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Abstract 
Background:  Automatic landmarking software packages simplify the analysis of the 3D facial images. Their main deficiency is the limited ac-
curacy of detecting landmarks for routine clinical applications. Cliniface is readily available open-access software for automatic facial landmarking, 
its validity has not been fully investigated.
Objectives:  Evaluate the accuracy of Cliniface software in comparison with the developed patch-based Convoluted Neural Network (CNN) al-
gorithm in identifying facial landmarks.
Materials /Methods:  The study was carried out on 30 3D photographic images; twenty anatomical facial landmarks were used for the ana-
lysis. The manual digitization of the landmarks was repeated twice by an expert operator, which considered the ground truth for the analysis. 
Each 3D facial image was imported into Cliniface software, and the landmarks were detected automatically. The same set of the facial land-
marks were automatically detected using the developed patch-based CNN algorithm. The 3D image of the face was subdivided into multiple 
patches, the trained CNN algorithm detected the landmarks within each patch. Partial Procrustes Analysis was applied to assess the accuracy 
of automated landmarking. The method allowed the measurement of the Euclidean distances between the manually detected landmarks and 
the corresponding ones generated by each of the two automated methods. The significance level was set at 0.05 for the differences between 
the measured distances.
Results:  The overall landmark localization error of Cliniface software was 3.66 ± 1.53 mm, Subalar exhibiting the largest discrepancy of more 
than 8 mm in comparison with the manual digitization. Stomion demonstrated the smallest error. The patch-based CNN algorithm was more 
accurate than Cliniface software in detecting the facial landmarks, it reached the same level of the manual precision in identifying the same 
points. The inaccuracy of Cliniface software in detecting the facial landmarks was significantly higher than the manual landmarking precision.
Limitations:  The study was limited to one centre, one groups of 3D images, and one operator.
Conclusions:  The patch-based CNN algorithm provided a satisfactory accuracy of automatic landmarks detection which is satisfactory for the 
clinical evaluation of the 3D facial images. Cliniface software is limited in its accuracy in detecting certain landmark which bounds its clinical 
application.
Keywords: facial landmarking; 3D; machine learning

Introduction
Over the past decade, the availability of non-invasive 3D fa-
cial imaging has facilitated the objective and reproducible 
analysis of the craniofacial morphology. In orthodontics and 
orthognathic surgery, 3D image analysis is essential for the 
diagnosis and management of craniofacial dysmorphology. 
The 3D facial images are essential for preoperative assessment, 
prediction planning, and the evaluation of post-operative 
changes [1]. Moreover, 3D technologies play a vital role as 
objective measurement tools in genetic and developmental 
studies. The integration of the 3D facial images and genomics 

allowed the exploration of the genetic influences on morpho-
logical shape variation [2, 3].

However, the analysis of 3D facial images, ranging from 
simple linear measurements to the more comprehensive dense 
surface correspondence analysis, often requires the digitiza-
tion of key landmarks which is challenging and prone to 
identification errors [1, 4, 5]. Hence, the development of ro-
bust and precise automated tools for 3D facial landmarking 
is crucial.

Cliniface, an open-source software, addresses this need. It 
provides the facility of automated landmarking of the face 
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for anthropometric and dysmorphological analysis. It was de-
veloped as an extension of the Meshmonk tool, which em-
ployed a non-rigid correspondence algorithm for landmark 
localization [6]. Cliniface offers a generic facial registration 
and landmarking process. This process involves the deform-
ation of a symmetric anthropometric mask to an input target 
face which is followed by transferring the landmarks from the 
‘deformed’ mask to the target 3D facial image.

Once landmarks are placed automatically, Cliniface ex-
tracts standardized facial measurements, including distances, 
angles, depth, and asymmetric differences which are used for 
the clinical assessment patient screening, treatment moni-
toring, and surgical planning.

Although Palmer et al., 2020, assessed Cliniface’s accuracy 
using linear facial measurements, no previous studies have in-
vestigated its accuracy in detecting facial landmarks of 3D 
facial images.

In recent years, the Convoluted Neural Network (CNN) 
algorithms have emerged in computer vision as a promising 
tool for facial landmark detection that allows the analysis 
of complex patterns of the 3D facial images [7]. CNN is a 
powerful mathematical approach for deep learning, It is based 
on convolving local receptive fields over the image and apply 
the mathematical element-wise multiplication with learnable 
filters or kernels that allow CNN to extract valuable morpho-
logical features [8]. The interconnected mathematical layers 
of the CNN recognize the patterns across different image re-
gions. Therefore, CNN is the ideal approach for facial land-
mark detection that requires a high level of accuracy. Over the 
last few years our team developed and validated automated 
facial landmarking based on the recent advances of the CNN 
algorithm [9]. Despite the extensive application of the CNN 
in computer vision, their application in clinical settings, par-
ticularly in orthodontics and orthognathic surgery, has been 
limited [10].

Recently, our team innovated the automatic landmark de-
tection of 3D facial images in clinical settings using patch-
based CNN algorithm. A patch is a surface around the centre 
of a landmark which is identified manually ‘ground truth’. 
The patch is mathematically shifted along the x, y directions 
which create new augmented patches.

The augmented patches increase the sample size for the 
training of the Convolutional Neural Networks model and 
the machine learning process for the accurate automated 
landmarks detection. Data augmentation was carried out 
using translation cropping on 408 patches, resulting in a 
dataset of 10 200 PNG images (151 × 151 pixels) for each 
landmark. Initially, we built a high-quality, in-house ground 
truth dataset based on 408 3D facial images. This generated 
408 patches for each of the 20 facial landmarks that were 
analysed in the study. These 408 patches were translated ran-
domly to generate 10 200 images for each landmark, these 
were used for the deep learning algorithm. Full details can be 
seen in the previous article.

We demonstrated that the overall mean accuracy of fa-
cial landmarks detection using the patch-based CNN was 
0.47 ± 0.52 mm. The lowest mean error of 0.41 ± 0.32 mm 
was along the y-axis, while the x-axis had a higher mean error 
of 0.45 ± 0.36 mm, and the z-axis had the highest mean error 
and standard deviation when compared to the other two axes 
(0.56 ± 0.89 mm). We concluded that the developed novel 
approach is accurate enough for the 3D analysis of facial 
morphology for clinical purposes [9].

This study aims to compare the accuracy of the well-
established Cliniface software with the newly developed 
patch-based CNN in identifying anatomical facial land-
marks of 3D facial images of a group of patients who re-
quire orthognathic surgical correction of their dento-facial 
deformities.

Material and methods
Ethical approvals for this study were obtained from the East 
of Scotland Research Ethics Committee (REC reference: 21/
ES/0042) and NHS Greater Glasgow & Clyde Health Board 
NHS GG&C R&I reference: GN21OD153). All procedures 
including filing and storage of data were adhered to according 
to the guidelines and policies set forth by health authorities.

The study was carried out on thirty 3D stereophotographic 
facial images of adult orthognathic patients. The images were 
captured for the diagnosis and management of dentofacial 
deformities by the multidisciplinary orthognathic team. The 
patients gave their permission for their data to be used for re-
search. All 3D facial images were captured under a controlled 
and strict 3D data collection protocol, using a passive stereo-
photogrammetry of the Di3D imaging system (Dimensional 
Imaging, Hillington, Glasgow, UK). The imaging system con-
sisted of two-pod system, a stereo pair of cameras of each 
pod allowed the capture of each side of the face to build a 
photorealistic 3D image of the full face from ear to ear and 
from the hair line of the forehead to the hyoid bone. The ac-
curacy of the system had been previously has been reported 
at 0.21 mm [11].

The sample size of thirty 3D facial images was based on pre-
vious studies which assessed the accuracy and reliability of auto-
matic landmarking method [9, 12]. The 3D images were of the 
highest quality for analysis. Images which included missing re-
gions, artefact or distortion were excluded from the study.

Twenty facial significant anatomical landmarks (Table 1) 
of the nose, eyes and the lips were used for the comparative 
evaluation of the detection accuracy between Cliniface and 
the patch-based CNN approach. Fig. 1 shows Cliniface’s fa-
cial registration and landmark annotation. Fig. 2 shows the 
full set of landmarks detected by Cliniface and were used in 
the analysis of this study. The 20 landmarks in Fig. 1 and 
Table 1 can be detected by both the Clinface software and the 
CNN algorithm. Therefore, therefore they were selected in 
this study for the comparative analysis.

Manual landmarking method was used as a ground truth 
of which the landmarks position was compared with both 
the Cliniface software and the patch-based CNN. Twenty 
landmarks were manually identified on each of the 3D fa-
cial images using the Di3D View software (Fig. 2b). The 
software allowed simultaneous viewing of the single image 
in three different windows, allowing rotation and magnifi-
cation of the image. Accurate landmarks identification re-
quires the operator to have full 3D control of the perspective 
and magnification of the images in order to correctly iden-
tify the landmarks on the 3D facial models. The coordin-
ates of the soft tissue landmarks on the x, y, and z axis were 
extracted and recorded. The landmarks were identified by 
well-trained operator who went through a training process 
before landmarking the study sample. To assess the errors of 
the manual landmarking method, the whole set of landmarks 
were digitized twice, 2-week apart, by the same operator. The 
difference in landmarking was statistically analysed using 
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The accuracy of automated facial landmarking 3

paired Student t-test. Each 3D facial image, in OBJ format, 
was imported into Cliniface software and the landmarks were 
detected automatically (Fig. 2a).

The same set of the anatomical landmarks were automat-
ically detected using the developed patch-based CNN. The 
3D image of the face was subdivided into multiple patches, 
the trained network provided the automatic detection of the 
landmarks within each patch (Fig. 3). Partial Procrustes ana-
lysis allowed superimposition of landmarks configurations. 

The assessment of that individual landmark accuracy by 
measuring the Euclidean distance between the corresponding 
individual landmarks of the two sets. We also analysed the 
landmarks detection accuracy of both methods, Cliniface 
and the patch-based CNN-based algorithm in relation to the 
intra-operator error of manual landmarking.

The accuracy of Cliniface software and the patch-based 
CNN for automatic landmark localization was measured in 
relation to the manually digitized landmarks (Ground truth). 

Table 1. Landmarks used in Cliniface software study.

Landmark Definition

1 Exocanthion (R) Apex of the angle formed at the outer corner of the palpebral fissure where the upper and lower 
eyelids meet.3 Exocanthion (L)

2 Endocanthion (R) Apex of the angle formed at the inner corner of the palpebral fissure where the upper and lower 
eyelids meet.4 Endocanthion

(L)

5 Nasion The midpoint on the soft tissue contour of the base of the nasal root where the frontal and 
nasal bones contact (nasofrontal suture).

6 Glabella The most prominent midline point between the eyebrows, identical to bony glabella on the 
frontal bone.

7 Pronasale Midline point marking the maximum protrusion of the nasal tip.

8 Subalare (R) Point on the margin of the base of the nose where the ala disappears into the upper lip skin.

9 Subalare (L)

10 Subnasale Midpoint of angle at the columella base where the lower border of the nasal septum and the 
surface of the upper lip meet (the apex of the nasolabial angle).

11 Cheilion (R) Point located at the corner of each labial commissure.

12 Cheilion (L)

13 Crista philtre (R) The peak of Cupid’s bow.

14 Crista philtre
(L)

15 Labiale superius The midpoint of the vermilion line of the upper lip.

16 Labiale inferius  The midpoint on the vermilion line of the lower lip.

17 Stomion Midpoint of the labial fissure.

18 Sublabiale Midpoint along the inferior margin of the cutaneous lower lip (labiomental sulcus).

19 Pogonion The most anterior midpoint of the chin.

20 Gnathion Midline point on the inferior border of the mandible.

R = Right, L = Left.

Figure 1. Cliniface’s facial registration and landmark annotation showing anthropometric generic face mask (a) the non-rigid transformation ‘deformation’ 
of the template to the target face (b), landmarks transfer to the target face original surface (c).
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This was achieved by comparing the mean absolute distance 
in the x, y and z coordinates between manually digitized and 
automatically detected landmarks. The distances of each land-
mark on each image between manual and automated detection 
methods were calculated with a 3D Euclidian distance formula,

Distance=
»

(x1 − x2)
2
+ (y1 − y2)

2
+ (z1 − z2)

2

where x1, y1, z1 are coordinates for manual detection and x2, 
y2, z2 are coordinates for automated detection.

Statistical analysis
A one-sample t-test was used to assess the statistical signifi-
cance of the mean difference in each landmark’s position be-
tween the manual digitization and the automatic approaches 

Figure 2. Automated detection of the landmarks’ set in Table 1 using Cliniface software (Figure a) and Di3D software manual landmarking software 
(Figure b).
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The accuracy of automated facial landmarking 5

of the Cliniface software and the patch-based CNN. The 
significance level was set as 0.05 for the study outcomes.

Results
The overall mean of the intra-observer error calculated across 
subjects along all axes for all landmarks was 0.56 ± 0.69 mm. 
Values range between 0.20 mm and 2.23 mm. Most of the 
landmark’s coordinates did not exhibit any statistically sig-
nificant error based on Paired Student t-tests. The ICC 
was >0.90, which had high rate of reproducibility in intra-
examiner repetitive identification (Al Baker et al. [9])

Table 2 shows the accuracy of the automated Cliniface 
software in automatic detecting of the facial landmarks, 
comparing the errors between the automated landmarking 
(Cliniface) and manual landmarking.

The overall localization error, as determined by the Euclidean 
distance, was 3.66 ± 1.53 mm. Notably, the subalare land-
marks exhibited the largest error, with an average discrepancy 
exceeding 8 mm. Conversely, the stomion landmark demon-
strated the smallest error, with mean and standard deviation 
(SD) values of 1.49 ± 0.60 mm.

Among the three axes, the y-axis exhibited the highest mean 
error, while the x-axis showed the least error. Furthermore, 
statistical analysis revealed significant differences between 
the automated and manual methods of identifying most land-
marks, except for the subnasale, crista philtre (R, L), labiale 
superius, and Labiale inferius. These differences were ob-
served in at least one axis (with a P-value less than 0.0008 
after Bonferroni correction).

The automated location of Nasion had the smallest mean 
error of 0.34 mm in the x-axis, whereas gnathion had the lar-
gest mean error of 6.56 mm in the y-axis. Other landmarks 
that demonstrated discrepancies of over 3 mm included the 
right and left subalare (x- and z- axes), right Cheilion (x-axis), 
and pogonion (y-axis). However, certain landmarks exhibited 
highly accurate identification, with discrepancies of less than 
0.5 mm in their respective locations. These landmarks include 

glabella (x-axis), pronasale (z-axis), subnasale (x-axis), labiale 
superius (x-axis), labiale inferius (x-axis), stomion (x-axis), 
and sublabiale (x-axis).

Table 3 displays landmark location errors between the 
Cliniface software and the manual method for all 20 land-
marks across each axis. The results indicate that when using a 
threshold of 1 mm, 11 landmarks were within range for both 
the x- and z-axes, whereas only 4 landmarks were within 
1 mm range for the y-axis.

Table 4 shows the error of the automatic detecting of the 
facial landmarks, using the patch-based CNN algorithm in 
relation to the manual landmarking (Gold standard). The 
overall localization errors measured by the Euclidean dis-
tances between the manual and automated landmarking was 
less than 1, in most of them it was within 0.5 mm except for 
Gn point which reached 1.16 mm.

Figure 4 shows the comparative accuracy between Cliniface 
software and the patch-based CNN for the automatic detec-
tion of the 20 facial landmarks. The results indicate that CNN 
model was more accurate and outperformed the Cliniface in 
the automatic detection of the facial landmarks.

Table 5 shows the mean differences ‘Euclidean distances’ 
between the manual intra-operator landmarks digitization 
errors and the automatic detection of the same set of the 
landmarks using the Cliniface software and the patch-based 
CNN algorithm. The patch-based CNN-based method was 
as accurate as the repeated manual digitization of the trained 
operator which was considered the ground truth in this study. 
In contrast, the Cliniface software showed a mean automatic 
detection error of the landmarks that is significantly higher 
than the intra-operator error.

The main reason for the inaccuracies encountered may be 
attributed to discrepancies in the registration stage initiated 
by Cliniface software before a common coordinate system 
was applied to measure the errors of automatic identifica-
tion of the landmarks. This step is completely eliminated 
with the patch-based detection of landmarks using CNN 
approach.

Figure 3. The mathematical algorithm of the 2.5D patch-based identification of the Pronasale, it shows the display of different colour shades that were 
used to maximize the accuracy of landmarks detection.
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Table 2. Mean errors of automatic landmarks identification of Cliniface software.

LM Mean Absolute error ± SD P-values of t-test* Euclidian distance

 (mm)

X Y Z X Y Z Mean error ± SD 95% Confidence interval of Mean

EX-R 1.55 ± 1.28 1.59 ± 0.93 2.39 ± 1.55 .063 .0024 <.001 3.51 ± 1.78 2.88; 4.15

EX-L 1.98 ± 1.56 1.49 ± 1.17 2.51 ± 1.67 .1206 <.001 <.001 3.92 ± 1.90 3.24; 4.6

EN-R 1.37 ± 0.88 0.85 ± 0.59 0.74 ± 0.61 <.001 .0477 .4532 1.97 ± 0.85 1.66; 2.27

EN-L 1.13 ± 0.92 0.90 ± 0.70 0.75 ± 0.48 <.001 .0052 .099 1.85 ± 0.86 1.55; 2.16

N 0.34 ± 0.29 1.86 ± 1.70 0.95 ± 0.45 .7131 <.001 <.001 2.31 ± 1.51 1.77; 2.85

Gl 0.49 ± 0.36 5.26 ± 2.14 1.18 ± 0.74 .289 <.001 <.001 5.5 ± 2.09 4.75; 6.24

PRN 0.63 ± 0.41 2.30 ± 1.51 0.37 ± 0.31 .1201 <.001 .1356 2.55 ± 1.35 2.06; 3.03

SA (R) 6.32 ± 1.85 1.04 ± 0.77 5.65 ± 1.62 <.001 .389 <.001 8.75 ± 1.70 8.14; 9.36

SA (L) 6.21 ± 2.08 0.99 ± 0.83 5.46 ± 1.53 <.001 .5221 <.001 8.56 ± 1.82 7.91; 9.22

SN 0.49 ± 0.30 1.31 ± 0.86 0.94 ± 0.83 .0106 .0344 .3891 1.85 ± 0.96 1.5; 2.19

CH-R 3.44 ± 1.80 1.23 ± 0.80 0.83 ± 0.85 <.001 <.001 .4536 4.00 ± 1.61 3.42; 4.58

CH-L 2.91 ± 1.74 1.50 ± 1.01 0.72 ± 0.63 <.001 <.001 .4933 3.56 ± 1.73 2.94; 4.17

CP-R 1.07 ± 0.89 1.08 ± 0.75 0.79 ± 0.46 .8417 .4328 .0044 1.92 ± 0.90 1.6; 2.24

CP-L 0.94 ± 0.86 1.08 ± 0.76 0.69 ± 0.49 .5457 .269 .042 1.83 ± 0.90 1.53; 2.13

Lab-Sup 0.36 ± 0.24 1.20 ± 1.01 0.77 ± 0.50 .0254 .0149 .0584 1.63 ± 0.90 1.31; 1.95

Lab-Inf 0.45 ± 0.36 1.51 ± 1.52 1.09 ± 0.94 .025 .6857 .0191 2.13 ± 1.56 1.57; 2.68

STO 0.37 ± 0.33 1.04 ± 0.72 0.71 ± 0.51 .9067 <.001 .5779 1.49 ± 0.60 1.27; 1.71

SL 0.36 ± 0.34 2.05 ± 1.38 1.67 ± 1.57 .0977 <.001 <.001 2.84 ± 1.88 2.16; 3.51

PO 0.57 ± 0.45 5.61 ± 2.39 1.13 ± 1.03 .0866 .001 <.001 5.90 ± 2.27 5.09; 6.71

GN 0.90 ± 0.59 2.56 ± 1.79 6.56 ± 3.10 <.001 <.001 <.001 7.20 ± 3.41 5.98; 8.42

1.59 ± 0.85 1.82 ± 1.14 1.79 ± 0.97 3.66 ± 1.53

EX-R: Exocanthion (right), EN-R: Endocanthion (right), EN-L: Endocanthion (left), EX-L: Exocanthion (left), N: Nasion, PRN: Pronasale, SA-R: Subalare 
(right), SA-L: Subalare (left), SN: Subnasale, CH-R: Chelion (right), CH-L: Chelion (left), CP-R: Crista philtre (right), CP-L: Crista philtre (left), Lab-Sup: 
Labiale superius, Lab-Inf: Labiale inferius, STO: Stomion, SL: Sublabiale, PO: Pogonion, GN: Gnathion, GL: Glabella.
*One sample t-test. The level of significance was set at p < .0008 after Bonferroni correction (red colour).
Orange highlight indicates highest error. Bold indicates least mean error.

Table 3. Landmark location discrepancy between automated Cliniface software and manual method in x-, y- and z- axes for 20 landmarks.

Degree of 
discrepancy

X Y z Total 
number

Total 
%

(mm) LM No % LM No % LM No %

≤0.5 N,Gl,SN,Lab-
Sup, Lab-
Inf, STO,SL

7 35% 0 0% PRN 1 5% 8 13%

0.5 < x ≤ 1 PRN,CP-L, 
PO, GN

4 20% EN-R, EN-L, SA-L, 
STO

4 20% EN-R, EN-L, N, SN, 
CH-R, CH-L, CP-R, 
CP-L, Lab-Sup, STO

10 50% 18 30%

1 < x ≤ 1.5 EN-R,EN-L, 
CP-R

3 15%  EX-L, SA-R, SN, 
CH-R, CH-L, CP-R, 
CP-L, Lab-Sup

8 40% Gl, Lab-Inf, PO 3 15% 14 24%

1.5 < x < 2 EX-R, EX-L 2 10% EX-R, N, Lab-Inf 3 15% SL 1 5% 6 10%

2 ≤ x < 3 CH-L 1 5% PRN, SL, GN 3 15% EX-R, EX-L 2 10% 6 10%

≥3 SA-R,SA-
L,CH-R

3 15% GL, PO 2 10%  SA-R, SA-L, GN 3 15% 8 13%

No: number, EX-R: Exocanthion (right), EN-R: Endocanthion (right), EN-L: Endocanthion (left), EX-L: Exocanthion (left), N: Nasion, PRN: Pronasale, 
SA-R: Subalare (right), SA-L: Subalare (left), SN: Subnasale, CH-R: Cheilion (right), CH-L: Cheilion (left), CP-R: Crista philtre (right), CP-L: Crista philtre 
(left), Lab-Sup: Labiale superius, Lab-Inf: Labiale inferius, STO: Stomion, SL: Sublabiale, PO: Pogonion, GN: Gnathion, GL: Glabella.
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Discussion
Review of the literature identified the lack of information 
regarding the threshold value of acceptable landmarking 
error for clinical and biological use. The threshold of manual 
landmarking varies in the literature. Some consider errors 
larger than 0.5 mm to be significant [13], while others con-
sider 1mm as the clinical threshold of landmarking errors 
[14]. Others reported a threshold of landmarking error of 
2 mm [15]. Only 5% of the reviewed studies agreed that a 
threshold of 1 mm landmarking errors is considered ac-
ceptable. Based on the reported reproducibility of 3D facial 
manual landmarking the 0.5 mm remains the gold standard 
for clinical applications [16]. Facial landmarking is time 
consuming and requires a comprehensive training for the 
operator to achieve this level of accuracy. Therefore, the auto-
mated facial landmarking has always been the holy grail of 
facial analysis. The lack of a reliable automated landmarking 
with a satisfactory accuracy has inspired this study.

The emergence of deep learning, particularly the CNN, has 
led to significant advancements in landmark detection [17]. 
This is well documented in computer vision applications [18]. 
CNN have shown promising results in identifying specific 
visual patterns that correspond to landmarks’ locations [19]. 
This accuracy is dependent on the training of the CNNs using 
a large dataset of annotated images where the landmarks of 
interest are labelled. These advancements have been supported 
by the availability of publicly accessible large-scale annotated 
databases [20]. However, caution is necessary when applying 
these databases to develop landmark models for clinical pur-
poses. Special attention must be considered to the quality of 

the ground truth landmarking in such cases [19]. There are 
two common CNN approaches for facial landmark detection; 
the heatmap regression and the dense regression method. 
Heatmap regression generates a heatmap of the face, where 
each point corresponds to the likelihood of a facial landmark 
being located at that point [21]. In contrast, dense regression 
directly outputs the coordinates of each facial landmark [22]. 
For our dataset, which comprises standardized 3D facial im-
ages, we opted for dense regression over heatmap method due 
to its speed and efficiency. The development of the innovative 
CNN patch based approach and its robust validation of our 
team [9] provided the basis of the comparative validation of 
the readily available and commonly used software (Cliniface) 
in this study.

Cliniface is an open-source software that can automatic-
ally detect craniofacial landmarks and provide linear and 
angular measurements of the face, making it a valuable tool 
for clinical and research professionals. Although Palmer et al 
[23] have assessed the Cliniface’s accuracy using linear facial 
measurements, no studies have investigated its effectiveness in 
the detection facial landmark of 3D facial images. Therefore, 
we assessed the accuracy of Cliniface software in identifying 
facial landmarks in our population sample. The rational 
of the study was the evaluation of this software in clinical 
applications.

In this study, we evaluated the accuracy of automatic iden-
tification for 20 facial landmarks using Cliniface software 
in comparison to the newly developed and validated patch-
based CNN algorithm. Our findings revealed that while some 
landmarks were identified accurately by Cliniface software, 

Table 4. Mean errors of automatic landmarks identification of the patch-based CNN algorithm.

LM Mean Absolute error ± SD p-values of t-test* Euclidian distance

 (mm)

X Y Z X Y Z Mean error ± SD

EX-R 0.29 ± 0.23 0.35 ± 0.28 0.40 ± 0.70 .0500 .3825 .0888 0.73 ± 0.67

EX-L 0.29 ± 0.20 0.26 ± 0.23 0.27 ± 0.23 .4543 .8300 .1093 0.53 ± 0.28

EN-R 0.30 ± 0.29 0.32 ± 0.22 0.22 ± 0.22 .1208 .2756 .6802 0.56 ± 0.34

EN-L 0.31 ± 0.21 0.23 ± 0.18 0.22 ± 0.23 .0167 .8523 .1182 0.50 ± 0.27

N 0.27 ± 0.26 0.40 ± 0.30 0.10 ± 0.15 .3164 .2755 .6126 0.54 ± 0.37

Gl 0.29 ± 0.22 0.77 ± 0.54 0.07 ± 0.12 .2654 .1411 .1091 0.86 ± 0.55

PRN 0.26 ± 0.18 0.30 ± 0.21 0.04 ± 0.06 .8855 .2533 .2090 0.44 ± 0.21

SA (R) 0.41 ± 0.22 0.24 ± 0.21 0.43 ± 0.38 .3737 .1027 .4362 0.72 ± 0.37

SA (L) 0.29 ± 0.29 0.23 ± 0.17 0.23 ± 0.23 .8487 .1877 .5173 0.48 ± 0.34

SN 0.30 ± 0.24 0.23 ± 0.18 0.15 ± 0.17 .9386 .7565 .6195 0.47 ± 0.28

CH-R 0.36 ± 0.27 0.20 ± 0.19 0.14 ± 0.15 .1862 .5945 .6355 0.49 ± 0.30

CH-L 0.32 ± 0.22 0.20 ± 0.15 0.16 ± 0.13 .0773 .2201 .5885 0.47 ± 0.20

CP-R 0.38 ± 0.32 0.26 ± 0.20 0.09 ± 0.13 .0924 .1485 .8149 0.51 ± 0.33

CP-L 0.38 ± 0.31 0.25 ± 0.22 0.10 ± 0.13 .1081 .2969 .3155 0.52 ± 0.1

Lab-Sup 0.40 ± 0.37 0.24 ± 0.17 0.08 ± 0.07 .3952 .3379 .8568 0.53 ± 0.34

Lab-Inf 0.32 ± 0.33 0.34 ± 0.29 0.20 ± 0.21 .8668 .0041 .1077 0.59 ± 0.39

STO 0.37 ± 0.39 0.31 ± 0.22 0.19 ± 0.18 .1783 .8125 .4127 0.59 ± 0.33

SL 0.54 ± 0.45 0.35 ± 0.24 0.09 ± 0.08 .4085 .8954 .6545 0.73 ± 0.33

PO 0.67 ± 0.45 0.50 ± 0.51 0.12 ± 0.18 .4195 .4185 .0760 0.96 ± 0.54

GN 0.76 ± 0.62 0.34 ± 0.31 0.57 ± 0.60 .6631 .6201 .2051 1.16 ± 0.72

0.37 ± 13 0.31 ± 0.13 0.19 ± 0.14 0.62 ± 0.19
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notable discrepancies were observed in others. The auto-
mated location of nasion showed the smallest mean error of 
0.34 mm in the x-axis, whereas gnathion exhibited the largest 
mean error of 6.56 mm in the y-axis. Additionally, several 
other landmarks, such as the right and left subalare (x and 
z-axes), right cheilion (x-axis), and pogonion (y-axis), dis-
played discrepancies exceeding 3 mm.

These discrepancies were particularly prominent in per-
ipheral landmarks, consistent with findings from previous 
studies. Torres et al. [24] reported limitations in their auto-
mated model for detecting non-featured and flat regions. Wen 
et al. [25] also found higher identification accuracy in cen-
tral landmarks compared to peripheral ones. This pattern of 
errors was similar to that found with manual landmarking in 
previous studies [13, 14, 26].

Despite being considered reliable in manual landmarking, 
we encountered difficulty in identifying exocanthion land-
marks using the Cliniface software. This aligns with previous 
automated landmarking studies, which found exocanthion 
among the most challenging points to locate automatically 
[27–29]. The inaccuracies encountered may be attributed to 
discrepancies in the registration stage initiated by Cliniface 
software, possibly influenced by facial variations.

It is widely recognized that an open access software for 
automatic facial landmarking, and soft tissue analysis would 
be valuable for researchers and clinicians. Although Cliniface 
software offers a user-friendly interface allowing users to ad-
just the detected landmark positions, this task demands high 
expertise and familiarity with accurate landmark placement. 
Consequently, clinicians should not solely rely on the soft-
ware. The findings of the study emphasize the potential value 
and the limitations of Cliniface software as a tool for clin-
ical and research studies. It is important to exercise caution 
when using the software as it is not a reliable substitute to the 
manual landmarking.

Guarin et al. [30] conducted a study revealing a bias in 
the CNN automated approach used for facial landmark lo-
calization, specifically in patients with facial palsy. The model 
showed significantly poorer performance when applied to 
individuals with complete paralysis compared to those with 
near-normal cases. This finding aligns with previous research 
on elderly individuals with dementia [31] where they con-
cluded that training an automated model for facial land-
mark localization using facial images of a clinical database 
comprising elderly subjects with dementia and patients with 
Bell’s palsy resulted in improved accuracy when dealing with 

Figure 4. The difference, in x, y, z axis, between manual digitization and the automatic detection of the landmarks using Cliniface software (left) and 
CNN patch-based approach (right).
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patients affected by the same condition. This improvement 
was observed by comparing the performance of the model 
trained on the disease-specific database with that of a model 
trained on a much larger database consisting of non-patient 
population. This indicates an algorithmic bias, suggesting 
that even large training datasets fail to capture the diversity 
present in the wide range of patient populations. Therefore, 
the use of publicly available automated model or datasets for 
developing automatic algorithm to detect facial landmarks in 
clinical settings is restricted in its applicability.

It is important to highlight the limitations of existing data-
bases of 3D facial images which includes landmarks that are 
non-anatomical and ill-defined as seen in the Headspace re-
pository which contains a set of 3D images of the human 
head that is available for university-based non-commercial 
research [32]. Likewise, the 3D Facial Norms Database, com-
prising 2454 3D images and ground truth marking of 24 
landmarks, lacked the colour and texture surface features, 
focussing only on surface geometry [33]. While this simpli-
fies facial analysis in some respects, it also limits the range 
of methods for automated landmark detection. Information 
about colour and texture can play a crucial role in in machine 
learning and deep learning which we utilized in our study.

It is important to emphasize the importance of the quality 
and the accuracy of the manual digitalization of the land-
marks to be used as the ground truth for comparative studies. 
We followed a strict protocol of manual landmarking to 
overcome the limitations highlighted in our systematic re-
view [10] by improving the quality of the reference standards, 

population selection, and study design for the reliable evalu-
ation of the accuracy of the automated landmarking.

Limitations of the study include the involvement of only 
one centre and one annotator. Future research should incorp-
orate datasets from multiple centres and diverse ethnic back-
grounds. It is essential to be mindful of this limitation while 
utilizing the Cliniface software for clinical facial analysis. 
Caution should be exercised when dealing with landmarks 
located around the chin, side of the face, and gonial angle, as 
they are more prone to inaccuracy. Hence, it is advisable to 
conduct a visual inspection before proceeding with generating 
further soft tissue anthropometric measurements.

Conclusion
The patch-based CNN provided a satisfactory accuracy of 
automatic landmarks detection for the clinical evaluation of 
the 3D facial images. While Cliniface is readily available as an 
open-access tool for automatic facial landmarking, our study 
reveals notable discrepancies in certain landmark identifica-
tions which limits its reliability in facial landmark detection.
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