response elements (AREs) in the DNA and increase the gene 

expression of more than 250 genes involved with the synthesis of antioxidants such as 

several glutathione S-transferases, catalase, superoxide dismutase, NAD(P)H quinone-

oxidoreductase-1, heme-oxygenase-1 genes. Several glycolytic enzymes (glucose phosphate 

isomerase, hexokinases, 6-phosphofructo-2-kinase, etc.) and enzymes involved in the 

pentose phosphate pathway (glucose-6-phosphate dehydrogenase and phosphogluconate 

dehydrogenase) are regulated by Nrf2. Also, Nrf2 is involved with the activation of the 

purine biosynthesis pathway (phosphoribosyl pyrophosphate amidotransferase and 

methylenetetrahydrofolate dehydrogenase 2) and enzymes involved with iron and lipid 

metabolism, as well as enzymes responsible for unfolded protein response and proteostasis 

(Hayes and Dinkova-Kostova 2014. He, Ru, and Wen 2020). As a result, cytoprotective gene 

networks are activated to combat stress.  

Ageing, however, is associated with reduced expression of Nrf2, which enables 

genomic instability, disruption of proteostasis and prevents the mitigation of oxidative stress, 

thus linking Nrf2 to hallmarks of ageing (P. G. Shiels et al. 2019). 



 11 

Studies in laboratory models and non-human primates have shown impaired ability 

to stimulate an effective Nrf2-dependent antioxidant defence with increasing age in response 

to oxidative stressors resulting in increased oxidative damage in aged cells (Csiszar et al. 

2012; Ungvari et al. 2019). A previous study has demonstrated age-associated functional 

decline resulting from a progressive loss of the ability to activate Nrf2 targets in response to 

acute exposure stress (Rahman et al. 2013). The role of Nrf2 in ageing is also seen in 

compelling evidence that demonstrates increased sensitivity to carcinogens and rapid organ 

damage in mice lacking the Nrf2 gene (Cuadrado et al. 2019; Stenvinkel and Shiels 2019). 

Studies in Caenorhabditis elegans have also linked the Nrf2 functional ortholog- Skinhead-

1 (SKN-1) as a crucial participant in the homeostatic function that elicits a significant effect 

on life and healthspan in mammals (Blackwell et al. 2015). Interestingly, these mammalian 

observations are supported by an also observed in Drosophila.  

A common feature of many species living in stressful environments is an 

upregulation of Nrf2 expression or an increase in its coding capacity (Vázquez-Medina et al. 

2013), suggesting a cytoprotective activity in extreme living conditions. This can be 

observed in species such as the hibernating ground squirrel (Ictidomys tridecemlineatus), 

deep-diving seals and the naked mole-rat (P. G. Shiels et al. 2019).  

 

Can Food be used as medicine to combat inflammageing? 

Nutritional interventions using the concept of ‘Food as Medicine’ (Denise Mafra et 

al. 2021) provide important insights into how food can modulate transcription factors such 

as Nrf2 and mitigate the inflammatory burden and physiological deficits associated with 

ageing.  

Food is one of the most critical determinants of healthspan, as it is central to ROS 

production, the generation of metabolic stress, and inflammatory and immune processes 
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(Abiri and Vafa 2020). Indeed, an unhealthy diet (e.g., containing ultra-processed food, 

processed meats, biscuits, margarine) is associated with accelerated biological ageing and 

reduced health span (Alonso-Pedrero et al. 2020; Rafie et al. 2017).  

Epigenetic diet 

A range of diets has promoted age-related health, including an ‘Epigenetic diet’ 

(Blasiak et al. 2020; Franzago et al. 2020). Such epigenetic diets include increased 

consumption of foods containing isothiocyanates, folic acid, vitamin B12, choline, and 

betaine to enhance the maintenance of the epigenome, as shown in Table 2 (Cardozo et al. 

2020; Denise Mafra et al. 2021). While intuitive, their efficacy remains to be proven. 

The effect of an epigenetic diet consisting of high consumption of methyl donor 

foodstuffs (folic acid, vitamin B12, choline and betaine) has been investigated in the Agouti 

viable yellow (Avy) mouse model. In this model, altering maternal nutrition by ensuring 

higher consumption of methyl donor group foodstuffs resulted in variation of offspring coat 

colour, a direct consequence of its epigenetic regulation. The offspring manifested leaner 

body weight, darker furs and increased resistance to diseases than untreated Avy mouse 

controls (Waterland and Jirtle 2003).  

Hypomethylation of different families of repetitive sequences, such as LINE elements 

in man, has been observed in a range of human diseases, indicating that their methylation 

status contributes to ageing and healthspan (Pappalardo and Barra 2021). 

Consistent with the above thesis, an ‘epigenetic diet’ has been shown to impact the 

methylation status of LINE-1 elements in a study of young cancer-free women, where 

participants with a poorer dietary lifestyle, characterised by lower consumption of fruits, 

vegetables and folate intake displayed LINE hypomethylation in blood leukocytes compared 

to women with median adherence to an epigenetic diet (Agodi et al. 2015). A similar study 

in men aged 55-80 years and women aged 60-80 years using diets rich in folates and 
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isothiocyanate observed upregulation of 8 genes: EEF2, COL18A1, IL4I1, LEPR, PLAGL1, 

IFRDI, MAPKAPK2 and PPARGC1B involved in the regulation of inflammation and 

immunocompetence (Marques-Rocha et al. 2016).  

A recent epigenome-wide analysis (EWAS) of methylation at >400,000 CpG sites in five 

cohorts has identified methylation levels at 30CpG to correlate with habitual consumption 

of components of an ‘epigenetic diet’(Ma et al. 2020), in keeping with health benefits from 

using food as medicine.  

In a recent pilot study, a 1-year dietary intervention using the Mediterranean diet 

(MedDiet) was reported in epigenetic rejuvenation when estimating DNAmAge using data 

for methylation at 353CpG sites in genomic DNA. This, however, remains to be replicated 

and is open to the effects of a range of confounders such as lifestyle (Gensous et al. 2020). 

The potential effects of an epigenetic modulating diet on epigenetic mechanisms are shown 

in Figure 3. 

Food restriction as a therapy  

Caloric restriction (CR) is an established approach in animal models to prevent the 

accumulation of senescent cells (M. B. Lee et al. 2021; Maduro, Luís, and Soares 2021). 

Although the specific molecular mechanisms related to the benefits of CR are not yet 

evident, some pathways have been related, such as activation of AMP protein kinase 

(AMPK) and sirtuins (SIRTs), inhibition of insulin-like growth factor-1 (IGF-1) signalling, 

fibroblast growth hormone factor 21 (FGF21) and mechanistic target inhibition of rapamycin 

(mTOR) (M. B. Lee et al. 2021; Maduro, Luís, and Soares 2021). Critically, CR and dietary 

restriction can upregulate the trans-sulphuration pathway (TSP), resulting in the production 

of H2S, which induces Nrf2-mediated cytoprotection and results in more efficient 

mitochondrial function (Hine et al. 2018). Studies evaluated metabolic health and longevity 

in male and female C57BL6 mice that consumed different proportions of dietary 
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macronutrients ad libitum: protein (5–60%), fat (16–75%), carbohydrate (16–75%) and 

energy (8, 13 or 17 kJ/g of food) – and found that low-protein and high-carbohydrate diets 

resulted in greater longevity (Solon-Biet et al. 2014; Solon-Biet et al. 2015). 

Many fad diets have involved caloric restriction, such as low carb diets or ketogenic diets, 

protein restrictions or specific amino acid restriction diets, and the celebrated intermittent 

fasting diet. All are known to reduce weight in obese people. However, there is no solid 

scientific evidence of their effects on biological ageing in humans (M. B. Lee et al. 2021). 

Diet restriction has been a common human practice across numerous cultures for 

centuries. Cumulative results from observational and randomised clinical trials suggest that 

the benefits of CR in humans result in the same metabolic and molecular adaptations that 

have been shown to improve health and delay the accumulation of molecular damage in 

animal models of longevity. Moderate CR in humans seems to favour metabolic and 

hormonal situations implicated in the pathogenesis of type 2 diabetes (T2D), CVD and 

cancer, the leading causes of morbidity, disability and mortality (Most et al. 2017). CR 

appears to have an anti-inflammatory effect in humans, protecting against atherosclerotic 

risk factors and resulting in less carotid intima-media thickening. In addition, others 

responsible for this caloric restriction-mediated anti-inflammatory effect include reduced 

adiposity and reduced secretion of pro-inflammatory cytokines (Fontana et al. 2007; Fontana 

2009; Fontana et al. 2004). The CALERIE-2 Study (Comprehensive Assessment of Long-

term Effects of Reducing Intake of Energy) evaluated healthy non-obese adults who 

underwent caloric restriction (25%) continuously for two years and demonstrated beneficial 

effects on the body and regional adiposity, which could facilitate healthspan (Das et al. 

2017). 

The effects of CR can also be achieved using mimetics, as shown in Table 3, to mitigate 

inflammation and oxidative stress (Denise Mafra et al. 2021; Shankar et al. 2017; J. Zhang 
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et al. 2019; Bai and Wang 2019; Esmaeil et al. 2017; Livia Alvarenga et al. 2020; A. Wang 

et al. 2019; Zhao and Zhang 2020; Barreca et al. 2014; Chauhan, Jang, and Kim 2020; 

Ribeiro et al. 2021; De Almeida Alvarenga et al. 2019; Yang et al. 2018; Limtrakul et al. 

2016; Sun, Jin, and Shi 2017; Golovinskaia and Wang 2021).  

 

Food as senotherapy 

Numerous bioactive compounds and nutrients in the foodome can act as 

senotherapeutics, i.e., agents that combat physiological decline with age, combat disease and 

act as cytoprotective agents, with the potential to mitigate inflammation. In particular, they 

act as agonists for Nrf2, which activates hundreds of anti-inflammatory and anti-oxidative 

genes (Ebert et al. 2020; Arefin et al. 2020). For example, cruciferous vegetables, tomato 

skin, red-purple plants, coffee beans, rosemary and turmeric contain bioactive compounds, 

including Nrf2 agonists, such as sulforaphane (SFN). Moreover, as these foods neutralise 

NF-κB-driven inflammatory response, they can mitigate the inflammatory and pro-oxidative 

inflammageing phenotype (Denise Mafra et al. 2021). In a 2019 bibliometric analysis of 

various natural Nrf2 agonists, resveratrol, curcumin, and SFN emerged as the most clinically 

relevant. This could be linked to its lipophilic nature and low molecular weight, ensuring 

bioavailability. The oily sulfur-isothiocyanate sulforaphane (SFN), found in cruciferous 

vegetables, such as cabbage and broccoli, particularly broccoli sprouts, is a potent inductor 

of Nrf2 (Cardozo et al. 2020). Although the primary mechanism proposed for SFN´s health 

benefits is via activation of Nrf2, it also inhibits NF-kB expression (Cardozo et al. 2020; 

Dong et al. 2016) and suppresses NLRP3 activity (Gong et al. 2019). 

Another bioactive Nrf2 agonist is the phenylpropanoid cinnamaldehyde found in 

cinnamon, chocolate, tomatoes, and citrus food (P. Wang et al. 2020). Polyphenols found in 

fruits and vegetables can interact with cysteine residues in Keap1, causing it to disassociate 
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from Nrf2, enabling its translocation to the nucleus (Denise Mafra et al. 2021). Quercetin 

can also increase Nrf2 expression by inhibiting the proteasomal degradation pathway, 

allowing the release of Nrf2 from the Keap1 repressor to the nucleus (Nabavi et al. 2016). 

Several constituents in fruit and vegetables have distinct geroprotective properties. Fisetin 

is a flavonoid found in strawberries, mangoes, apples, grapes, onion, persimmon and 

cucumber (at concentrations between 2-160 µg/g) that induces apoptosis of senescent cells 

and has an anti-inflammatory property (Yousefzadeh et al. 2018; Y. Zhu et al. 2017). In a 

rat model of D-galactose (D-gal)-induced accelerated senescence, fisetin treatment reduced 

both age-induced eryptosis processes and oxidative stress (S. Singh et al. 2018). HepG2 cells 

treated with fisetin preserve Nrf2 stability and inhibit its degradation (H. Zhang et al. 2019). 

When tested in aged wild-type rats, or mice with the progeroid syndrome, fisetin was 

classified as a “potent senolytic agent”. Moreover, when administered to wild-type mice late 

in life, fisetin significantly reduced age-related pathology, restored tissue homeostasis, and 

extended median and maximum life and health span (Yousefzadeh et al. 2018). It exerts its 

senolytic effect at doses as low as 5 µg, and no adverse effects have been recorded, even in 

very high doses (Kirkland et al. 2017). 

Quercetin, found in fruits, is similarly salutogenic and approved for use as a clinical 

senolytic agent. In combination with dasatinib (an anticancer drug), it acts as a confers 

enhanced senolytic capability (Kirkland et al. 2017). More recently, the effects of long-term 

treatment with dasatinib plus quercetin in aged mice were tested. The authors concluded that 

the effects on ageing might be mediated through the modulation of gut microbiota 

composition. The treatment promoted a reduction in senescent cells (p16 and p21 

expression) and inflammation (Cxcl1, IL1-β, IL6, Mcp1 and TNFα expression) in the small 

and large intestines compared to control mice. It was also verified that the modulation of 

microbial signatures was more prominent in the small intestine with an increase in the 



 17 

phylum Verrucomicrobia and a lower abundance of the phylum Firmicutes in the ileum of 

treated mice (Saccon et al., 2021). Additionally, quercetin activates SIRT-1, inhibits the 

NLRP3 inflammasome (L. Alvarenga, Cardozo, Borges, et al. 2020) and the expression of 

SASP factors and the suppressed IL-Iβ induced activation of the NF-kB pathway cascade 

(Shao et al. 2021). Quercetin has a therapeutic potential to alleviate endothelial dysfunction 

in age-related CVD by mitigating endothelial senescence (Dagher et al. 2021). As such, 

quercetin may be one of most potent anti-inflammatory flavonoids (Martínez, Mijares, and 

De Sanctis 2019). It has also been recently identified as an anti-viral agent, currently being 

tested for the ability to treat SARS-CoV-2 (Covid-19) (Williamson and Kerimi 2020). 

Other bioactive compounds such as tocopherol, curcumin, berberine, catechin, rutin, and 

ginkgo Biloba extracts, with senolytic effects, can be obtained from diet, demonstrating the 

potential of using the concept of food as medicine (Denise Mafra et al. 2021). 

Scientific evidence suggests that nutritional intervention involving adequate consumption 

of a diet rich in compounds with senolytic properties is a prospective strategy to prevent or 

mitigate the effects of the diseasome of ageing. However, it would be helpful to establish an 

officially approved daily intake recommended value for polyphenols capable of eliciting a 

significant senolytic effect (Yousefzadeh et al. 2018) (Figure 4). 

One of the advantages of using the natural agents and bioactive compounds found in food 

to prevent senescence is their enhanced safety profile over synthetic agents such as dasatinib, 

as most naturally occurring senotherapeutic agents have no record of severe adverse effects, 

even at high doses (Maher 2015). The prototype senolytic agent dasatinib has effects ranging 

from low white blood cell count, upper and lower respiratory tract infection, anaemia, low 

blood platelets, rash, diarrhoea, dyspnea and neutropenia (Nekoukar, Moghimi, and 

Salehifar 2021). In addition, it is important to notice that most studies are performed with 

only one nutrient. However, people eat food, not nutrients, and here we emphasize that the 



 18 

food matrix seems crucial to mitigate inflammageing compared to the supplementation with 

only one nutrient. 

The impact of the food on gut microbiota  

Foods are also essential to maintaining intestinal mucosal integrity and stable normative 

gut microbiota (Gebert et al. 2020). High microbial diversity within a stable microbiota is 

central, as an imbalanced microbiota can elevate the inflammatory burden (Figure 5) 

(Margină et al. 2020). 

 Fermented foods based on lactic acid bacteria, such as sauerkraut, pickled cabbages, 

fermented cassava, gundruk, khalpi and kefir, present antioxidant properties. These foods 

contain Lactobacillus and many bioactive compounds which activate Nrf2 expression (D. 

Mafra et al. 2022). This is again supported by evidence from pre-clinical models, where it 

has been demonstrated that dietary acquisition of fermented soybeans increased Nrf2 

expression, which resulted in both antioxidant and anti-fatigue effects (Cui et al. 2020).  

Strategies to revert diseases associated with gut dysbiosis are currently being explored, 

with the hypothesis that the diseaseome of ageing is tractable to intervention through 

restoring a normative microbiome (O’Toole and Shiels 2020). Certain therapeutic strategies, 

including synbiotics, probiotics and prebiotics, have been explored. Although studies on the 

use of symbiotics as treatment options have been limited, few studies have documented 

beneficial effects on the gut microbiota in the age-related burden of lifestyle diseases, such 

as CKD (Cruz-Mora et al. 2014; McFarlane et al. 2019). Probiotics have been reported to 

improve health in some (Wu et al. 2011) but not in all studies (Borges et al. 2018). A major 

challenge with this therapeutic approach is that the gut microbiota has an innate ability to 

resist external influences (Denise Mafra et al. 2021), and their effects can be affected by 

inter-individual variability and pre-existing health conditions. Studies with prebiotics have 

demonstrated more consistent results than probiotics (S. P. Singh et al. 2017), acting by 
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shifting bacterial metabolism towards a saccharolytic fermentation pattern. This has been 

achieved by a phenomenon called ‘cross-feeding’, to support intestinal bacteria using 

excreted products from another strain, resulting in the generation of more beneficial 

metabolites that benefit both the bacteria and ultimately the host (Graf et al. 2015). Clinical 

studies have shown that prebiotic supplements positively affect plasma urea levels and 

uraemic toxins and improve inflammatory status in CKD (Esgalhado et al. 2020).  

Macronutrients, including carbohydrates, proteins and fat that are partially absorbed in 

the ileum, can be processed by the gut microbiota in the colon, providing a greater number 

of substrates for the growth of gut bacteria (Denise Mafra, Barros, and Fouque 2013).  

Another type of food that promotes bacterial growth, though selectively, is foods high in 

sugars, such as fructose and glucose (Rosas-Villegas et al. 2017). They increase the 

Firmicutes to Bacteroidetes ratio that has been implicated in higher susceptibility to diseases. 

They also activate unfavourable physiological processes, such as endotoxemia, 

overexpression of cytokines (TNF and IL-1β), and toll-like receptor 4 (TLR4) in rat kidneys 

(Rosas-Villegas et al. 2017). As endotoxemia contributes to inflammation and metabolic 

disorders, gut dysbiosis could be a suitable explanation for the association between high 

sugar consumption and increased incidence of certain age-related diseases, such as CVD and 

CKD. In the case of dietary proteins, their digestion and absorption occur partly in the ileum 

(Scott et al. 2013). Their fermentation which occurs in the colon by the action of proteolytic 

bacteria results in the generation of both beneficial compounds (e.g., SCFAs and 

polyphenols) and toxic end products (e.g., amines, phenols and thiols) (Denise Mafra, 

Barros, and Fouque 2013). Significantly, cooking methods, general food processing methods 

and protein sources are essential determinants of the outcome of microbial metabolism of 

proteins (Nyangale, Mottram, and Gibson 2012; Madsen et al. 2017). 
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High-fat diets, for example, reduce total microbiota content in faeces, and increase 

endotoxemia and intestinal permeability (Wisniewski, Dowden, and Campbell 2019). 

Decreased SCFAs and elevated circulatory concentration of pro-inflammatory markers have 

also been reported in healthy young adults consuming a high-fat diet compared to the lower-

fat diet group (Wan et al. 2019). Additionally, fish oil, a rich source of omega 3 

polyunsaturated fatty acid, restores intestinal barrier function and trans fatty acid, abundantly 

present in processed food such as pastries, fried potatoes, snacks, and margarine, promotes 

microbial dysbiosis and poor health (Ge et al. 2019). It is important to note that omega-3-

rich foods have been recorded with a greater beneficial impact on the gut microbiome than 

omega-3 supplements (Costantini et al. 2017), emphasising the importance of a holistic food-

based approach over a nutrient-based approach. 

The consumption of plant-based polyphenolic compounds has also been associated with 

the modulation of gut microbiota. Due to their low bioavailability, the majority of the dietary 

polyphenols enter the circulation through the colon and could modulate the composition and 

function of the gut microbiota (Ozdal et al. 2016). In a study involving blueberry 

supplementation in a murine model, beneficial changes were observed in the gut microbiota, 

characterised by increased prevalence of Bifidobacterium and Lactobacilli, which mitigated 

inflammageing and improved inflammation insulin signalling (S. Lee et al. 2018).  

Generally, human diets are highly varied and have complex effects on the gut microbiota. 

However, some diets are more salutogenic than others. For example, the Mediterranean diet 

promotes the growth of saccharolytic microbial species. In contrast, the Western diet, 

characterised by a high intake of red meat, refined grains, and ultra-unprocessed foods, 

resulting in high sugar, salt, animal protein and saturated and hydrogenated fats, enables 

dysbiosis (Garcia-Mantrana et al. 2018). A Western diet supports decreased saccharolytic 

and increased proteolytic bacterial growth typical of many age-related diseases (Bischoff 
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2016). Thus, a balanced gut ecosystem may reduce the risk of age-related disease 

development by reducing the risk of unfavourable physiological processes, such as 

endotoxemia and inflammation. Few studies have investigated the effects of a wide range of 

dietary patterns on the gut microbiota in humans and the effect of external factors. However, 

through advances in biostatistics and metagenomics, personalised dietary therapy that targets 

the gut microbiota in disease prevention is promising, solidly placing the food as medicine 

approach as a key player in the achievement of prolonged healthspan. 

 

Conclusion 

Emerging data has revealed a significant role of food in mitigating aspects of ageing-

related disease. In particular, it has been demonstrated to combat inflammageing associated 

with many chronic burdens of lifestyle diseases. Targeting the foodome using "Food as 

Medicine” may be an attractive way to restore a normative gut microbiome and thus mitigate 

the effects of their metabolites. Nutrients that can assist in modulating inflammatory 

processes by regulating transcription factor activity, such as reducing activation of NF-kB 

and NLRP3 and increasing Nrf2 expression and activity, are also key to such an approach. 

However, the adoption of Food as Medicine should be based on robust scientific evidence 

gleaned from carefully designed clinical trials. Thus, carefully choosing the foods and 

trialling them may help us to increase healthspan - “The power is on your plate”. 
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Figure 1. Pictorial representation of biological mechanisms involved cellular 

senescence, resulting in the exacerbation of the inflammatory phenotype. Cellular 

senescence is a key feature of ageing, and it is initiated by several stimuli, such as 

endogenous and exogenous sources of reactive oxygen species (ROS) such as ionising and 

UV radiation, environmental toxins), oncogenic and genotoxic chemicals and heat shock, 

which mediates cellular and organ damage during ageing. These mechanisms activate 

p16ink4a and p14ARF, p38, p53, MAPK, nuclear factor-κB (NF-κB). Senescence is also 

characterised by low grade sterile chronic inflammation (termed ‘inflammageing’) due to a 

senescence-associated secretory phenotype (SASP), which contributes to the overall 

inflammatory burden. Created with Biorender. 

 

Figure 2. A pictorial overview of the beneficial effect of the relationship between gut 

microbiota and inflammageing. Ageing is related to reduced microbial diversity, with the 

increased gut composition of pathobionts, increasing microbiota-derived metabolites such 

as indole-3-acetic acid (IAA), p-cresyl sulfate (PCS), indoxyl sulfate (IS), 

phenylacetylglutamine (PAG), trimethylamine N-oxide (TMAO) and lipopolysaccharides 

(LPS), and reduction of short-chain fatty acid (SCFA) production and intestinal alkaline 

phosphatase (IAP), which are associated with NF-kB activation, leading to inflammageing. 

Image created with Biorender. 

 

Figure 3: Effect of an epigenetic modulating diet on epigenome maintenance. Diet 

influences the methylome via the provision of methyl groups to cells, thus modulating the 

methylation status of the epigenetic landscape. Methyl donors are major constituents of the 

epigenetic diet.  
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Figure 4. Mechanisms involved in the modulation of cellular senescence by nutritional 

components. Most age-related diseases involve an interplay between several factors such 

as increased ROS production and DNA damage that results in the resistance of cellular 

senescence. Such cells are resistant to apoptosis and possess a pro-inflammatory SAS. 

Many bioactive compounds found in vegetables and fruits can combat this by mitigating 

inflammation, and increasing the expression of Nrf2, HO1 and SIRT1. These compounds 

can also decrease the expression of PYD domains-containing protein 3 (NLRP3) 

inflammasome, nuclear factor-κB (NF-κB), mammalian target of rapamycin (mTOR), 

Mitogen-activated protein kinase (MAPK), Inhibitory-κB Kinase (IKKα), nuclear factor of 

kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IKBα). 

 

Figure 5. Food as Medicine. Food intake modulates health span by mediating changes in 

gut microbiota and inflammageing. 
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