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ARTICLE INFO ABSTRACT

Keywords: Initial/residual stress is inherent in nearly all natural and engineered structures. This paper presents a
Residual stress comprehensive theory for modelling residually stressed, growing plates. By constructing a two-dimensional rep-
Plate theory resentation of three-dimensional solid mechanics, we avoid any need for prior assumptions about deformation
Grovyt'_h . fields. This approach reformulates both the initial stress fields and deformation gradients in three-dimensional
Stability analysis

space through planar quantities, yielding a set of plate equations that govern their interactions. This framework
enables modelling of various naturally and artificially generated planar structures with residual stress and
growth, such as plant leaves and additively manufactured plates.

To explore the wrinkling instabilities that often arise in such structures, we derive a principal solution for
an initially stressed, growing plate supported by Winkler foundations. We then apply linear perturbation to
examine bifurcation phenomena, solving the resulting governing equations analytically and computationally.
The numerical scheme is validated with analytical results and shows promise for solving more geometrically
complex instability problems.

1. Introduction

This paper establishes a consistent finite deformation plate theory
for initially stressed elastic solids, and unfolds the growth-induced
instabilities in those initially stressed plates. Initial/ residual stress
appears in biological systems due to growth, strain incompatibility,
repairing, and remodelling. Almost all manufacturing processes, includ-
ing welding (Salerno et al., 2018), machining (Wang et al., 2018a),
additive manufacturing (Sun et al.,, 2021; Pidge and Kumar, 2020;
Quelho de Macedo et al., 2019), introduce a residual stress. Growth and
residual stress often introduce diverse surface textures and instabilities.
We generalize the consistent theory of growing plates (Wang et al.,
2018b) to include initially stressed non-linear elastic materials, and
pursue a linear bifurcation analysis.

Initial stress influences the constitutive relation of a material
(Johnson and Hoger, 1993, 1995; Saravanan, 2008; Shams et al.,
2011; Merodio et al., 2013; Merodio and Ogden, 2016; Mukherjee and
Ravindran, 2024; Mukherjee, 2022a; Mukherjee et al., 2022), alters its
symmetry (Hoger, 1985; Rajagopal and Wineman, 2024; Mukherjee,
2024), affects the speed of wave propagation (Nam et al., 2016), and
governs the static and dynamic properties of structures (Mukherjee and
Mandal, 2021; Merodio et al., 2013; Merodio and Ogden, 2016).

Johnson and Hoger (1995, 1993) determined the response of an
initially stressed Mooney-Rivlin materials — for which the associated
stress-free reference is comprised of a Mooney-Rivlin solid. Saravanan
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(2011) developed the constitutive relation of a Blatz-Ko material model
from an initially stressed reference. More models (Gower et al., 2015;
Mukherjee, 2022b; Mukherjee and Ravindran, 2024; Mukherjee, 2024)
have been developed for initially stressed reference configurations,
using a virtual stress-free configuration. These models involve vis-
coelastcity (Mukherjee and Ravindran, 2024) as well as implicit elas-
ticity (Mukherjee, 2024). Shams et al. (2011), Merodio et al. (2013),
Merodio and Ogden (2016) developed a model for initially stressed ma-
terials where initial stress is used as the symmetry tensor representing
the stress-induced anisotropy.

This paper develops a consistent plate theory for initially stressed
soft materials. The goal of a plate theory is to reduce the dimen-
sion of a problem: to represent a three dimensional problem using
two dimensions — to improve the analytical and computational effi-
ciency. These structures are usually thinner. Hence, modelling them as
a two-dimensional solid is physically justified. To this end, the three-
dimensional displacement field, strain energy, and Cauchy stress are
expressed in terms of displacement and other parameters on a given
surface. The above goal has been accomplished by many small defor-
mation plate theories like Kirchhoff, Mindlin Love (2013), and weakly
non-linear theories like Foppl-von Karmén (Lewicka et al., 2011).
Among the non-linear plate theories, we specially note (Hilgers and
Pipkin, 1992b,a; Steigmann, 2007, 2013). Most small deformation plate
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theories are based on apriori assumptions on the three-dimensional
displacement field. Consequently, there are many plate theories of var-
ious orders, each of which applies to particular ranges of dimensions,
materials, and deformation regimes. However, by extending the linear
plate theory of Kienzler (2002) to non-linear deformations, Dai and
Song (2014), Wang et al. (2016, 2018b, 2019) developed a consistent
theory which does not presume any deformation field. Wang et al.
(2018b) developed the theory for a growing plate. Mehta et al. (2021,
2022b) performed stability analysis of such plate structures using com-
pound matrix methods. Our interest in this paper is to develop the
consistent plate theory for initially stressed growing plates, and to
perform stability analysis.

The numerical investigation of stability (Dorfmann and Haughton,
2006; Fu et al., 2020; Fu, 2007; Mehta et al., 2022a; Reddy and Saxena,
2018) is often performed using Compound matrix method (CMM) (Ng
and Reid, 1985, 1980). It provides an efficient framework to solve
various eigenvalue problems. We develop CMM to analyse stability in
the context of this novel plate theory and it shows excellent agreements
with our analytical solutions. This validation is necessary for its use in
more complex boundary value problems based on this plate theory.

Developing the constitutive relations for initially stressed materials/
references and employing them to solve various boundary and initial
value problems, has been emerging as a popular field of research.
However, there is no non-linear finite deformation plate theory devel-
oped for initially stressed elastic solids. The present work introduces
a consistent plate theory for initially stressed, growing, thin-walled
structures, and investigates its instability.

In thin structures, instabilities, including wrinkling, creasing, crum-
pling, etc., are often driven by initial/residual stress, and growth, which
needs a thorough investigation. This initial stress is often unavoidable
in most thin structures in nature. It may originate from processes such
as growth, repairing, and remodelling. Furthermore, for analysis of
thin, soft structures with residual stress, undergoing growth, a consis-
tent plate theory has to be introduced, which is not available in the
literature. Such a plate theory will be applicable to skin, leaves, and
many thin structures used in engineering, to analyse the creation of
bounteous shapes and surface textures in nature originated from growth
and residual stress (Liang and Mahadevan, 2009, 2011). This paper
develops an important consistent theory for initially stressed growing
plates, which is employed to perform stability analysis in presence of
growth.

The remaining part of this paper is organized as follows. Sec-
tion 2 develops a two dimensional theory for initially stressed growing
plates. The three dimensional kinematics is represented within a 2D
plane, in Section 2.1. Section 2.2 develops the constitutive relations
for the residually stressed growing plates. Section 2.3 represents the
balance of linear momentum and the associated boundary conditions
using two dimensions. Section 3 investigates the instabilities driven
by initial stress and growth in a rectangular plate supported by Win-
kler foundations. The principal solution is determined in Section 3.1.
The linear momentum balance equation is determined in Section 3.2.
Section 3.3 determines the governing equation using a linear pertur-
bation approach, which are solved analytically (Section 3.4) as well as
numerically (Section 3.5) using CMM.

2. A two dimensional theory of growing initially stressed plates

In this section, we extend the consistent plate theory of Wang et al.
(2018b, 2019), Dai and Song (2014) to include non-linear elastic plates
with initial stress subject to growth.

Fig. 1 depicts the associated configurations, and the kinematic rela-
tions which interrelates them. The configuration %R undergoes growth
(represented through a linear transformation G) to generate the con-
figuration R, which further undergoes the deformation of gradient A
to appear at the current state €. Initial stress r is defined as a self-
balancing stress in the configuration R,, typically originated due to
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growth, or any other factor. To satisfy the balance of angular momen-
tum, the initial stress tensor needs to be symmetric. If the internal stress
does not involve a traction on the reference boundary, it is called a
residual stress.

2.1. Two-dimensional kinematics

This section develops the kinematic relations for the initially
stressed plate with growth in two dimensions.

A material point X in the undeformed plate R, can be expressed as
X = (r, Z), where r is the projection of the material position upon the
bottom-surface of the plate, and Z is the through-thickness position.

A Taylor series expansion is used to express the three dimensional
spatial location x (in the deformed configuration €¢) in terms of bottom
surface quantities as follows,
x(r,Z)=x9 @, 0)+ zxV (r,0) + ZTZxQ) (r,0)+ -, 2.1)
where x) = %, and all quantities at the right hand side are defined
at the bottom surface (Z = 0). Differentiating (2.1), with respect to the
material position X = (r, Z), the deformation gradient :7’; is expanded
as,

2
F=FO 0+ ZFD(r0)+ ZTF(Z) r.0)+ 2.2)

where F® is decomposed into the in-plane and out-of-plane compo-
nents (obtained by differentiation with respect to Z) as follows:
FO =vx® 4 xD @ k, (2.3)
where V denotes the in-plane differentiation operator, and k = %
Fig. 1 explains the multiplicative decomposition of deformation gradi-
ent F into the gradient A and the growth tensor G. We expand the
Growth tensors G, JEG’I, and the gradient A = FG~! around the
bottom surface (Z = 0) as,

-7 =% Z" o S WAy B N A
GT=Y 56" 16T =3 26" A=Y A 24

n n n

n! n!

The deformation gradient A, (measured from the reference R,) is

expressed using the following multiplicative decomposition
n

n
A=FG"' =Y L _ oG, 2.5)
S rtin—n!

Equating the coefficients of Z" in (2.4¢) and (2.5), we obtain,

n
A — Z Cc"FO G, (2.6)
r=0 "
where C' = ﬁ It should be noted that the first two terms in the
Taylor series expansion for A are obtained from (2.6) as

A0 = F(O)G(O), AD = FOg® L pOH GO, 2.7

Upon substitution of (2.3) into (2.6), A™ is represented as

n—1
AW = VxWGO 4 xD) g [G<°>]T k+ Z C'FOG, (2.8
r
r=0

2.2. Constitutive relations in two-dimensions

In a three dimensional space, the first Piola Kirchhoff stress can be
determined from a hyperelastic framework as,

Iy (A1) ORy\ .y
P=J,(———=-p—)G !, 2.9
g< oA oA (2.9)

where R\ (A) = detA — 1 =0, and ¢, (4, 7) is the strain energy density
for initially stressed materials.

Note here that R, = detA — 1 = 0 is used to enforce the constraint
of incompressibility. The same form of R, can be used in the presence
of residual stress. On the other hand, for compressible materials, R,
depends on the initial/residual stress in general since it introduces
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A =FG™!

Fig. 1. The muliplicative decomposition of deformation gradient F from 9 to €. The reference 9 undergoes growth G create the configuration 9,. The configuration 9%, further

undergoes a deformation with gradient A to generate €.

volumetric initial strain in the associated stress-free body (Mukherjee
et al., 2022).

The above three-dimensional stress field can be expanded around
the bottom surface as

P= 2 P(”)

where P" = ‘;"ZI: . We also represent the three dimensional initial

stress-field using tﬁe quantities at the bottom-surface, as follows,

(2.10)

I N AN0))
t=Y =, (2.11)
n
where 7" = gz’n . The Taylor series expansion of %% a A , p, and ‘ZRO

can be used to expand the Piola—Kirchhoff stress (2.9) as follows,

Z g
P= AO 4 AD Z™M 4(m)
(z5er) (|2 5
+ < A<S>> <B<0 1) (’1)] )
N ri=1 I
_ ZS & 280 | (RO 4+ RO A(m)
< s > < > ( mlzl ml '

(2.12)
where A® = 0;:4’“ Bkm = %, S is defined in
Eq. (2.4b). All these tensors are functionally dependent on the bottom
surface quantities such as A?, © .. The tensors A®, B*m and R®
are of the orders (2k +2), (2k +2m + 2), and (2k + 2), respectively, and
are detailed as

2
PR {A@[AD, AP} =A%, AJAD, .
ijkl aAijaAkl ’ ’ ijkimn mn’

IR (9 .
RK = 1, G

Comparing and equating the coefficients of Z” in (2.10b) and
(2.12), we obtain

ol &0m [ Al AGm) A(m]
ot ostmytmy! L omy !
4 n! &On (M[ (ml)“.’A(mk)’r(m)“.,T(p,):l
5=0,k=0,m; =1 S!ml! ""mk!pl! Pr!

G poR® [ Alm), A(m),
o,m!

.,A(M]. (2.13)

For n =0 and 1, P™ in Eq. (2.13) is expressed as

PO = V20 _ G 0RO (2.14)
PO = VA0 £ FOAD 4 FOBOD [ 0] - ¢UHORD [AD]  (2.15)
- &V pORO _ GO RO, (2.16)

The initial stress 7(® at the bottom surface appears in these expressions
through A®™ and B®9).

We can also use Eq. (2.8) to rewrite the constitutive relation (2.13)
for P"+D as

puth) — O (AD — pJORD) [x(n+2) ® [G(O)]T k] —p("+l)G(O)R(O)+P("+”,

(2.17)

where P""Y represents the additional terms in PO+,

We further interrelate R® using the Taylor series expansion of
R(A) = detA as

R(A) = R (A©) + RO (40) [Z Z_"'A<n)] =1,
n:

n=1

which is equivalent to writing

Y Lgi-n (40) [Z 2 4o Y Z_"’A<n,>] -0
i! np ni=1 n;

i=0 ny=l1

(2.18)
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equating R (A with 1. Vanishing the coefficients of Z? (for p > 0) in
(2.18), we obtain

k=
4 1

2.19
(k+D!ny!ny! ..o on ( )

R® I:A("l)’A(”Z), ’A("’k)] =0.
k=0,n;=1 k!
X ni=p
In this section, we have expressed the constitutive relations using only
two dimensions (on the bottom surface) of the continua. The kinematic
relations such as (2.19) are useful to establish the balance of linear
momentum in the next section.

2.3. The balance of linear momentum and the boundary conditions in 2D

Using the in-plane and out-of-plane projection of divergence, the
balance of linear momentum Div P = 0 is represented as

V. PO 4 (P =0, vaxo0. (2.20)

We substitute Eq. (2.17) into the linear momentum balance Eq. (2.20)
above, to obtain
~(0)

BxtD) 4 pr+D) _ kD) [G R(O)]T k=0, (2.21)
where
_(a) _ (Op®d A(0>]T on?
B, = (A, - R, ) <[G k) (I6°] k)ﬂ, (2:22)
D =y P p<n+1>)T k. (2.23)

Eq. (2.21) can be easily inverted to obtain a solution for x("+? as

X2 = _g31 p0r+2) 4 plrt g1 [G(O)R(O)]T k. (2.24)

It is noted that the coefficient of Z"*! in (2.19) can be rewritten as

n—1

( _: 1)'R(O) |:x(n+2) ® [G(O)]T k+ Vx" GO 4 2 CrnF(r)G(n—r)] +.e=0
n :
r=0

(2.25)

where the terms within square bracket is recognized as A“+"

from Eq. (2.8). Substituting Eq. (2.24) into (2.25), we can form a linear
algebraic equation. The resulting equation and Eq. (2.24) need to be
solved iteratively to obtain p"+D and x"+?,

In (2.20), the balance of force is expressed in terms of the first Piola—
Kirchhoff stress. The initial stress (defined as the stress in the reference
configuration) should also satisfy the balance Eq. (2.20) as

V.e® 4+ 0D =0, vn>0. (2.26)

The traction on the top and bottom surfaces of the plate are given
by ¢* and g~ respectively. Consequently, the Neumann boundary con-
dition at the bottom surface of the plate (Wang et al., 2019) is given
by

P, =(PO) k=g (2.27)

On the other hand, the boundary condition on the top surface is given
by,

T _ @Cn" o wnT o+
Pk, = == (P) k=g (2.28)

n=0
Subtracting Eq. (2.27) from Eq. (2.28), and substituting (P(”“))T k =
V- P" (see (2.20)), we obtain
n
> G g . poo = q -q . (2.29)
n!

n=0
Note that a residual stress field =, which does not introduce any
boundary traction, will similarly satisfy a condition

Y Ey g, 2.30)
=0 n:
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Egs. (2.29) and (2.30) represent the balance of linear momentum in
the deformed and the undeformed plate in a reduced two dimensional
space.

3. The deformation and instabilities of a growing, initially
stressed, rectangular plate

This section details the governing equations and investigates the
stability of a growing rectangular plate subject to an initial stress,
analytically and numerically. The plate lies between —1 < X < 1
with thickness 2k along the Z direction. The top surface of the plate
is supported by Winkler foundation (Wang et al., 2018b) as shown
schematically in Fig. 2.

The constant growth tensor is chosen as

G =diag(4,1,1). 3.1)

Using (2.1), the spatial co-ordinates of a point can be expressed as,

VY Z'. w _ _ )
X_ZWX N y=Y, z= —zW, (3.2)
n

n

The deformation gradient at the bottom-surface is given by F =
Y, £ F™, where
@0 XD
F"=l0 1 0 (3.3)
Z(n)’ 0 z(n+l)

using (2.3). We consider a uni-axial initial stress component 7y y. This
initial stress component is supported by traction on the boundaries
normal to the X direction. We further consider a constant initial stress
component 7y y through thickness, such that rﬁ:;{ = rf;( == 15:;( =0
for n > 0.

The boundary conditions at the traction-free bottom surface Z =
0, and at the top surface supported by the Winkler foundation are
represented by

q =0, vi € {1,2,3} (3.4)
g =0, vie{1,2) (3.5)
qg' (X) = —ayuilz(x,2h) - 2h], (3.6)

where «, is a known constant. The influence of initial stress is probed
through a constitutive relation for which

$o (A, 1) = ptr (ATA) + 7 : [ATA] (3.7)

and R, = detA — 1 in Eq. (2.9). This constitutive relation was proposed
by Shams et al. (2011) for residually stressed materials without consid-
ering growth. Other constitutive relations for initially stressed isotropic
elastic materials can be found in Johnson and Hoger (1993, 1995),
Saravanan (2008), Gower et al. (2015), Mukherjee (2022a), which use
a virtual stress-free configuration. The present constitutive relation is
used in Section 3.1 to obtain the principal solution.

3.1. Principal solutions for growing initially stressed plates

In this section, we determine the principal solution for growing ini-
tially stressed plates, which is later subject to perturbation to perform
stability analysis.

For the constitutive relation (3.7), the nth order term P® of the first
Piola—Kirchhoff stress is obtained from Eq. (2.13) as

PW = (ZMF('!)G—I + FOG-lg _ p(n)]R(O) _ p(n—l)R(l) [F(I)G—l] _ ) GT
(3.8)

The above constitutive relation contains F" which involves many
higher order terms, x, z, p"=D for n > 0, as described in (3.3). We
express all the higher order terms as functions of x() and z(© iteratively,
using the approach of Section 2.3, as follows.
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(0)

Fig. 2. Growing initially stressed plate (with non-zero 7}

First, to determine x(), z(| in terms of x©@, z©®, and p©@, we
substitute the constitutive relation (3.8) (for n = 0) into the boundary
condition (2.27). For n > 0, x"+?, z("+2) are expressed in terms of x(©,
2O, pO pM_ p+D by iteratively using (2.24). All unknown p™ are
obtained in terms of x© and z(® using the following set of equations,
obtained from Eq. (2.19).

R(Ay) =1 3.9

RO [AD] =0 (3.10)
RO [AP] + RD [AD, 4AD] =0 (3.11)
RO [A(3)] + 3RM [ (1), (2)] + R® [A(l),A(l),A(l)] =0 (3.12)

The above methodology is demonstrated in Appendix through explicit
determination of some x, z, and p® for the chosen constitutive
relation (3.7), (3.8).

In presence of growth and a uniform initial stress field (¥, a
deformation field

720 = o

x®=x 2m = Cps

(3.13)
is predicted, which is homogeneous along the X direction. Substituting
(3.13a) and (3.13b) respectively into (A.4)-(A.12), we obtain

M= =1 zM=¢, =0, form>1. (3.14)

In addition, z® = —2h (4 — 1) ensures that
z =20 4+ 2n20 = 2p,
Z=2h
such that the flexible Winkler foundation does not apply any traction
at the top surface.
Hence, the principal solution for this case, is given by,

O=x z0=_2nG-1. (3.15)

It can be checked that this principal solution satisfies the boundary
conditions:

=0 4 =0 (3.16)

x|
X=—1

PH

’|X=—l =0 Pis

)le =0. (3.17)

3.2. The balance equations for rectangular plates

As we introduce perturbations to the principal solution (3.15), the
resulting solutions will be inhomogeneous in X. To determine these
inhomogeneous terms, a complete description of the balance equation
is necessary, which we obtain in this section.

Substituting the constitutive relation (3.8) into the balance of linear
momentum in 2D, Eq. (2.29) (for n =0, 1,2), we obtain

2p+ 1 " ,
. Xx X O 4 24 Ax D 4 pO 7O _ 5O (Y

X

component) supported by a Winkler foundation at the top surface.

2050 (pO 20 4 pDZO _ O _

p —-p

—ZOpM" @O 4 2uix@) + % [(2;4 + 1(0) ) x(l)”+1§(l;(x(°)"] (3.18)
+ % (P02 4 2p020 4 @20 4 243x)
_ %2 (P02 +2p02@ 4 p@20 4 20O 1@ g 2O 0 )

Z: (2;4 +13) )x<2>” +270 x@" ] a —dp»

2#+ 3?3( 0y’ 1 0),.(0) 0),.(1) 1) (0
— s 20 424220 — pO O 4 pO 1 (1) 0

+ 1 (pOXD = pOx O — ORI pO Dy D0 (@O 4 2770))
+ Z [(2;4 +7) )z(”" ++79) z(")"] (3.19)
_ % (POX® 4 255 4 p@xO _ 27,7

" %2 (POXD +2p0x® 4 O 4 XD 4 23 1) 4 1307

+ g [(2;4 + 152() 2@ 4+ +21§(1;(z(1)”] = q;’ -q;.

Note that the higher order terms such as x*, z™, p for n > 1 are
expressed in terms of x© and z® in Appendix.

In Section 3.3, we apply a linear perturbation to this principal
solution to investigate stability.

3.3. Linear stability analysis

This section introduces infinitesimally small perturbation of the
spatial position vector (3.15) given as

O=x+eU z20=22nA-1)+eW, (3.20)

where 0 < ¢ < 1. In the presence of this small perturbation, the traction
q;' at the top surface (Eq. (3.19)) is given by

q;' (X) =—ajuilz(x,2h) = 2h]. (3.21)

The boundary condition Eq. (3.21) physically represents the case in
which the top surface is supported by a flexible Winkler founda-
tion shown in Fig. 2. This flexible support will partially resist lateral
deformation during growth and under mechanical loading.

Substituting Eq. (3.20) into the equilibrium Egs. (3.18) and (3.19),
the O (¢) terms vanish as

LU +pW" =0 (3.22)
ﬂZIW + ﬁzzU’ + ﬂ23 W” + ﬂ24U,” + ﬂ25 W"" = 0 (3.23)
where

24642 +70 /1) (1= 0+ 2 phin— 296D
ﬂ“ — ( XX ) ( 2 )_ ( )TXX , (3.24)

22 200
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1.15

1.05

Fig. 3. Critical growth associated with the first 15 instability modes. Left: for initial stress 1(0) = —0.15u4. Middle: in absence of initial stress. Right: for T(o) =0.154.

01 0
0) (1)
P ET YN (1-3m) 5y | 3Mryx (3.25)
12 7 2ul 2 -
a
B = _ﬁ’ P = a4, (3.26)
©)
e 2+TXX(1_h)/y—(2+hal)/14 hth=2) o 3.27)
23 — ’
2 2ul Txx
e —12h - 2K2a; — 12h3* — 4h2ay 2% + 150200, fu — 6hr§?) I+ 1510, /u
24 =
32
3h? )
—fox’ (3.28)
4 379
fos = <4+4% + 2),(4)( ‘ (3.29)

Substituting Eq. (3.22) into Eq. (3.23), we obtain the following equa-
tion:

oW+, W' + ¥, W =0, (3.30)
where ¥y = B, ¥ = Pp3 — ﬁ22 ™ 2, = Prs — Pos ﬂ‘z Since both
the principal solution (3.15) and the perturbed solutlon (3.20) satisfy
((3.16), (3.17)), using (3.22), the boundary conditions associated with
Eq. (3.30) are obtained as

w'=w'" =0, atX=-1,1 (3.31)

The eigenvalue problem (3.30) is solved analytically in Section 3.4
to determine various critical modes. In Section 3.5, we use compound
matrix method to numerically obtain the critical loads, which we

compare with the analytical solution.

3.4. Analytical determination of the critical modes

The general solution to the governing perturbed Eq. (3.30) is given
by

W= A,expn,X. (3.32)
n
To satisfy the boundary condition (3.31) at X = -1 and X =1, 5, must
be an imaginary number given by
inm

M="5. n=123.. (3.33)
Substituting (3.32) into (3.30), we obtain
Wo — Wony + Wy =0, (3.34)

Since every ¥, is a function of 4 and rﬁ?}, the critical value of the

growth 4 is to be determined by solving (3.34) for a given » and 1(0)

Fig. 3 reports the critical growth associated with various modes, and
(0)

initial stress Tyy = —0.15u (left), = (O) = 0 (middle), and rﬁ?} =0.15u
(right), respectively. We observe that the lower instability-modes are
triggered by a compressive initial stress, while a tensile initial stress
improves the structural stability for these modes. On the other hand, the
higher modes can be destabilized both by the tensile and compressive
initial stresses. The destabilizing effect of the compressive initial stress
is more clear and distinct.

Fig. 4 further elucidate the instabilities induced by initial stress at
the various modes and dimensions. It depicts the variation of critical
growth with initial stress for the most critical modes, for different
values of h.

For thicker plates, h = 0.10, the first mode becomes critical.
This mode becomes unstable under a compressive initial stress, and
stabilizes in tension, which is expected from an engineering point of
view.

The second mode becomes critical for 2 = 0.075. The third mode
becomes more critical overtaking the second and the fourth mode for
h = 0.04. All these modes show the physically interesting behaviour
where instabilities are triggered by compression.

For a very thin plate of ~ = 0.015, on the other hand, many
higher modes become critical, which are sensitive to both tensile and
compressive initial stresses.

For a specified rg(];(, ie., Zxx the average initial stress is con-
siderably lower for smaller values oP h. Consequently, the variation of
the initial stress through thickness significantly influences the stability
of the thicker plates, not the thinner ones, as illustrated in Fig. 5.

When the magnitude of initial stress is specified at the two bound-
aries, the through-thickness gradient is higher for smaller h. Fig. 6
describes the cases for which the initial stress vanishes on the lower
surface and is specified as 0.15u (or —0.154) on the upper surface. In
these cases, ‘r;?;( = 0 and 1(1) = 0.15u/h (left) or r(l) = —0.15u/h
(right). We observe that it 1s 1mp0551b1e to ignore the influence on
thinner plates; a tensile initial stress stabilizes the structure for all &,
whereas a compressive initial stress leads to instability.

In Section 3.5, we apply the compound matrix method to determine
the minimum critical growth in the presence of different initial stresses,
and compare it with the present results.

3.5. Determining the critical growth using compound matrix method

It is noted that in engineering design, we very often do not require
the complete details of every mode. As explained in Fig. 4, determining
the most critical mode is usually the primary interest. In this section,
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Fig. 4. The influence of initial stress on the most critical modes for different thicknesses. Top right: # = 0.10; the most critical mode: n = 1. Top left: A = 0.075; the most critical
mode: n =2. Bottom left: 4 =0.04; the most critical mode: n = 3. Bottom right: A = 0.015.

—m=1--n=2--n=3-n=4—-—n=>5

1
1
1

0, 7k = 0.25

)

0.15 0.2 0.25 030 0.05 0.1 0.15 0.2 0.25 0.3
h

)
<
I

Fig. 5. The variation of critical growth-rate with thickness, for r;?;( = 0 while r&l; = 0.25u (left) and r;;( = —0.25u (right). An initial tensile stress induces stability for thicker
plates.

we numerically determine the critical values of growth at different where
initial stress, which is compared with our analytical results. The present 0 1 0 0
results precisely describe the collective influence of initial stress at the W
RN 0 0 1 o0 w'
onset of instability. A= 0 0 0 1 W= W (3.36)
The governing fourth-order Eq. (3.30) can be equivalently expressed no no W
in the following set of first order equations, ¥ ¥y
AW =W, (3.35)
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Fig. 6. The critical growth rate when the initial stress is vanishes at the lower surface, is specified at the upper surface as 0.154 (left) and —0.15u (right); a linear variation of

initial stress is considered.

Similarly, the boundary conditions (3.31) can be represented by

BW| =0 cw‘ =0 (3.37)
X=-1 X=1
where
01 0 0
B=C= [o 0 0 1] (3.38)

We use compound matrix method to transform the above bound-
ary value problem with unknown critical growth (A,.) as an initial
(eigen-)value problem.

It should be noted that the boundary condition (3.37a) is satisfied
by an arbitrary linear combinations following boundary values of the
vector function W:

1 0
W) = g WOy = ‘1) (3.39)
0 0
The displacement vector W(X) can be expressed as
W(X) =Wk (3.40)
where
whx) wPx)
W) wPx
Wx) = W%l)( S (3.41)
L (X)) W(X)
W) wPx)
and
k= { ’;1} (3.42)
2
The boundary condition (3.37) is expressed as
CW()k=0 (3.43)

In compound matrix method, new vector variables «; ; are formed
using the following minors of the solution matrix

1) (2)
0=l Wi @40
For simplicity, we consider
Y1 = K2 72 = K3 73 = K14
Y4 =Ko3 Y5 = Kog Y6 = K34 (3.45)
The set of first order Egs. (3.35) are expressed in terms of y as
Ay =y’ (3.46)

where

0 1 0 0 0 0

0 0 1 1 0 0

0 - o9 0o 1 0
A= i (3.47)

=[ o 0o 0o o0 1 0 :
L) 193
0
0 @ 0 0 0 o

Similarly, the boundary condition (3.39) can be expressed in terms
of the new variables as

7 0
Y2 1
0
r=1) = ;3 =1 % (3.48)
4
V5 0
Y6 0

The boundary condition (3.37b) and (3.43) at X = 1 is satisfied
when

det [C2B(1)] = 0. (3.49)

The present compound matrix method solves the system of Eq. (3.46)
using the initial condition (3.48). The critical value of growth 4.,
satisfies the boundary condition (3.49). Fig. 7 reports the critical value
of growth A for various thickness 7 and magnitude of initial stress rﬁ?}
g?;( hastens
—0.204, instability takes

As also observed in Section 3.4, a compressive initial stress ¢
the wrinkling/ instability. For e.g., for 15?3( =
place in absence of growth for h < 0.04.

A tensile initial stress, on the other hand, stabilizes the rectangular
plate, for thicker plates. However, for smaller plate thicknesses, where
higher modes of instabilities are activated, (see Fig. 3 as well), both
tensile and compressive initial stresses can hasten wrinkling.

We compare the analytical results (of Fig. 3, Section 3.4) with that
of compound matrix method (Fig. 7) in Fig. 8 which shows an excellent
agreement.

4. Conclusion

Both growth and residual stresses play a critical role in inducing
wrinkling in thin, soft biological structures. This paper introduces a
consistent theoretical framework for initially stressed plates undergoing
growth, performing both analytical and numerical stability analyses.
For the numerical approach, we develop and implement the compound
matrix method (CMM) tailored to this novel theory, effectively captur-
ing the critical growth threshold for wrinkling onset. The analytical
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Fig. 7. The lowest critical growth A for instability. A tensile initial stress stabilizes wrinkling modes of instability, which a compressive initial stress further destabilizes.
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115
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Fig. 8. Comparing the analytically determined critical growth with the results of the compound matrix method. Thin curves show the analytically determined critical growth
associated with the first 15 instability modes. The larger markers represent the numerical results.

solution, in contrast, provides distinct insights into individual insta-
bility modes. Both methods align well, demonstrating the validity of
the approach. The current plate theory and the CMM computational
framework can be expanded to tackle more complex boundary value
problems (BVPs).

Our stability analysis, applied to a plate on a Winkler foundation,
reveals notable results: lower instability modes, which dominate in
thicker or moderately thick plates, are stabilized under tensile ax-
ial stress, whereas compressive axial stress destabilizes these modes.
Conversely, higher instability modes, critical in very thin plates, are
destabilized by both tensile and compressive initial stresses, with com-
pressive stress exerting a more pronounced influence on instability on-
set. The results, presented through various plots, show critical growth
variations as functions of thickness and initial stress. These findings
align with established stability results for Couette flow over initially
stressed solids (Mukherjee and Giribabu, 2021).

Since residual stress is a natural consequence of growth, repair, and
remodelling in thin structures, like skin, this plate theory has broad
applicability in biomechanics and engineering. For instance, interfacial
growth during wound healing introduces residual stress that can lead
to wrinkling (Swain and Gupta, 2015, 2016), an effect that can be
analysed without knowing the original, stress-free configuration. This
theory thus provides a robust tool for studying wrinkling and instability
in a range of biomechanical and engineering contexts.
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Appendix. Determining the higher order terms of spatial position
and Lagrange multiplier

In this section, we express the higher order terms x(1, x®, x®, z(,
z®, 23 in the spatial position, and the Lagrange multipliers p©@, p(1),
p@, p®. The method described in Section 3 is used, where we extend
the work of Wang et al. (2018b) on stress-free plates.
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The expressions for x(V), z(), and p® do not depend on initial stress
7, for the simple model we have used in this paper. For traction-
free bottom surface (¢~ = 0), these quantities are determined from the
boundary condition (2.27), rewritten as

2uxD 4 OO — (A1)
22z D — pOxO" ¢ (A.2)
and Eq. (3.9), rewritten as

detF, = detG, = 4. (A.3)

Solving the above equations, the quantities x(, z(, and p© are
expressed in terms of x(© and z© as

) (z(°>’ )

D = ~— (A.4)
(xO)"+ (20)
A (x©
EO E ) . (A.5)
(xO)"+ (20)
oo w2 A.6)

() + (z0)]

The higher order terms, however, depend on the initial stress 1§?;(. For
e.g., x?, z®, and p(V are expressed in terms of x(©, 2@, x(U (Eq. (A.4)),
and z(V (Eq. (A.5)), p© (Eq. (A.6)) as follows,

-1 [ 0) (0)/ 2 (0)//
2u+t X X
202 (<) + (207)1)] () (1)

2 2
— 300 (L0 2. () (0 (0) ©0) ,(0) )
Azp (x ) +2uix (x ) +<2M+TXX>X z z

+ Ax D pO O O 9,32 (DO SOF 4 5, 2,(D 0 1Y

X@ =

— 22z DXV z“’)'] (A7)
— 2
e [l ) ()
212 [((x(o)') + (z(o)/) )]
2 2
+ ax(Dp®’ (z(o)/) +2p2% 2D (z(o)/> + (2;4 + Tg?;() X0 2O O
— 420 O O 2O 4 932, (1) (O O
—2/4/12x(1)x(0),z(1)/ + 2/4/12z(1)x(0)/x(1)’] (A.8)
0= % [(2;4 + Tg?;() (X(O)’ L0 _ 0 x(O)”)
A (x0)+ (z07)7]
0 0) 2 0) 2 0y 1,0 1) 0y
— 3p© (x<)> +(Z(>) + 4p© (x()xu +z(>z<>>
- 2;4/12x(1)z(0)l + 2;4/12z(1)x(0), + ZM/lzx(l)z(l), - ZMAZZ(l)x(l),]
(A.9)

The terms x®, z®, and p® are expressed in terms of the above

quantities as follows,
2
(©0) oy "
[(2/4 +TXX) (x ) X

-1
2ui [(x«»’)z i (z«»’)z]
) (x0f )2 <O 4 ) 07 207 207" 4 30 (5O )2 LY
+ 4pD (x<0>/)2 2 400 (x(O)’)2 2@ 50 (x(0>’>2
+ 242x® ( MOy )2 + (2 u+ ) X O 20 Z) _ 3 50) (0 (1) 0

(D3O (1 20 (D 51 (0 0 4 3. 0 (O ;0

X® =

— )’p
+ 222z @xO 2O 242 x DO 20V 4 432, 7O O

—242 yz(l)x(z), 20" _ 42 yz(z)x(l)/ Z(O)/] s (A.10)
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-1 0 0y \ 2 "
z2¥ = > 5 [(2[4 + ‘r;;() (29)" 20
20 [ () = (2]
N2 oy oY (0) , 2
+T§(‘;{ (Z(O) ) 70" 4 T;(lz(x(o) 7O O _ /lp(o)x(” (Z(O) )
’ r\2 ’ 72 ’ 7\ 2
= apOx D (20)? o axDp0 (201)? 4 4x@ 07 ()
+ 2/12,142(2) (Z(O),)2 +2 (2}4 + T§?;() X(O), Z(O)'X(I)H + AP(O)X(O),Z(O), Z(Iy
+ Apx© 7O ZAY _ () (1Y (0 L0 _ ;@) ,0) (0 ;0
+ 22 ux@x O 2O 32, (DO 2 _ 432,10 (0) 1)
+ ZAZMZ(I)x(O)’ x@ 4 4A2ﬂz(2)x(o>lx(1)/] s (A11)
o__ -t [(ZM + T;?;() L0 ()
A [(x«»/)2 + (z«»’)z]

— ©) ) O " _ (D) (0 0 _ .0 0
(2/4+TXX)X z Tyx (x z xV z )

+ ap0 (x<0>’>2 +ap (z(0>')2 APFONCINOERPRONONY
— AxOp0Y (OF _ 3@ ) (O 5500 Y 5510 Y
— 220 p0 2O _ @0 0 4 942,30 _ 952, ()0

=222 ux D2 — 432 x® 20 42424z 0x@ 4 4/12[42(2))6(1),] .

(A.12)
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