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Data-driven modeling is being increasingly applied in designing and optimizing organic waste
management toward greater resource circularity. This study investigates a spectrum of data-driven
modeling techniques for organic treatment, encompassingneural networks, support vectormachines,
decision trees, random forests, Gaussian process regression, and k-nearest neighbors. The
application of these techniques is explored in terms of their capacity for optimizing complex
processes. Additionally, the study delves into physics-informed neural networks, highlighting the
significanceof integratingdomain knowledge for improvedmodel consistency.Comparative analyses
are carried out to provide insights into the strengths and weaknesses of each technique, aiding
practitioners in selecting appropriate models for diverse applications. Transfer learning and
specialized neural network variants are also discussed, offering avenues for enhancing predictive
capabilities. This work contributes valuable insights to the field of data-drivenmodeling, emphasizing
the importance of understanding the nuances of each technique for informed decision-making in
various organic waste treatment scenarios.

With the adventof rapid industrialization, greenhouse gas (GHG)emissions
across the globehave increasedby145%over thepastfivedecades1,while the
generation of organic waste such as food waste and sewage sludge is sky-
rocketing, reaching 1.75 billion tonnes/year and accounting for one-quarter
of overall GHG emissions2,3. This poses an alarming concern requiring
immediate technological know-how and effective socioeconomic policy-
making toward efficient and low-carbon organic waste management. Var-
ious types of thermochemical andbiochemicalwaste treatment technologies
developedover thepast decades have shownpromisingpotential for organic
waste treatment, reducing carbon footprint, and contributing to resource
recovery towards a circular economy4. Some of the popular technologies are
gasification, pyrolysis, hydrothermal treatment, anaerobic digestion (AD),
composting, and dark fermentation.

Thermochemical technologies (e.g., gasification, pyrolysis, and
hydrothermal treatment) utilize thermal energy at high temperatures (and
sometimes high pressure) to decompose the organic matter present in the
feedstock, converting it to value-added products. In contrast, biochemical
technologies (e.g., AD, composting, anddark fermentation) rely ondifferent
types of bacteria to decompose the organic matter4. The technological
selection depends on the scale and operation of systems, type and compo-
sition of feedstock, and types of products desired. The efficiency, stability,
and carbon footprint of these waste treatment technologies depend on the

combination of feedstock and technology, system configuration, and pro-
cess conditions, which renders optimal process control challenging.

A wide variety of coarse-grained or fine-grained kinetic and thermo-
fluidic models have been explored to simulate and control the behavior of
these processes. The coarse-grained kinetic models are often based on
ordinary differential equations, where the spatial variations of physical
quantities (e.g., temperature, pressure, and concentration) within the
reactor are constant5. Several examples of this class of model are anaerobic
digestion model 1 (ADM1), acidogenesis-methanogenesis model, Gom-
pertz model, etc6. Fine-grained models consider the variations of physical
quantities within the entire spatial domain, thus require solving partial
differential equations to simulate the process behavior. A classic example of
this type of model is the computational fluid dynamic (CFD) model of
thermo/bio-chemical reactors which simulates both thermofluidic and
kinetic phenomena. Despite the potential to achieve high prediction accu-
racy, these models are computationally intensive, which makes them less
feasible for design optimization and real-time process control purposes.

The shortcomings of the kinetic and thermofluidic models can be
addressed by data-drivenmodels based onmachine learning (ML). Typical
benefits that an ML-based model can offer are (1) shortening model com-
putation time, (2) avoiding recalibration, (3) opportunity for embedding
physical laws in the data-driven framework, and (4) relatively easy
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integration within the control system framework7. A variety of ML models
has been explored by the organic waste treatment research community e.g.,
neural network (NN), support vector machine (SVM), logistic regression
(LR), random forest (RF), eXtreme gradient boosting (XGBOOST), k-
nearest neighbors (KNN), etc. These models were used to predict the yield
and composition of the output products, stability of the process, or envir-
onmental footprint7.

Despite the rapid development of the data-driven models in organic
waste treatment modeling, there is lack of an up-to-date, comprehensive
summary of waste treatment technologies and the associated usage of ML-
based data-driven modeling. This work aims to critically review existing
applications of the data-driven models in bioprocessing including process
parameter optimization, control system implementation, and what-if sce-
nario analysis (see Fig. 1). To facilitate the ML-related discussion, the
principles of six major organic waste treatment technologies are briefly
introduced firstly. This comprehensive study also focuses on highlighting
the integration of ML-based modeling with environmental impact assess-
ment models and addressing various challenges in popularizing ML-based
biological process modeling, as well as potential mitigation strategies. It
offers insights and recommendations for increasing the use of ML-based
data-drivenmodeling for facilitating the application and optimal control of
sustainable waste management techniques.

Organic waste treatment technologies
Popularly used organic waste treatment technologies either use thermal
energy or biological microorganisms to break down organic matter within
the feedstock. Uponwaste decomposition, a three-phase productmixture is
often formed consisting of solid, liquid, and gaseous products, whose yield
varies based on the selection of technology. For example, gasification pro-
motes the production of syngas, which is a mixture of several value-added
gases, while slow pyrolysis promotes the production of biochar or fast
pyrolysis predominantly produces bio-oil4. Figure 2 shows conceptual
schematics of six popular thermochemical and biochemical waste treatment

technologies namely gasification, pyrolysis, hydrothermal treatment, AD,
composting, and dark fermentation.

Gasification
Gasification converts organic waste into syngas (a mixture of CO, H2, CO2,
H2O, CH4, and higher-order hydrocarbons), ash, and biochar under an
oxygen-deficient condition of 500–1200 °C8. The yield and properties of the
end products are regulated by various factors such as properties and size of
feedstock, gasifying agent, temperature and pressure within the reactor,
reactor design, and the addition of catalysts and sorbents9. One of themajor
challenges associated with the use of gasification is tar formation, which
adversely affects the efficiency and commercial viability of this process10.
Auxiliary processes such as catalytic tar reforming, scrubbing, thermal
cracking, and filtering have been proposed to mitigate the issue11. Recent
research explored the impact of a dielectric barrier discharge reactor on
biomass gasification, offering insights into CO2 decomposition, CO con-
centrations, and tar reduction12. Concurrently, research was conducted on
supercritical water gasification, with an emphasis on greater hydrogen
production and less tar formation13. In addition, hybrid waste-to-energy
systems that combine waste gasification with renewable energy resources
and AD were investigated to enhance the viability and effectiveness of the
process14.

The gasification processes involve a large pool of chemical reactions
and heat and mass transfer formulations. Multi-phase CFD simulations
have been developed to understand the output product variations as a
function of the input feedstock and scale of operation15.However, onemajor
limitation of the simulations is their incapability to account for all influential
factors and process conditions, thus constraining their application for
optimal process design and control. In contrast, ML-based gasification
modeling has been carried out to predict the influences of a comprehensive
range of factors (e.g., reactor type, catalyst usage, gasifying agent and tem-
perature, feedstock types, etc.) towards the yields of syngas components and
biochar16.

Fig. 1 | Thematic overview covering organic waste valorization technologies, ML methods, and process optimization tools. Each of the dash-line box lists a range of
frequently occurring keywords in the literature.
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Pyrolysis
Under an oxygen-free condition of typically 200–500 °C, pyrolysis converts
organicwaste into amixture of biochar, bio-oil, andgaseousproducts17. This
process is featured by lower COx, SOx, and NOx, emissions than the gasi-
fication process, and is desired if biochar and bio-oil are target products18.
Building upon the understanding that the efficacy of pyrolysis is intricately
linked with feedstock characteristics and process conditions (e.g., tem-
perature, heating rate, residence time, etc.), recent studies delve into
advancing the technology by altering the adaption of heating and reaction
mechanisms19. One such example is the proposal of microwave-assisted
pyrolysis (MAP), which heats biomass quickly and evenly usingmicrowave
radiation. Co-pyrolysis of organicwaste, a novelmethodhas the potential to
handle multiple waste streams and improve solid/gaseous product yield20.
Catalytic pyrolysis has been widely studied by changing the reaction path-
ways using catalysts and has the potential to improve the process stability
and selectivity of the final product21. Although traditional models based on
the analysis of mass transfer, heat transfer, and chemical kinetics have
proven important for understanding biomass pyrolysis, their application for
controlling and accurately predicting the process is limited due to the
inability to fully account for the complex structure of the feedstock and the
process, which involves more than a hundred intermediate products22. To
overcome these challenges, ML-based modelling proves to be a useful tool,
providing a data-driven and adaptive method for a more precise and
adaptable prediction of pyrolysis processes23.

Hydrothermal treatment
Hydrothermal treatment is suitable for organic waste with a high moisture
content and is not contingent upon a drying pretreatment stage, which is
often the case for gasification and pyrolysis. Compared to gasification,

hydrothermal treatment is carried out at a lower temperature (250–374 °C),
high heating rates, and pressure in the range of 4–22MPa24. Influential
factors of the process are temperature, pressure, residence time, type of
catalyst used, and feedstock composition25. There are three types of
hydrothermal waste valorization technologies: hydrothermal gasification
(HTG), hydrothermal liquefaction (HTL), and hydrothermal carbonization
(HTC), that differ by the choice of output product. TheHTG process uses a
supercritical condition, in which the waste reacts with water at high tem-
perature and pressure to produce a mixture of gaseous products consisting
of CH4,H2, CO2, CO, andC2-C4

26. Themajor drawback of the process is the
usage of large quantities of heat and water. In the HTL process, both sub-
critical and supercritical conditions are used for producing bio-oil. Sub-
critical liquefaction occurs around the critical point of the liquid (e.g., 374 °C
for water), while supercritical liquefaction uses temperatures and pressures
above the critical point. Being a fluid-dominant process, the HTL process
often suffers from equipment corrosion and catalyst deactivation27. In
addition, hydrochar is the outcome of HTC that is formed from a slurry in
water under high pressure and low temperature. The produced hydrochar
can be used as a catalyst, adsorbent for pollutants, material for carbon
sequestration, soil amendment, or as an energy carrier28.

Anaerobic digestion
The AD process is conducted under oxygen-free conditions and uses bac-
terialmicroorganisms to yield biogas comprisingmainlyCH4 andCO2. The
byproduct, digestate, includes various nutrients like nitrogen, phosphorus,
andpotassium,making it suitable for use as a fertilizeror soil conditioner for
enhancing crop productivity and promoting carbon sequestration29. The
AD process has been vital for curbing pollution from organic waste in
agriculture and industry. It can handle a diverse range of feedstocks ranging

Fig. 2 | Overview of thermochemical and biochemical organic waste treatment technologies. Each of the technology figure includes examples of input feedstocks, process
control parameters, and examples of output product(s).
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from agricultural waste, organic matter-rich industrial waste, animal waste,
sewage sludge, and woody waste30,31. The second product, biogas, finds
applications in heating, power generation, and as a transport fuel after
upgrading.

The complexities of input factors, such as feedstock types and com-
positions, temperature, pH, hydraulic retention time (HRT), and OLR,
contribute to the complex andnon-linear impactof these parameters onAD
output32,33. This level of complexitymakes optimizing the treatment process
difficult, emphasizing the importance of accurate and effective approaches
for predicting their influence on theADsystem.ML can be applied inAD to
predict the outputs, optimize processes, and effectively control AD perfor-
mance, addressing operational challenges such as process instability and
disruptions in microbial activities, which can lead to reduced methane
generation34,35.

Dark fermentation
Fermentation, a process converting organic substrates into valuable pro-
ducts like biohydrogen and bioethanol, encompasses photo- and dark fer-
mentation occurring in light and dark settings, respectively. Dark
fermentation, particularly applied for treating organic waste, offers advan-
tages such as moderate reaction conditions and higher production rates
compared to photo fermentation36. This sustainable technology, focused on
biohydrogen production, faces challenges due to its low yields, limiting
industrial applications37. In the initial step, bacterial hydrolysis breaks down
substrates into smaller molecules, which are further fermented into organic
acids during acidogenesis38. Organic substrates abundant in carbohydrates,
like starch and cellulose, prove feasible for dark fermentation-based bio-
hydrogen production39. However, methanogen proliferation can limit bio-
hydrogen production from certain feedstocks, affecting purity40.
Temperature variations (mesophilic, thermophilic, hyper-thermophilic)
significantly impact bacteria growth rates and substrate conversion
efficiency41.

ML models can be employed to achieve effective process control and
production, addressing the challenges faced by dark fermentation and
unlocking greater efficiency and yields42. Various influential process para-
meters associated with dark fermentation should be considered by ML
models including feedstock types, temperature, substrate ratios, acidifica-
tion time, chemical oxygendemand (COD), substrate pH,HRT, and reactor
types43. The consideration of a wide range of numerical (e.g., HRT, tem-
perature, etc.) and categorical (e.g., feedstock type, reactor type, operating
mode, etc.) variables may effectively overcome challenges posed by
mechanistic models for predicting dark fermentation-derived biohydrogen
yield44.

Composting
Composting, a process of decomposing organic waste into a stable and
nutrient-rich product for plant growth, relies on naturally occurring soil
microorganisms and requires oxygen45. This waste diversion method sig-
nificantly contributes to waste management by preventing landfill
disposal46. The composting process can be divided into mesophilic, ther-
mophilic, andmaturation stages based on temperature,which is a key factor
influencing microorganism activity and organic matter decomposition47.
Various composting systems, such as static, rotating, windrow, and silo,
influence the composting maturity period and the overall process
efficiency48. Specialized equipment like silos, tunnels, and aerated containers
aids in the composting process49. The composting process generates GHGs
and volatile compounds, requiring emissions management strategies such
as the development of biofilters, which can be facilitated by accurate ML
modeling of the GHG emission of composting50.

To address the challenge of reducing GHG emissions in the com-
posting process, ML techniques are developed51. These techniques not only
enable the accurate prediction of GHG output but also extend their cap-
abilities to forecasting composting processes and their impacts, especially
upon soil application. Recent studies have focused on using ML to predict
composting stability and performance, emphasizing its potential to

significantly enhance precision in anticipating outcomes andoptimizing the
entire composting process52. Influential factors crucial for ML modeling in
composting encompass feedstock types, temperature, pH, carbon-to-
nitrogen (C/N) ratio, cation exchange capacity, seed germination index53,
substrate particle size, moisture content, and composting methods54.

Data-driven modeling techniques
ML-based data-driven models serve as effective tools to predict the process
dynamics of the thermochemical and biochemical organic waste treatment
technologies described in Section “Organic waste treatment technologies”,
towards accurate process design, control, andoptimization.Development of
these data-driven models require a series of stages starting from data col-
lection, statistical pre-processing, normalization, dataset splitting, dimen-
sionality reduction, feature importance analysis, to model performance
evaluation. A comprehensive layout of these stages and their essential
attributes relevant to ML-based organic waste treatment is shown in Fig. 3.

The general ML model development pipeline shown in Fig. 3 can be
affected by the selection of data-drivenmodel. DifferentMLmodels feature
different forecasting abilities based on the input dataset, varied degrees of
generalizability and robustness, executing and training time, and the ability
to embed physicochemical phenomena in it. A total of eight different types
of data-driven models are reviewed here (see Fig. 4), that have been fre-
quently used for modeling organic waste treatment technologies: NN,
physics-informed neural networks (PINN), SVM, decision tree (DT),
ensembled DT, Generalizable Linear Model with ElasticNet regularization
(GLMNET), Gaussian process regression (GPR) and KNN7,16,52,55. When
deployed for modeling organic waste treatment technologies, these models
predict either static or time-series data of process efficiency, yields of pro-
ducts (e.g., biogas, syngas, bio-crude, biochar, hydrochar, etc.), or amount of
nutrients recovered from organic waste (e.g., nitrogen, phosphorus, potas-
sium, etc.). These predicted variables are correlated with a variety of input
(or predictor) variables, based on the selected thermochemical or bio-
chemical treatment technology. Table 1 provides a generalized overview of
the predictor and target variables related to ML-based modeling of organic
waste treatment56.

Neural network
An NN is inspired by the structure and functioning of the human brain,
comprising the following subunits: neurons, hidden layer, input layer, and
output layer57. Based on a preselected architecture, theNNapplies a series of
activation functions and assigns weights and biases, to map the input
(feature) space to the output variables.Choice of the activation function is an
essential aspect of developing an NN, where some of the frequently used
choices are sigmoid, hyperbolic tangent, rectified linear unit (ReLU), and
leaky ReLU. Fitting the NN to a specific dataset requires adjusting the
weights and bias factors, which is done through a process called back-
propagation. The process uses gradient descent to minimize the loss func-
tion computed as a root mean squared error (RMSE) between the true
dataset and NN predictions. Based on the area of applications, complexity,
and type of dataset (e.g., high or low dimensional, static or dynamic dataset,
image-based spatial datasets, etc.), a wide variety ofNNs have been explored
such as feedforwardNN (FNN), recurrentNN (RNN)with long short-term
memory (LSTM) networks, convolutional NN (CNN), transformers, etc.
The complexity (i.e., type of architecture, number of tuneable parameters,
etc.), training, and execution times of each type ofNNdiffer. Nevertheless, it
is important to note that having anNNwith complicated architecturemight
lead to model overfitting, thus reducing the generalizability of the model.

FNN is one of the most classical types of NN, generally containing
several neurons per layer and being several layers deep. The non-linear
activation functions of the neurons enable FNNs to gain complex data
reproducing capability. This type of NN is a powerful tool for both
regression and classification tasks58. Since data-driven models required for
bioprocess modeling might require both regression (e.g., the influence of
control parameter alteration on system efficiency) or classification (e.g.,
process failure prediction, reactor anomaly identification and alarm
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generation), FNNs has been frequently used in data-driven bioprocess
modeling7. Nevertheless, FNNs are susceptible to the curse of dimension-
ality, require normalization and data preprocessing, and are not suitable for
capturing time-series data trends. Time-series data can often be encoun-
tered about the temporal yield of gaseous products from organic waste
treatment.

The time-series data processing inability of FNNs has been addressed
by RNNs, which are suitable for processing audio signals, sensor readings,
financial data, epidemiology data, etc. RNNs contain feedback loops that
allow information to persist across time steps, making them adept at cap-
turing temporal dependencies within the data. Despite the powerful cap-
ability of RNNs, they often face vanishing or exploding gradients during
backpropagation-based training, which have been carefully addressed by
advanced techniques such as a long-short-termmemory (LSTM)network59.
LSTM networks excel in managing long-range dependencies and are well-
suited for various sequential data processing tasks. At the core of an LSTM
networks is the LSTM cell, which processes input data sequentially and
maintains a hidden state that captures relevant information from previous
time steps. The cell consists of three key gates such as input, forget, and
output gates.

The curse of dimensionality faced by the FNNs can be addressed by the
CNNs, a specialized deep learning method frequently used for processing
image or grid-like data. They consist of a convolutional layer for learning
local patterns fromhigh-resolution data, a pooling layer for reducing spatial
dimensions, and fully connected layers (like FNNs) for learning non-linear
patterns60. The convolution operation, which is the backbone of CNNs,
involves sliding a filter over the input and computing dot product to gen-
erate feature maps that foster automatic hierarchical feature learning. The
CNN architecture enables weight sharing across the network, which greatly
reduces the number of parameters and promotes translation-invariant
features. Like FNNs, training CNNs involves backpropagation and gradient
descent tominimize the loss function. CNNshave evolvedwith variants like
VGG, Inception, andResNet to tackle specific challenges like overfitting and
vanishing gradients. Another version of CNN, named one-dimensional
CNN (1D-CNN) has demonstrated high effectiveness in dealing with
sequence-based time-series data.

In addition to FNN, RNN-LSTM, and CNN, transformer networks
have evolved as an efficient data-driven model for mimicking sequential
data with complex trends. Specifically, in the realm of predicting biopro-
cessing outcomes for organic waste, transformer networks demonstrate
efficacy in capturing intricate temporal dependencies and patterns within
the data. This makes them well-suited for tasks such as predicting gas yield
variations over time or anticipating efficiency fluctuations in organic waste
treatment processes. The transformer architecture excels in handling
sequential data, making it applicable to time-series datasets commonly
encountered in bioprocess modeling of organic waste treatment.

Transformers leverage self-attention mechanisms to capture depen-
dencies between different positions in a sequence, enabling them to excel at
tasks involving long sequences and parallel processing. Combining trans-
formers with transfer learning techniques helps to leverage knowledge
gained from one task to improve performance on a different but closely
related task. In the context of bioprocess modeling, transfer learning could
be explored to enhance the predictive capabilities of the models by pre-
training them on a large dataset, such as general time series data of bior-
eactors, before fine-tuning them on the specific task of optimization.

Physics-informed neural network
Physics-informed neural network (PINN) is a class of deep NNs, that
informs the power of a data-driven NN with governing conservation
equations of physical principles (e.g., mass, energy, momentum, or
species)61. By construction, any solutionpredictedby aPINNswill satisfy the
governing equation, thus producing a physically realistic solution in all
instances. PINNs can incorporate algebraic, ordinary differential, or even
partial differential equations to enforce the physics inside the NN. The
major difference between PINNs and an ordinary FNNs is the construction
of the loss of term which is trained using stochastic gradient descent. An
ordinary FNN minimizes the RMSE between the input dataset and FNNs
predictions, while a PINNs adds additional loss terms: different types of loss
terms can be constructed to penalize the PINNs such as losses for governing
equations, boundary conditions, initial conditions, etc. Construction of
these equation losses requires utilizing the power of automatic differentia-
tion, a tool that makes PINNs a grid-free method for solving differential

Fig. 3 | Sequential stages involved in data-driven
model development ranging from dataset con-
struction to performance evaluation. The stages
include creation of a specific type of dataset, data
pre-processing and normalization, model com-
plexity reduction, interpretability analysis, and
performance evaluation.
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equations.Different types of losses (e.g., RMSE loss, governing equation loss,
and initial and boundary condition losses) included in the overall loss
function must be weighted properly to ensure the accurate behavior of the
PINNs62. Once trained, PINNs can predict spatiotemporal data (e.g., pres-
sure, velocity, concentration, temperature, density, etc.) in an extremely
rapidmanner, which is often a challenge for grid-basedmethods for solving
differential equations. PINNs find a promising application in enhancing
organic waste treatment technologies. Their capability to incorporate gov-
erning conservation equations equips them to model and optimize various
processes within waste treatment. In waste treatment, PINNs, with their
physics-informed nature, provide accurate predictions, offering valuable
insight for parameter optimization and efficiency improvement. The rapid
predictions of spatiotemporal data by PINNs address challenges posed by
grid-based methods in handling differential equations within the dynamic
systems inherent in organic waste treatment63. Furthermore, the integration

potential of PINNs with other data-driven methods positions them as
attractive candidates for control-oriented operations, fault diagnosis, and
decision-making within the realm of organic waste treatment technology.
The versatility of PINNs, coupled with their adept handling of specific
challenges associated with organic waste treatment, establishes them as a
noteworthy asset for advancing and optimizing processes in this domain.

Support vector machines
SVM is a robust supervised learning algorithm widely utilized for classifi-
cation and regression tasks7. The key objective of SVM is to identify the
optimal hyperplane that effectively separatesdata into different classeswhile
maximizing the margin between them. This robustness and generalization
performance is attributed to the kernel trick, allowing SVMs to handle both
linear and nonlinear classification problems, even in scenarios with limited
samples64. In terms of performance, SVMs are renowned for their ability to

Fig. 4 | Frequently used ML-based data-driven models for thermochemical and biochemical organic waste treatment processes. It includes examples of predictor
variables used to construct data-driven models for organic waste valorization technologies, architectures of RNN, FNN, SVM, XGBOOST, RF, and KNN algorithms, and
examples of target variables.
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handle high-dimensional data and complexdecisionboundaries.Thekernel
trick enables them to address nonlinear relationships between features,
providing an advantage over linear models. SVMs exhibit robust general-
ization, making them suitable for various ML tasks.

ComparingSVMwithothermodels likeDT,KNN,LR, andNNreveals
the apparent effectiveness of SVM, especially in scenarios with high-
dimensional data and intricatedecisionboundaries.High-dimensional data,
often encountered in organic waste treatment scenarios, refers to datasets
with numerous variables, such as waste composition, environmental con-
ditions, and treatment processes. In these scenarios, where relationships can
be intricate, SVM demonstrate proficiency by effectively handling the
complexity of the data and decision boundaries, making thema noteworthy
choice formodeling and optimizing organic waste treatment processes. The
one-vs-all (OvA) or one-vs-one (OvO) techniques extend SVMs to handle
multiclass problems, showcasing their versatility in tackling diverse classi-
fication challenges52. As for tuneable parameters, SVMs offer several key
parameters that can be adjusted for optimal performance. These include the
choice of kernel (linear, polynomial, radial basis function, etc.), regulariza-
tion parameter, and kernel-specific parameters. Proper tuning of these
parameters is essential for achieving the best results in different scenarios.

Decision trees
DT is a supervisedML algorithm used for both classification and regression
tasks34. It constructs a tree-like structure where each internal node repre-
sents a decision or test on a feature, and each leaf node signifies a predicted
class (for classification) or anumeric value (for regression).Key components
of DT include the root node, internal node, leaf nodes, branches, and
attributes.

Examples of open-source DT algorithms include ID3, C4.5, and
Classification And Regression Trees (CART), which vary by their dataset
splitting and pruning methods. Commonly used splitting methods include

Gini impurity (for classification), entropy (for classification), and mean
squared error (MSE, for Regression). The splitting rule at each node aims to
minimize impurity orMSE by selecting the attribute that achieves this goal.
Pruning is employed to prevent overfitting by removing branches that do
not significantly improve predictive accuracy7. The feature selection
methods (e.g., Gini impurity) adds an incentive by mapping the strength of
correlation across the predictor and target variable,makingDTs explainable
ML models.

In DTs applied for classification tasks, a new data point follows the
decision rules to reach a leaf node, determining the predicted class. In
regression tasks, the predicted value is the mean or median of the target
values in the leaf node.However,DTs are severely prone tooverfittingwhich
sacrifices the model generalizability. To circumvent this, ensembling of
multiple DTs have been routinely practiced, a topic that will be discussed in
later sections. Nevertheless, DTs are featured by their short training and
evaluation times, making them suitable for rapid predictive modeling of
organic waste treatment. Of great relevance is applications such as yields
prediction of solid/liquid/gaseous products based on a small set of predictor
variables (usually <5) or binary fault identification associated with
bioreactors65.

Ensembled decision trees
The ensemble learningmethodmitigates the overfitting limitations (i.e., lack
ofmodel generalizability) of individualDT.There are two types of ensemble
methods: bagging and boosting. The bagging approach creates multiple
trees through a process called bootstrapping, where each tree trains on a
random subset of data16. A routinely used bagged ensemble method is RF,
which introduces feature randomization by considering only a subset of
features at each tree split, reducing sensitivity to specific features. When
making predictions, RF combines results through majority voting for
classification and averaging for regression, resulting in reduced overfitting,

Table 1 | Predictor and target variables for data-driven modeling of six different organic waste treatment processes

Technique Predicted Variables Predictor Variables Usage

Gasification Syngas yield and composition Temperature, equivalence ratio, feedstock ultimate composition (C/H/O/N) Frequent

Steam-to-feedstock ratio, calcium oxide-to feedstock ratio, feedstock ash and moisture
contents

Moderate

Time, organic loading rate, particle diameter, fuel and air flow rates, pressure, volatile
matter and fixed carbon in feedstock, total solids, catalyst usage

Rare

Pyrolysis Biochar yield (slow pyrolysis) or bio-oil
yield (fast pyrolysis)

Temperature, residence time Frequent

Particle diameter, heating rate, inert gas flow rate Moderate

Organic loading rate, pressure, feedstock ultimate composition (C/H/O/N), feedstock
proximate composition (fixed carbon, ash, volatile matter), feedstock structural compo-
sition (lignin, cellulose, hemicellulose), catalyst usage

Rare

Hydrothermal Treatment Hydrochar (HTC) or bio-crude (HTL) or
syngas (HTG) yields

Temperature, residence time Frequent

Feedstock-to-water ratio, feedstock ultimate composition (C/H/O/N), ash content Moderate

Organic loading rate, heating rate, pressure, feedstock proximate contents (fixed carbon,
volatile matter, moisture content), total solids, feedstock structural composition (lignin,
cellulose, hemicellulose), other biochemical contents (lipid, protein, carbohydrate), cata-
lyst usage

Rare

Anaerobic Digestion Biogas or methane yields Temperature, time, pH, feedstock quantity Frequent

Total solid, volatile solid, lignin content Moderate

Organic loading rate, chemical oxygen demand, alkalinity, ammoniacal nitrogen, C-to-N
ratio, feedstock structural and biochemical compositions, acid detergent fiber, catalyst
usage, feedstock pretreatment effect

Rare

Dark Fermentation Biohydrogen yield Time, temperature, substrate concentration, pH Frequent

Chemical oxygen demand, volatile fatty acid, inoculum (type, age, size) Moderate

Reactor/feed type, volatile solids, organic loading rate, reactor volume, alkalinity, oxida-
tion reduction potential, catalyst usage, glucose-xylose ratio, glucose concentration,
lactate, acetate, propionate, butyrate

Rare

Composting N and P contents C-to-N ratio, pH, electrical conductivity, temperature, feedstock quantity Frequent

Time, moisture content, enzyme type, dry solids, ammonium-to-nitrate ion ratio Moderate
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improved generalization, stronger predictive power, and robustness to
noisy data.

RF demonstrates exceptional performance when dealing with exten-
sive, high-dimensional, noisy, and imbalanced datasets, while effectively
mitigating overfitting issues. This is particularly advantageous because DT
within the RF ensemble can swiftly learn and process both categorical and
numerical data, often without the need for extensive data pre-processing,
provided that no assumptions regarding the data’s quality, such as linearity
or normality, are mandated. Furthermore, RF distinguishes itself by pro-
viding more detailed insights into the significance of input variables com-
pared to alternative methods such as linear regression, SVM, DT, and NNs.
Additionally, RF boasts a robust ability to handle missing data, making it a
versatile and reliable choice for various data analysis tasks. RF has
demonstrated effectiveness across a spectrum of applications, underscoring
its capability to model and forecast in scenarios with noisy datasets. In the
field of organic waste processing, RF has shown success in optimizing
composting processes, accurately predicting the efficiency and decom-
position rates despite variations in factors such as temperature, moisture
content, and organic waste composition7.

Boosting is another ensemble method that focuses on improving the
accuracy of a model by combining multiple weak learners (usually indivi-
dual DT) sequentially. Gradient Boosting Machines (GBMs), including
XGBOOST and LightGBM, are examples of boosting ensemble methods66.
GBMs are known for their ability to handle complex relationships and have
been successfully applied in various domains, including regression, classi-
fication, and ranking tasks. They offer high predictive accuracy but may
require careful parameter tuning. Key parameters for GBM include the
number of trees, learning rate, tree depth, minimum samples split, mini-
mum samples leaf, subsample, feature fraction, and regularization para-
meters. This tuning is crucial for preventing overfitting, andGBMs are often
more effective at mitigating overfitting challenges compared to RF. GBMs
sequentially build DTs, where each tree corrects the errors of the previous
one by assigning higher weights to data points that were previously mis-
classified or had larger errors.

Among the implementations of GBMs, two popular libraries are
XGBOOST and LightGBM. XGBOOST is widely recognized for its speed
and efficiency, thanks to features such as tree pruning and parallel proces-
sing. It offers L1 (Lasso) and L2 (Ridge) regularization options to prevent
overfitting and can handle missing data, making it versatile for both
regression and classification tasks65. On the other hand, LightGBM is spe-
cifically designed for large-scale and distributed settings, excelling in terms
of speed andmemory efficiency. It is particularly suitable for scenarios with
large datasets, making it a potential asset for applications in organic waste
treatment, where extensive data on waste composition, environmental
conditions, and treatment processes may need to be efficiently processed.
Additionally, LightGBM includes built-in support for handling categorical
features and simplifying pre-processing, further enhancing its applicability
in the field of organic waste treatment.

Generalizable linear models
Generalizable linear models (GLM) are primarily used for binary classifi-
cation tasks.When extending tomulticlass classification, a variant known as
multinomial GLM or Softmax regression is commonly employed. The
GLMNET algorithm introduces regularization, combining L1 (Lasso) and
L2 (Ridge) techniques to enhance model performance65. In multiclass
classification applications, where there are more than two classes, Softmax
regression, an extension of binary GLM, proves effective in assigning input
vectors tomultiple classes. GLMNET incorporates L1 and L2 regularization
terms in the loss function to counter overfitting and promote feature
selection. The optimization process can be carried out using various algo-
rithms, such as coordinate descent and gradient descent. The regularization
terms discourage overfitting by penalizing large parameter values and
facilitating some parameters to be precisely zero, thereby supporting feature
selection. The hyperparameter λ controls the strength of regularization,
while α determines the type of regularization (L1 vs. L2). In practical

applications, libraries like GLMNET offer efficient implementations of this
algorithm for multiclass Generalized Linear Model with ElasticNet reg-
ularization with user-friendly interfaces. These libraries manage the opti-
mization and regularization aspects, enabling users to concentrate onmodel
selection and hyperparameter tuning. The added incentive of better control
of regularization is essential for the organic waste treatment process mod-
eling due to associated big datasets comprising of time-dependent process
parameters, genomic data, and categorical data. For these benefits
GLMNET has received significant interests in organic waste treatment
modeling35,67.

Gaussian process regression
GPR is a potent non-parametric Bayesian technique utilized for regression
tasks, differing from conventional methods by modeling the underlying
function as a distribution over functions, a valuable approach for addressing
complex and non-linear data relationships34. Uncertainty in GPR is repre-
sented by modeling the output for each input point as a Gaussian dis-
tribution, allowing the provision of predictions along with associated
uncertainty estimates. The choice of the kernel function is pivotal in GPR,
determining the similarity between input points and shaping the predicted
functions. Common kernels, such as the Radial Basis Function (RBF) and
Matérn kernels, offer diverse ways to capture relationships. Hyperpara-
meters in GPR, like the length scale in the kernel function, significantly
influence themodel’s behavior, often optimized during training.GPR excels
in scenarios with intricate relationships, finding extensive use in accurate
regression and prediction tasks. The capacity of GPR to furnish uncertainty
estimates is particularly valuable in applications where comprehending
prediction confidence is essential, such as in decision-making processes.
GPR finds application in optimization tasks and Bayesian optimization,
contributing to sequential optimization strategies. For time series predic-
tion, GPR not only provides point predictions but also includes confidence
intervals around those predictions, enhancing its applicability. GPR exhibits
high flexibility, adapting effectively to diverse data types and relationships.
Its ability to quantify uncertainty proves crucial in applications where
understanding prediction confidence is paramount, and it performs well
even with limited data availability. However, GPR’s computational cost can
escalate with larger datasets, necessitating the use of efficient approxima-
tions and optimization techniques. The selection of an appropriate kernel
function is critical, as GPR’s performance is sensitive to this choice. In the
context of organic waste treatment, GPR can be employed to model and
predict complex relationships within the treatment process, offering precise
estimates and uncertainty quantification, crucial for optimizing waste
treatment parameters and decision-making.

k-nearest neighbors
KNN is a versatile ML algorithm utilized for both classification and
regression tasks7. Its operation revolves around the principle of identifying
the k nearest neighbors in the feature space to make predictions based on
their characteristics. KNN is classified as an instance-based learning algo-
rithm, signifying its reliance on storing the entire training dataset for
reference. When presented with a new data point for prediction, KNN
calculates distances between this point and all data points in the training set,
typically using a chosen distance metric (e.g., Euclidean distance). The
algorithm then identifies the k nearest neighbors based on these distances.
For classification tasks, KNN assigns a class label that is most prevalent
among these neighbors. In regression tasks, it calculates the weighted
average of the target values of the k neighbors. The choice of the distance
metric is crucial and depends on the problem of interest. While Euclidean
distance is widely used, alternatives like Manhattan distance or Cosine
similarity can be employed to better suit specific data characteristics. KNN
provides a versatilemodeling approach that can effectively capture complex
decision boundaries. The ability to handle intricate relationships makes it a
potential candidate for applications in organic waste treatment, where the
interactions amongvarious factors canbe complex.However, it’s essential to
consider the specific characteristics of the organic waste treatment data.
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Additionally, while KNN excels in flexibility, it may face challenges when
dealingwith high-dimensional data and large datasets due to computational
costs. Considering the potential richness and complexity of data in organic
waste treatment scenarios, it becomes crucial to assess whether these chal-
lenges align with the nature of the dataset.

State-of-the-art applications
Data-driven modeling and optimization for thermochemical
technologies
TheusageofMLmethods for thermochemical techniques e.g., gasification16,
pyrolysis16, hydrothermal treatmentmethods55 have recently been reviewed
by several researchers. These ML models developed were combined with
optimization algorithms (e.g., genetic algorithm (GA), particle swarm
optimization (PSO), etc.) to solve goal-oriented optimization problem for
various process variables. A subgroup of work enhanced the interpretability
of the ML-based organic waste treatment models by using feature impor-
tance and partial dependence analysis to gain a deeper understanding of the
process dynamics of key parameters.

For example, a prior work64 predicted the higher heating value of
organicwaste gasificationprocess basedonproximate andultimate analyses
using three different types of ML methods such as FNN, SVM, and RF,
where RFmodel showed the best predictive performance against the testing
dataset (coefficient of determination (R2) > 0.92). The superiority of the RF
model compared to the other models was attributed to the ensemble
learning process offered by RF via the bootstrap sampling method (see
Section “Ensembled decision trees”), which reduced the effect of noisy
feedstock compositiondata onmodel overfitting.Nevertheless, theworkdid
not include of reactor types and operating conditions, which are essential
predictor variables to generalize gasification models. Another type of
research work68,69 developed an FNN to predict the chemical exergy (i.e.,
maximum extractable energy while interacting with surroundings) of syn-
gas production from organic waste using ultimate composition of organic
waste, gasification temperature, and mass basis ratio of steam to organic
waste. Two of gasifier such as downdraft gasifier and bubbling fluidized bed
gasifier were explored in these efforts. Several works70–74 has used ML
methods to directly predict hydrogen yield from organic waste gasification
process to promote waste-to-energy conversion. Hydrogen yield was pre-
dicted for supercritical gasification, chemical looping gasification, and
conventional gasification based on organic waste composition, reaction
parameters such as temperature, pressure, residence time, particle size, etc.
TheMLmodels explored in theseworks includedNN, SVM,RF, ensembled
tree, and GPR, KNN, where RF and ensembled tree algorithms deployed
multiple parallel trees to reducemodel overfitting, leading to anR2 > 0.97. In
addition to the composition of syngas or hydrogen, prediction of the char
and tar yields during gasification process is essential to understanding the
interplay of solid, liquid, and gaseous product yields. This is also useful for
combining ML-based gasification models into process optimization algo-
rithms and what-if scenario simulators (e.g., Monte Carlo simulation). In
this realm, several studies have simultaneously predicted char and tar yields
in addition to the elemental composition of syngas for organic waste
gasification58,75–78, although their predictive performance was somewhat
inferior than the models developed for syngas yield models. This was
attributed to the smaller sizes of the datasets for char and tar yield models,
which warrants further developmental efforts. Some of the advanced
studies58,77 has considered a wide pool of input parameters to capture the
intricate relationships in the input-output feature space such as proximate,
ultimate, and lignocellulosic composition, temperature, operation modes
(continuous and batch), gasifying agent (air, steam, oxygen), reactor type,
reactor bed material, usage of catalyst, and scale of operation (lab or pilot).
Organic gasification processes with other integrated systems such as solar
energy-driven gasifier79, combined cooling, heating, and power (CHP)
production systems80 has also witnessed the use of MLmethods for process
optimization and intensification. For example, a prior work79 has used RF
algorithm to simulate the key variables of solar-driven organic waste gasi-
fication process with high accuracy (R2 > 0.98). In another effort80, an

organic waste gasification cycle was combined with heat pump and
absorption chiller for combined cooling, heating, and power production.
The trade-off between the exergy efficiency and NH3 production rate was
revealed through an SVM-informed GA, signifying the applicability of
synergistic interactions between ML-based process models and heuristic
optimization methods for integrated gasification systems.

In contrast to the gasification process where syngas is the primary
product of interest, pyrolysis enables balancing the trade-off between the
solid (biochar), liquid (bio-oil), and gaseous (pyrolytic gas) output products.
Based on the usage, different variants of pyrolysis processes are adopted in
the industry that promote yield of a certain type of product. Being a com-
plex, multi-step thermochemical process, intricate kinetic modeling of
pyrolysis becomes a non-trivial task, where researchers have deployed data-
driven ML algorithms in recent years. In most of the cases prediction of
biochar and bio-oil yields and compositions based on the input parameters
covering ultimate, proximate, and lignocellulosic composition of feedstock,
pyrolysis temperature, heating rate, residence time, inert gas flowrate, and
particle size of feedstock has been the central theme of ML model
development81–90. While most of these works focused onmono-pyrolysis of
awide variety of feedstocks (e.g., crop residues,woodywaste, sludge), several
efforts have been put into development of MLmodels for co-pyrolysis. For
example, co-pyrolysis of organic wastes with polymeric waste91, biomass
pyrolysis coke with rapeseed cake92, organic wastes with plastic waste93,94,
and coal with organic waste23,95 have been studied. For these studies, an
additional input parameter of interest considered in the ML models is the
organic waste to co-pyrolytic material blending ratio, which significant
affect the yield and compositions of the three-phase output products.
Although slow and fast pyrolysis have been frequent choices for industrial
deployments, MAP has attracted attention in recent years, for which
development ofMLmodels have beenutmost essential. For example, a prior
work96 has explored the utility of polynomial regression to model three-
phase product yield duringpotassiumhydroxide catalysedMAPof sawdust,
achieving an R2 > 0.93. The model also captured the effect of feedstock pre-
treatment using dry torrefaction. Despite the high R2 value, the work suf-
fered from limited generalizability and robustness since it was built upon
one specific type of feedstock with pre-determined feedstock treatment
criterion. In contrast the XGBOOST model developed in ref. 97 had rela-
tively a higher pool of feedstock information and achieved R2 > 0.9 for
predicting both biochar yield and higher heating value (HHV) duringMAP
process.Thehigh accuracyof theXGBOOSTalgorithmmaybeattributed to
its pruning abilities and ensembled boosting to convert weak learners into
strong learners, ultimately enhancing the performance on both training and
testing datasets (see Section “Ensembled decision trees”). The study also
included model-agnostic explainability analysis (e.g., using feature impor-
tance and partial dependence assessment), revealing that microwave power
is one of the most important factors regulating biochar yield and HHV. A
follow-up work98 on ML modeling of MAP utilized 249 datasets from the
literature to explore three different types of models SVM, RF, and gradient
boostingmachine (GBM), where GBMachieved an R2 > 0.83. Although the
GBM had working principles like the XGBOOST algorithm and leads to
somewhat similar predictive performance, the training time of GBM was
significantly longer than XGBOOST. This work also included extensive
feature importance analysis, which indicated that temperature, microwave
power, and reaction timewere the key parameters. Althoughmajority of the
MLmodeling works predicted the yield and composition of the biorefinery
products (e.g., biochar, bio-oil, and pyrolytic gas) during different types of
pyrolysis, a few has deployed ML methods for deciphering the kinetic
mechanismsandparameters ofpyrolysis5,92,99–102. For example, anNN-based
model99 was developed to predict the unknown kinetic parameters (acti-
vation energy (Ea), frequency factor (A) and order of reaction (n)) specific to
thermogravimetric experiments of different feedstocks relevant for organic
waste pyrolysis. The input parameters for this predictive model were
proximate, ultimate, and lignocellulosic composition, and heating rate (β).
The model predicted kinetic parameters for limited range of feedstocks
(sawdust, wood, Areca nut husk, and banana leaves) with R2 > 0.97. In other
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instances100,102, a relatively extensive datasets were developed to predict
activation energy of a wide range of feedstocks usingmulti-linear regression
(MLR), RF, FNN, and SVM, where RF was able to capture the complex
trends in activation energy and led to superior performance. Due to multi-
scale nature of pyrolysis, an essential challenge in process simulation via
computational fluid dynamics (CFD) is the consideration of interparticle
heat transfer and chemical reactions5, which exponentially increase the
computational time of the simulation. This issue was addressed by coupling
an FNN-basedparticle simulationmodel of pyrolysis kineticswith full-scale
CFD simulations. The approach significantly reduced the computational
time of CFD simulation and resulted in an averaged bio-oil prediction error
of 6.4%.Another research effort developed an FNN-based correctionmodel
to account for external heat transfer, particle diameter, and pyrolysis reac-
tionmechanism101. Various input parameters for the data-driven correction
model were heat transfer coefficient, particle size, gas temperature,moisture
content, and dimensionless temperature of the particle. Overall, the data-
driven parameter correction model facilitated zero-dimensional model-
coupled lumped kinetic simulations for pyrolysis processes. This made it
possible to embed key physical phenomena in ML models, enhancing its
extrapolation capabilities.

The hydrothermal treatment technologies include a variety of treat-
ment routes based on the desired output product (e.g., HTG, HTL, and
HTC), thus requiring significant efforts towards unified ML model
development55. Based on the types of hydrothermal treatment strategy the
dominant output product mix varies across hydrochar, bio-oil, or hydro-
thermal syngas. The fraction of product for each choice of technology is
regulated by a suite of input parameters which include organic waste
compositions (elemental, proximate, biochemical, and ash), operating
conditions (temperature, pressure, residence time, solid content, heating
rate, catalyst, and inert gas type), solvent selection (reaction and product
extraction solvents), and reactionmode (continuous andbatch)103. Based on
these parameters and ML model for hydrothermal treatment strategy pre-
dict the yield, elemental compositions, material characteristics, and fuel
property of the output three-phase product mix. ML models have been
developed in recent years to predict HTC-derived hydrochar
production104–112, HTL derived bio-oil production113–121, HTG-based syngas
generation66,122,123, or aqueous phase prediction124. For example, HTG pro-
duced syngas yield and compositionbasedon awide rangeof feedstockhave
been predicted using popular ML approaches such as CNN, FNN, GBM,
XGBOOST, and RF, where both RF and XGBOOST algorithm had
R2 > 0.8566. Since the work explored a relatively large dataset (~250) with a
wide spread of the predictor variables, the NN-based models suffered
overfitting and had lower accuracy. This suggests that ensembled tree
algorithms (e.g., RF and XGBOOST) are essential to tackle such complex
parametric trend and overfitting issues simultaneously. A related work has
coupledGBMwith PSO algorithm forHTGbased syngas production based
on an ASPEN software-simulated dataset. The hybrid model achieved
R2 > 0.9, while feature importance analysis revealed that gasification tem-
perature strongly regulates the variations yield and compositions of
syngas122. A customized optimization-oriented artificial intelligence-based
tuneable decision support system (TDSS) for HTG process was developed
using more than 500 datasets. An adaptive multivariate RF with adaptive
weighted rank aggregation was used as the backbone of the TDSS for pre-
dicting output parameters of HTG process123. A range of ML models has
been developed to predict the hydrochar production via mono-HTC (i.e.,
with one type of feedstock)105 or co-HTC (i.e., which blends two different
feedstocks)110,125 from a variety of feedstocks. It is important to note thatML
model development for mono-HTC for popular waste streams such as
sewage sludge, lignocellulosic waste, municipal solid waste, woody waste,
and food waste has been developed104–112. These works have frequently used
model explainability analysis coupled (SHAP, permutation importance,
partial dependence analysis) ML model selection pipelines, which led to
high accuracy (R2 > 0.9) interpretable model development. In some recent
efforts the power of deep learning (DL)104 and natural language processing
(NLP)126 have been leveraged to develop unifiedmodels for hydrochar (i.e.,

HTC derived biochar) and pyrochar (i.e., pyrolysis-derived biochar) pro-
duction. These efforts are true examples of unifying multiple organic waste
treatment processes into a singleMLmodel for developing rapid prediction
tools. ForHTLprocess-based bio-oil (or bio-crude) production optimalML
models selection tools have been developed that showed superior perfor-
mances (i.e., R2 > 0.9) of sophisticated techniques such as RF114,117,120,
GBM115,116,GPR118, andXGBOOST119.All the algorithmshave capabilities of
tackling overfitting issues under noisy datasets, while the GPR algorithm
hadadditional incentiveof providing thepredictiveuncertainty inbio-crude
yield. While most of the studies predicted yields of syngas, bio-oil, or
hydrochar produced via hydrothermal treatment methods, the models
predicting wastewater properties (e.g., pH, total organic carbon, total
nitrogen, and total phosphorus) are essential towards understanding the
adverse effects of wastewater pollutants on hydrothermal treatment pro-
cesses. This was addressed by XGBOOST modeling of hydrothermal
treatment processes topredict the aqueous phase properties with such input
information as elemental and biochemical compositions of feedstock and
reactor operating conditions124.

Data-driven modeling and optimization for biochemical
technologies
In numerous instances, researchers have used MLmethods to decipher the
process dynamics of biochemical technologies such as AD7,34, dark
fermentation36,127, and composting52. Compared to thermochemical pro-
cesses, these biochemical waste treatment methods adopt much lower
temperatures (35–70 °C), which are suitable for a wide range of bacterial
kinetics. Thismakesbiokineticmodelingof thebiochemicalwaste treatment
a non-trivial task.MLmodels developed for thesewaste treatment processes
have either been utilized for what-if scenario simulation or deployed in
tandemwith optimization algorithms formaximizing desired product yield
or to increase long-term stability.

AD being one of the most complicated biochemical waste treatment
techniques requires a real-time simulation tool to predict biogas (or
methane) production, effluent characteristics, or process stability7,34. ML
models help to correlate the input and output parametric spaces of the AD
process in dynamic scenarios. The waste treatment process relies on a wide
variety of feedstock and reaction parameters such as total solids, volatile
solids, organic loading rate, pH, retention time, temperature, oxidation-
reduction potential, electrical conductivity, alkalinity, ammoniumnitrogen,
volatile fatty acid (VFA), type of reactor, number of stages, reactor volume,
scale of implementation, and C-to-N ratio. The output parameters for these
models have generally been biogas yield, cumulative methane production,
effluent characteristics, total ammonium nitrogen accumulation, or VFA
production. Most of the earlier work has used FNNs to predict biogas and
methaneyields basedonavery limiteddatabaseof organicwaste128,129, which
makes their applicability questionable for other feedstock and operating
parameters. Therefore, for developing data-driven models compatible with
extensive feedstock databases, a wide variety of ML must be explored. In
addition, since data-driven models are of black box nature, they must be
coupled with model explainability analysis methods (e.g., feature impor-
tance, partial dependence assessment) to substantiate the relationship
between predicted and predictor variables. These needs have necessitated
the development of ML model selection pipelines for simulating anaerobic
co-digestion (ACOD) with a wide variety of feedstocks. The efforts also
included the implementation of online feature importance analysis,
enabling the selection of critical process variables in real time, a first of its
kind implementation in bioprocess modeling. For example, a prior work35

compared RF, GLMNET, SVM, and KNN algorithms to predict the
methane yield based on feedstock compositions and reactor temperature.
The KNN algorithm achieved the best performance with R2 = 0.73 and the
model explainability analysis included MeanDecreaseGini- and
InNodePurity-based feature importance analysis. Although it was counter-
intuitive that sophisticated ensembled tree methods (e.g., RF) performed
inferiorly than KNN, this might be attributed to the smaller size of dataset
(~20) used in the work. This claim is further strengthened by another
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work67, which used a relative large pool (>50) of data exploring GLMNET,
RF, XGBOOST, FNN, KNN, and SVM algorithms. In this case, the RF
model showed the best performance (R2 = 0.82) for predicting methane
yield, bolstering the claim that tree-based models are desired to be used for
the regression/classification applications with relatively larger datasets. In
addition to conventional input parameters for ML-based AD models (e.g.,
feedstock compositions and operating conditions), the study also incor-
porated genomic data to improve model prediction capabilities. Feature
importance analysis revealed that genomic abundance data had a higher
degree of influence on methane yield than operation conditions and feed-
stock information. Such ML models with explainability analysis helps to
identify the most significant taxa, e.g., the ones that dictate the biochemical
process efficiency. Subsequently, a tree-basedMLpipeline optimization tool
was developed for rapid prediction andmodeling of ACOD for amunicipal
wastewater treatment plant located in the USA based on an eight-year
period data (~2800 entries)130. The study explored twelve different ML
algorithms including DT, AdaBoost, XGBOOST, RF, ExtraTrees, GBM,
SVM, and KNN, among which ExtraTrees showed the highest accuracy
(R2 = 0.72) in predicting methane yield. Due to the randomized node
splitting, the ExtraTree algorithm achieved better model generalizability
than other methods such as RF. This also resulted in a shorter training time
than the RFmodel by saving an additional evaluation stage i.e., the optimal
node splitting criterionmethod. Model explainability analysis for this work
included permutation feature importance and single parameter partial
dependence analysis, revealing the top five influential parameters as (a)
waste content with COD> 20000mg/l, (b) dairy waste content, (c) content
of fat, oil, and gas, (d) rendering waste, and (e) amount of poultry blood.
These parameters were either linearly or exponentially correlated to the
methane yield, as revealed by partial dependence analysis. Such deep
knowledge of parametric functional dependence is essential for combining
ML models with optimization problems since the existence of non-
convexity in these parametric spaces might lead to globally non-optimal
predicted variables (e.g., biogas yield, VFA production, etc.) Similar ML
model selection pipelines were developed subsequently by other researchers
for simulatingAD to predictmethane yield, relative abundance of gene, and
VFA, where SVM, FNN, GBM coupled with SVM65, and XGBOOST have
been popular choices65,131–134. ML methods have also been combined with
optimizationalgorithms tomaximizebiogas (ormethane) yieldorminimize
the accumulation of VFAwithin the anaerobic digester135–137. FNN and GA
have been integrated to determine the trade-off chart between biogas pro-
duction and COD of the effluent138. These ML-integrated optimization
studies have greatly facilitated the design optimization of the anaerobic
digesters.

Dark fermentation, being an important waste-to-biohydrogen
conversion process has low-temperature biochemical dynamics,
requiring intricate tools for process simulation and optimization. To
address this ML methods have been utilized in recent years to simulate
biohydrogen production via dark fermentative routes36,127. Most of the
earlier efforts toward developingMLmodels for dark fermentation were
limited to FNNs57,139–141 based on input parameters such as chemical
oxygen demand, pH, dark fermentation time, VFA, inoculum and
substrate types, substrate and glucose concentrations, temperature, etc,
while the output parameter was primarily biohydrogen yield or pro-
duction rate. A subsequent effort142 compared response surface meth-
odology coupled with FNN and SVM for modeling dark fermentation,
which proved the superiority of the SVM method (R2 = 0.98) for pre-
dicting biohydrogen yields. Another latest study143 explored five differ-
ent ML models (GBM, RF, AdaBoost, SVM, FNN) for predicting
hydrogen yield based on a wide range of feedstock (wastewater) para-
meters, reaction conditions, etc. The work revealed that all three tree-
based ensemble learning methods i.e., GBM (R2 = 0.98), AdaBoost
(R2 = 0.91), and RF (R2 = 0.97), were suitable for predicting biohydrogen
production via dark fermentation. Nevertheless, further ML modeling
efforts are warranted towards enhancing the accuracy, model general-
izability, and parametric explainability.

The composting strategy significantly differs from both AD and dark
fermentation since composting is a method to store waste products sus-
tainably rather than extracting valuable products from them. Therefore,
capturing the process behavior via ML methods requires different approa-
ches. Some of the prevalent parameters that control the composting process
are temperature, moisture content, pH, electrical conductivity, nitrogen
content, carbon content, and C/N ratio. ML methods for composting
applications have mostly been used for predictive modeling and optimiza-
tion purposes rather than reactor control operations as in AD or dark
fermentation processes. For example, a prior work144 predicted the volume
of biogas produced by spentmushroom and wheat straw composting using
FNN, LR, and fuzzy inference system, where FNN outperformed the other
two models with R2 > 0.98. Other works have also revealed the interest of
researchers in predicting the CO2 produced by the organic waste com-
posting process51,145. In another instance146, chicken manure and penicillin
composting process was modeled using LR and RF models, revealing the
quantities of humic acid, fulvic acid, and humus. For this scenario, the RF
model outperformed the LRmodel proving the superiority of the tree-based
methods. The total carbon removal efficiency of chicken manure and
bagasse has been predicted using the FNN model with R2 = 0.99 with
knowledge of input parameters such as time, antibiotic type, and wt.% of
bagasse147. Composting maturity has also been an interest of predictive
variables for kitchen waste based on time, temperature, pH, electrical con-
ductivity, total nitrogen, C/N ratio, ammonia nitrogen, organic matter,
nitrate content, and seed germination index148. Five different types of ML
models such as LR, KNN, DT, SVM, and RF were deployed where RF
showed the best predictive performance (R2 = 0.85). Recently, researchers
haveusedGA-coupledFNNs tomodel the co-compostingprocess of sewage
sludge and biomassfly ashwith excellent predictive performance149. Despite
most of the work in the ML-based composting literature focused on pre-
dicting process variables, a few have also focused onML-basedmicrobiome
analysis associated with the composting process. Compositing being a low
temperature, microbiome-mediate decomposition process requires intri-
cate modeling of bacterial gene abundance, which has mostly been over-
looked to date. This is addressed in a recent study150, which analysed vital
microbiomes using interpretable ML methods (i.e., ML accompanied by
feature importance assessment), revealing Bacillus, Acinetobacter, Ther-
mobacillus, Pseudomonas, Psychrobacter, and Thermobifida as dominant
microbiomes. Towards process integration and alternative low-carbon
technology installation efforts, the influence of incorporating an electric
heating system with the compositing process has been studied using ML
methods151. The weight reduction rate of the compost and energy con-
sumption rate per kg of compost were the primary variables of interest. Two
different ML models were explored including least squares and RF, where
the least squares model outperformed (R2 = 0.89) the RF model. Due to the
smaller size of the dataset, the RF model was prone to overfitting and
counter-intuitively resulted in poor performance.

Bioprocess controllers integrated with MLmodels
Organicwaste treatmentprocess control involvesdifferent inputparameters
and output state variables for different technologies. Gaining precise control
on the input and state variables helps in process intensification, improves
overall system performance and process stability. Conventional bioreactor
control algorithms deploy state-space estimation using Kalman filter, detect
anomaly using principal component analysis (PCA), or perform predictive
control based on recursive least square algorithm152,153. However, deploying
these approaches often result in large time-series error propagation, ulti-
mately leading to transient deviation in the dynamic system154.

ML-based modeling and control algorithms can circumvent these
drawbacks due to their robust time-series tracking capabilities. ML-based
control algorithmshave been applied topredictprocess dynamics of organic
waste treatment systems. For example, one-dimensional CNN (1D-CNN)
was used to develop a transient control model for pyrolysis reactor155. The
gas phase components of the reactor that were controlled were methane,
ethylene, ethane, propylene, and propane. The 1D-CNN significantly
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outperformed the partial least square methods and reduced dynamic fluc-
tuations around the control setpoints. In another instance, a nonlinear
autoregressive exogeneous NN (NARX-NN)—an advanced time-series
forecasting techniquewas used to develop a predictivemodel accounting for
essential parameters of biomass gasification such as gas composition, higher
heating value (HHV), equivalence ratio and gas temperature153. The data-
driven model was ultimately used in tandem with a model predictive con-
troller (MPC) to solve different types of goal-oriented control problems.
Overall, the control strategy kept the process conditions around 5%
deviation around the setpoint. A similar type of work utilized an RNN-
informed MPC for controlling the generation of hydrogen-rich gas and
biochar from biomass waste gasification156. A related work compared the
efficacies of NARX-NN, state-space NN, and Hammerstein-Wiener net-
work for developing MIMO and SISO control schemes of gasification
process. TheNARX-basedmodel outperformed both the other approaches,
proving its superiority in time-series forecasting157. Data-driven algorithms
for e.g., FNN have also been used to simulate process dynamics of ethanol
production from sugarcane fermentation. The predictive model controlled
the concentrations of ethanol and substrate with R2 values 0.97 and 0.92,
with an error less than 7%158.

Sophisticated ML-based time series models have been used as MPCs
for organic waste treatment processes (e.g., AD). The models included RF,
FNN, extreme learningmachine (i.e., FNNwith adaptive weight correction
capability), and SVM. The primary control parameter for these studies was
VFA since its high concentration can significantly inhibit the methano-
genesis process that facilitates production of biogas159–161. These data-driven
models were integrated with statistical control charts to detect and classify
anomality in AD systems, which is relevant for long-term operation of AD.
Different types of graph-based NNs (e.g., graph convolutional network
(GCN), deep belief network, stacked autoencoder, spatiotemporal GCN,
etc.) were combined with MPC to improve the accuracies of these VFA
predictionmodels. Feature selection capability was incorporated with these
models to reduce the number of input parameters whichultimately reduced
overfitting and improved predictive accuracies by up to 6.4%162–165.

PINN integration with ML-based bioprocess models
NNs are often criticized of being black-box models, with limited under-
standing of physical phenomena, a concern pertinent within the bioprocess
modeling community. Although integrating NNs with model-agnostic
explainability analysis methods (e.g., SHAP, permutation feature impor-
tance, and partial dependence analysis) can provide knowledge on the
dependencies of output variables on predictor variables, it still fails to
account for physicochemical laws in the model. Due to the exceptional
capability of embedding physical constraints/laws (e.g., conservations of
mass, momentum, energy) into data-driven algorithms, PINNs have
recently been used to model bioprocessing. For example, PINN was
deployed to simulate the production of β-carotene using a fermentation
process within a laboratory-scale batch reactor166. This approach cir-
cumvented modeling the complex multi-step kinetic mechanism of the
fermentation process and enabled representing the dynamics via an
experimental data-guided reduced order set of differential equations. The
PINN was able to quantify the hidden (or unknown) parameters of the
reduced-order model. In another instance, PINN was used to model the
organic waste gasification process while considering the monotonicity of
several physical parameters (e.g., equivalence ratio, moisture content, and
temperature), ultimately predicting the contents of N2, H2, CO, CO2, and
CH4 in the output gas63. The model achieved R2 > 0.9 and supported with
explainability analyses methods e.g., partial dependence plots, physical
consistency degree. The PINN developed in this work significantly out-
performed commonly usedML-based regressionmodels such as RF, GBM,
XGBOOST, SVM, and FNN, proving the superiority of PINN. PINN has
also been utilized to simulate the behavior of a laboratory-scale pyrolysis
reactor with poly methyl methacrylate (PMMA) as a model waste/
biomass167. The constructed PINN deciphered the unknown reaction
parameters with great accuracy and constructed a data-driven model for

further simulation purposes. Despite these recent efforts of applying PINNs
to model bioprocesses and to establish true coordination between highly
specific kinetic models (e.g., ADM1, Gompertz, acidogenesis-
methanogenesis model6) and general-purpose data-driven models, the
field is still in its initial stages.There is yetno evidence of usingPINNforAD,
compositing process, or hydrothermal treatment methods, which are
essential to be developed in the future.Moreover, further efforts are required
to improve the PINN models developed for gasification, pyrolysis, and
fermentation with improved chemical mechanisms, thermofluidic models,
and data-driven models with parametric uncertainty quantification.

Life cycle assessment informed by MLmodels
An emerging application ofML-basedmodels in bioprocess engineering for
organic waste treatment is its integration with life cycle assessment (LCA)
frameworks. LCA is a standard protocol that has been widely applied to
evaluate the environmental impacts of a process, technology, system, or
service by considering components and sub-processes throughout its whole
life cycle. As an essential phase of LCA, life cycle inventory analysis (LCIA)
about data gathering has a high requirement on the quality of input data
which can significantly affect the outcome of LCA. It is essential to develop
high fidelity, robust, and rapidly computable data-driven models, in which
ML-based unit process modeling can play a key role. The current practices
for gatheringLCIdata areusually a very rigorousprocesswherediscrete data
from a large variety of literature is fed into the unit process model29. Often,
the input parameters are not compatible with each other which deviates the
unit process from reality. In several instances, model simulations are per-
formed to gather LCI inventory, which is a time-consuming and
uncertainty-prone process168.

ML-based unit processes have been developed to streamline the LCIA
for different organic waste treatment processes. For example, an RF-based
data-driven model was developed to facilitate the evaluation of the techno-
economic and environmental performance of pyrolysis of three different
organic waste (crop residues, woody waste, and wastewater sludge)83. The
RF model predicted biochar yields, carbon content, nitrogen content, and
higher heating values, which were essential to estimating carbon seques-
tration, nitrogen content for soil amendments, and direct biochar usage for
heating applications, respectively. These datasets informed associated LCA
which ultimately predicted the global warming potential (GWP) abatement
of the development. ML models have also been utilized for assessing the
environmental impact of bio-oil production via HTL process169. Four dif-
ferent types of ML models such as RF, GBM, SVM, and linear regression
were compared. The GBM algorithm predicted the bio-oil yield with the
highest accuracy (R2 = 0.92 andRMSE = 0.05), whichwas further combined
with a model explainer, suggesting that the feedstock lipid content had the
highest influence on the bio-oil yield. Themodel explainability analysis was
carried out based on feature importance analyses (SHAP and permutation
feature importance) and partial dependence analysis. The ML-informed
LCA results quantified the life cycle generation of SO2, CO2, and NOx for
each kg bio-oil production. Another research work170 developed a unified
ML model combining databases of HTL, HTG, and HTC for bio-crude,
syngas, andhydrochar prediction,whichwas subsequently combinewith an
LCA model to evaluate GWP and energy-return-on-investment (EROI)
metrics. The LCA framework also considered scenarios which integrated
hydrothermal technologies with CHP and carbon capture with storage
technologies. The study highlighted trade-offs between GWP and EROI for
a wide variety of feedstock properties. In another instance, five different
types of ML models were developed to inform LCA that was applied to
assess the environmental benefits of an anaerobic digester integratedwith an
air-source heat pump (ASHP)32. The GPR model showed superior perfor-
mance in predicting the biogas yield andmethane content producedbyAD.
A feature importance analysis suggested that HRT, pH, and reactor
operation temperaturewere the top three important parameters influencing
the model output. The LCA compared two scenarios: the AD was heated
with heat supplied by ASHP vs. heat supplied by a natural gas-fired boiler.
The latter hadup to36%moreGWPthan the former. In anotherwork, FNN
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was utilized to simulate Black Soldierfly larvae-based composting of kitchen
waste171. Influences of essential parameters such as composting time, aera-
tion frequency, number of larvae, composting container surface area, and
waste compositionon compositingperformancewere investigatedusing the
FNN model. The data-driven model further informed an LCA assessment
framework, which quantified 12 different LCIA metrics including GWP,
human toxicity, acidification potential, etc. The FNN-informed LCA fra-
mework achieved accuracies up to 95.6%, proving the superiority of the
methodology.

Opportunities and recommendations
Although there have been significant advancements in data-driven ML
modeling in the field of organic waste treatment, it is safe to conclude that it
is still in its early days. Scepticism exists across industrial practitioners and
academicians regarding the correctness of quantities predicted by ML
models, posing several challenges and opening future research
opportunities.
• The selection of the best possible ML model is found to be strongly

correlatedwith the size of the dataset utilized. For example, the datasets
with fewer than~30entriesmight suffice tofitwellwith simplermodels
(e.g., NN, SVM, and KNN) and result in overfitting if fed into
ensemble-based methods. For relatively large bioprocess databases
withO(102) –O(103), the benefits of ensemblemethods such as RF and
XGBOOST can be availed. This further calls for systematic rule
generation for bioprocess modeling towards dataset-oriented model
selection, which will mitigate overfitting.

• Most of the instances where ML models have been deployed for
modeling organic waste treatment are based on datasets generated by
lab-scale equipment, requiring extrapolation for industrial operations.
Thus, the prediction uncertainty may increase, and the control system
with the ML models may undergo instability. For such cases, model
uncertainty quantification and adaptive error correction algorithm
design become essential. In this realm, the uncertainty quantification
power of GPR algorithms can be utilized for the development of the
models.

• Most of the existing data-driven modeling works do not include
interpretability analysis,making themodels purely of black-boxnature.
There were several interpretability analysis efforts popularizing over
the past few years based on feature importance assessment, partial
dependence analysis, etc, which improved the understanding of the
validity ofMLmodeling and the usage efficiency of existing data. In the
future, it will be intriguing to explore other model-agnostic
explainability methods to decipher the black-box models. An essential
research direction in this area will be to develop real-time feature
importance analysis towards parameter forecasting inMPC design for
bioreactors and bioprocesses. Computational efficiency of such
algorithms must also be tested using hardware-in-loop (HIL) systems
before industrial deployments.

• Despite the immense promising capability of PINN for bioprocess
modeling, their usage in thisfield has been extremely sparse. This often
led toMLmodel predictions that do not comply with the conversation
of mass, energy, or momentum. To mitigate this issue, governing
equations can be used in tandem with the training loop for the ML
algorithms. A research direction in this realm would be to integrate
real-time AD data with first principal multistep kinetic models (e.g.,
ADM1, Acidogenesis-Methanogenesis model, etc.) using physics-
informed ML approaches. This would ensure that the ML-predicted
process variables comply with governing equations/laws by
construction.

• Since the modeling of bioprocesses for organic waste treatment is a
multi-disciplinary problem there must be strong synergy between
chemical and biological kinetics, thermofluids, and genomics.
However, many data-driven models developed omit at least one of
the aspects, leading to oversimplification or biased consideration of
essential process characteristics. Integrating information from all these

domains would be required to construct a truly holistic data-driven
model,whichwill bedependenton the types of organicwaste treatment
technologies as well as the application of the model developed.

Conclusions
The diverse set of data-drivenmodeling techniques discussed in this study
offers a comprehensive toolkit for a wide range of organic waste treatment
technologies, which will ultimately contribute to achieving a net-zero
pledge. The data-driven methods included sophisticated ML approaches
such as NN, PINN, SVM, DT, RF, XGBOOST, KNN, and GPR, which
have been widely used to model, optimize, control, and understand high-
and low-temperature organic waste treatment methods. The usage of
model explainability analysis methods which decipher the black-box
contents of data-drivenmethods are discussed. The usage ofMLmethods
in tandem with physical governing laws of waste treatment technologies
enabled by PINN has shown to be a promising way to enhance model
reliability. The need for deploying natural language processing-based ML
models into the context of organic waste treatment strategies was also
highlighted.An extensive searchof the literature suggested that synergistic
interactions ofMLmodelswith control algorithms, heuristic optimization
engines, and life cycle assessment framework will aid holistic model
development and promote greater resource circularity for organic waste
management principles.
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