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Functional exploration of copy number alterations in a Drosophila
model of triple-negative breast cancer
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ABSTRACT
Accounting for 10-20% of breast cancer cases, triple-negative breast
cancer (TNBC) is associated with a disproportionate number of breast
cancer deaths. One challenge in studying TNBC is its genomic profile:
with the exception of TP53 loss, most breast cancer tumors are
characterized by a high number of copy number alterations (CNAs),
making modeling the disease in whole animals challenging. We
computationally analyzed 186 CNA regions previously identified in
breast cancer tumors to rank genes within each region by likelihood of
acting as a tumor driver. We then used a Drosophila p53-Myc TNBC
model to identify 48 genes as functional drivers. To demonstrate the
utility of this functional database, we established six 3-hit models;
altering candidate genes led to increased aspects of transformation as
well as resistance to the chemotherapeutic drug fluorouracil. Our work
provides a functional database of CNA-associated TNBC drivers, and
a template for an integrated computational/whole-animal approach to
identify functional drivers of transformation and drug resistance within
CNAs in other tumor types.
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INTRODUCTION
Breast cancer is the second most common cause of cancer deaths
among women in the USA (Siegel et al., 2018). The most aggressive
subtype, triple-negative breast cancer (TNBC) makes up ∼15% of
breast cancers. TNBC is molecularly heterogeneous with few
currently identified druggable molecular targets, poor therapeutic
response and low survival rates (Bauer et al., 2007; Dent et al., 2007).
Less than 40% of women with metastatic TNBC survive 5 years
(Bauer et al., 2007). Standard-of-care treatment of TNBC is limited to
chemotherapy, including therapies targeting DNA-damage repair and,
for some patients, immunotherapy, including atezolizumab (Marra
et al., 2019; Harbeck and Gnant, 2017). Meanwhile, advances in

sequencing technology have opened new opportunities for
understanding the mechanisms of tumorigenesis and drug response
(Hyman et al., 2017; Al-Lazikani et al., 2012). Such studies may
improve breast cancer survival by improving predictions of
progression in individual patients, identifying novel therapeutic
targets and improving the utility of our preclinical models.

Developing genetic models for TNBC is challenging. Most
TNBCs contain mutations in TP53, but some other genes are
also commonly mutated (Cancer Genome Atlas Network, 2012;
Jiang et al., 2019; Nagahashi et al., 2018). However, computational
work (Cancer Genome Atlas Network, 2012; Jiang et al., 2019;
Mermel et al., 2011; Sanchez-Garcia et al., 2014; Curtis et al., 2012)
has identified extensive genomic copy number alterations
(CNAs) that define regions that commonly overlap between
different patients. For example, the MYC locus – a key regulator
of basal-like tumor biology (Cancer Genome Atlas Network, 2012;
Chandriani et al., 2009) – is commonly amplified in TNBC.
Understanding the role of CNAs in TNBC would benefit from a
comprehensive functional study of putative driver genes and their
interactions in a whole animal context.

Recently, the Drosophila field has developed multigenic models
of cancer to capture aspects of tumor complexity; these models have
been used to explore drug responses, including as a screening
platform to treat patients with cancer also diagnosed with a resistant
disease (Vidal et al., 2005; Markstein et al., 2014; Gladstone et al.,
2012; Willoughby et al., 2013; Bangi et al., 2016, 2021, 2019).
Although flies lack orthologs of some human tissues, epithelial
tissues in Drosophila, such as the eye and wing, have proven useful
for modeling cancer networks and identifying candidate
therapeutics (Vidal et al., 2005; Markstein et al., 2014; Gladstone
et al., 2012; Willoughby et al., 2013; Bangi et al., 2016, 2021, 2019;
Read et al., 2005; Dar et al., 2012; Hirabayashi et al., 2013;
Levinson and Cagan, 2016; Levine and Cagan, 2016).

In this study, we established aDrosophila p53-Myc platform as a
tool for exploring TNBC genomic complexity. To leverage this
platform, we first used a computational approach to rank genes
within common TNBC CNA regions based on their likelihood to
promote tumor progression. We then used ourDrosophila p53-Myc
platform to assess the functional relevance of many of the most
highly ranked candidate genes within each CNA region, based on
their ability to enhance transformation in a whole-animal platform.
The result is a functional database of TNBC-driving genes within
common CNAs. Finally, we used this database to build a library of
more-complex Drosophila TNBC models. In contrast to a p53-Myc
model, these more-complex lines failed to respond to fluorouracil –
which is clinically relevant for TNBC – demonstrating that
increased genetic complexity can lead to drug resistance and
identifying candidate resistance factors. As an integrated approach,
this work provides a path towards functionally, deconvoluting the
role of CNAs in tumor progression and drug response.
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RESULTS
TP53 and MYC are the most common driver genes in TNBC
To determine the number of mutated gene loci driving TNBC,
we performed an analysis using the MutSigCV algorithm
(Lawrence et al., 2013; https://www.genepattern.org/modules/
docs/MutSigCV#gsc.tab=0). We found that 81% of TNBC
tumors in the 2012 The Cancer Genome Atlas (TCGA) dataset
(Cancer Genome Atlas Network, 2012) include a mutation
predicted to alter TP53 function, which is consistent with the
reported 80% of basal-like tumors (Cancer Genome Atlas Network,
2012). No other driver genes were commonly mutated (Fig. 1A;
Table S2). This is consistent with previous work showing that breast
cancer is primarily driven by CNAs rather than point mutations
(Jiang et al., 2019; Ciriello et al., 2013).
The location and size of a CNA is not influenced solely by

selective pressure, but also by chromatin architecture and the
location of recombination hotspots (Pfeifer et al., 2006; Taylor et al.,
2008; Li et al., 2014). As a result, a small number of genes within a
given CNA region are responsible for the selective pressure and are
therefore ‘drivers’, while neighboring genes are included due to

proximity to the driver and mostly represent ‘passengers’ that do not
appreciably contribute to disease progression.

As a first step towards exploring the genes within CNAs from the
TCGA data, we began with 186 CNAs previously identified by
GISTIC 2.0 and ISAR (Cancer Genome Atlas Network, 2012;
Sanchez-Garcia et al., 2014, Mermel et al, 2011). We performed
hierarchical clustering using Euclidean distance on the 186 CNAs
and driver gene mutations for the 72 primary TNBC tumors with
both types of data available. We found that the tumors did not fall
into discrete clusters, and tumors from patients with shorter or
longer overall survival did not cluster together (Fig. 1A). This
suggests that in the aggregate, these genomic alterations do not
explain differences in clinical outcome. This may be because some
CNAs have more impact on outcomes than others or because
region-level analysis does not provide the resolution to understand
the impact of individual driver genes. Therefore, a key step in using
this genomic data to model TNBC is to identify drivers within the
common CNAs.

The most common TNBC CNA was amplification of 8q24.1, a
small region that – as identified by GISTIC 2.0 – solely contains the

Fig. 1. Altered TP53 and MYC genes are present in TNBC tumors and reduce Drosophila survival. (A) Hierarchical clustering of TNBC primary tumors
as listed in TCGA, based on CNA and mutation of putative driver genes. CNAs are shown in order of genomic location, mutated putative driver genes are
listed in alphabetical order. Overall survival of each patient is shown coded at the left, with white representing the longest and black the shortest survival.
n=72. (B) Heads of GMR>w (control) and GMR>p53lh;Myc flies. Eyes were enlarged when targeted by Myc overexpression plus p53 knockdown (p53lh; long
hairpin). (C) Quantification of survival (shown as percent eclosion) of Myc-expressing flies in the presence (ptc>w and ptc>Myc) and absence (ptc>p53sh

and ptc>Myc p53sh) of p53 knockdown (p53sh; short hairpin). Kruskal–Wallis test: P<0.0001. n=14. Error bars represent the +standard error of the mean
(+s.e.m.) and do not reflect the paired nature of the data. Other P-values: Wilcoxon test. See also Fig. S1 and Table S2.

2

RESEARCH ARTICLE Disease Models & Mechanisms (2024) 17, dmm050191. doi:10.1242/dmm.050191

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

https://www.genepattern.org/modules/docs/MutSigCV#gsc.tab=0
https://www.genepattern.org/modules/docs/MutSigCV#gsc.tab=0
https://www.genepattern.org/modules/docs/MutSigCV#gsc.tab=0
https://journals.biologists.com/dmm/article-lookup/DOI/10.1242/dmm.050191
https://journals.biologists.com/dmm/article-lookup/DOI/10.1242/dmm.050191
https://journals.biologists.com/dmm/article-lookup/DOI/10.1242/dmm.050191


oncogene MYC (Fig. 1A). Excluding combinations of CNA that
overlap, the most frequently identified combination of two events
was mutation of TP53 and amplification ofMYC, occurring in 72%
of TNBC tumors. We, therefore, used both TP53 and MYC as the
basis of a Drosophila platform designed to identify additional
drivers.

p53 and Myc promote cancer-like phenotypes in Drosophila
To characterize phenotypes that are due to mutations in p53 and
Myc, we generated individual fly lines containing transgenes that
provide targeted expression of (i) DrosophilaMyc (UAS-Myc) plus
(ii) two different RNA-interference-mediated knockdown
constructs targeting endogenous P53 (UAS-p53lh or UAS-p53sh)
(see Fly stocks section in Materials and Methods for details).
Overexpression of Myc and strong loss of P53 (∼80% in the
presence of UAS-Myc) was confirmed by western blotting
(Figs S1A, B). To confirm activity, we used a GMR-GAL4 driver
to express UAS-p53lh plus UAS-Myc (yielding GMR>p53lh;Myc
flies) in the developing eye field. GMR>p53lh;Myc flies exhibited
enlarged eyes with normal ommatidial patterning (Fig. 1B),
presumably reflecting Myc-mediated cell enlargement.
We also tested the p53sh and Myc transgenes individually and in

combination with a patched-Gal4 driver ( ptc) that directs discreet
expression of upstream activating sequence (UAS)-fused transgenes
during several developmental stages. ptc>Myc pupal survival (the
percentage of pupae that survive to adulthood, also known as the
eclosion rate; see Lethality analyses in Materials and Methods) was
reduced to 85.8%. Further reduced survival (81.5%) was exhibited
by ptc>Myc,p53sh (Fig. 1C). Reducing P53 alone ( ptc>p53sh) had
no effect on survival. Similar results were obtained in the
background of another fly strain (yhsf ) (see Fly stocks in
Materials and Methods), and with p53lh (Fig. S1C,D).
Using an inducible UAS-GFP to visualize transformed cells, we

observed expansion of the ptc domain at the anterior/posterior
boundary of developing ptc>Myc wing epithelia (‘wing discs’;
Fig. 2A,D, Fig. S2B). In contrast, the ptc domain was smaller with
knockdown of p53 by p53sh (Fig. 2A,D) and p53lh (Fig. S2B). In the
presence of ptc>Myc, p53sh restored the ptc domain area to normal
size ( ptc>Myc,p53sh; Fig. 2D). We have previously observed that
p53 knockdown can reduce transformation phenotypes in the
presence of an oncogene, although it enhances overall
transformation by reducing senescence (Bangi et al., 2016). Area
reduction by p53lh was not significant (Fig. S2B).
Specific targeting of transgene expression to the anterior/

posterior boundary of the wing disc provides a useful assay for
measuring aspects of transformation in Drosophila cancer models
(Levinson and Cagan, 2016; Vidal et al., 2006; Sonoshita et al.,
2018). In confocal images of both ptc>Myc and ptc>Myc,p53sh

wing epithelia, we observed transformed cells delaminating into the
basal region of the epithelium (Fig. 2B). These delaminating cells
showed high levels of cleaved, activated caspase and matrix
metalloproteinase (Fig. 2C). Some of the delaminating cells were
seen migrating away from the ptc domain (Fig. 2E). Delaminating,
caspase-positive cells (Fig. S2A) and migrating cells (Fig. S2C)
were also seen with ptc>p53lh;Myc. The co-occurrence of caspase
activation with translocation of cells away from the ptc domain is
consistent with studies in other Drosophila cancer models
(Geisbrecht and Montell, 2004; Rudrapatna et al., 2013; Gorelick-
Ashkenazi et al., 2018), in which this translocation was preceded by
aspects of transformation and epithelial-to-mesenchymal transition.
Altering additional cancer genes enhanced this phenotype (below),
further suggesting these are, indeed, aspects of transformation.

However, more-detailed studies will be required to confirm this.
Based on the multiple aspects of transformation exhibited by our
ptc>Myc,p53sh line, we concluded that this Drosophila line
provides a useful genetic platform for identifying functional
candidate driver genes within regions of CNA.

Prioritizing candidate driver genes from CNAs
Most of the 186 CNA regions identified by ISAR and GISTIC 2.0
contain dozens or hundreds of genes. Fig. 3A provides a flowchart
to summarize our approach for prioritizing these genes for
functional testing. To curate likely driver genes, we first
eliminated genes that (i) occur in known, common copy number
variants, (ii) were not differentially expressed, (iii) were associated
with an increase in expression when copy number was reduced or,
(iv) do not have a clear ortholog in Drosophila. To identify genes
that are specifically relevant to TNBC, we analyzed the candidate
genes for significance within the TNBC subset using a mild
probabilistic cutoff. These steps reduced an original list of 12,621
candidates to 6694 (see Analysis of TCGA data in Materials and
Methods; Fig. 3A).

When analyzing the TNBC dataset at this step, we found that some
genes are deleted more frequently in TNBC than they are amplified,
even though the CNA had been identified as an amplification by
ISAR or GISTIC 2.0, and vice versa (see Analysis of TCGA data
Materials and Methods). We examined these genes separately in
functional testing (below) as Group 2. Indeed, several cancer genes
have recently been found to have paradoxical, context-dependent
roles (Walerych et al., 2012; Lobry et al., 2014; Shen et al., 2018).
Because this study focuses on TNBC, we assigned each gene a CNA
type according to our TNBC-specific analysis.

Of the 6694 genes with CNAs, 4455 had a clear fly ortholog,
meaning they were available for functional testing. The genes were
further stratified into groups based on: (i) the Helios score of each
gene (for genes identified by ISAR) resulting frommachine learning
on TCGA and functional data in breast cancer (Sanchez-Garcia et al.,
2014), (ii) whether copy number of a gene influenced its expression,
(iii) whether the genewas alteredmore frequently than other genes in
the region, and (iv) the size of the region (see Analysis of TCGA data
Materials and Methods). Our analyses resulted in a set of prioritized
genes for each common TNBC CNA (Table S2).

For our functional studies, we focused first on the top ISAR genes
(Group 1I; Fig. 3A), small GISTIC 2.0 regions (Group 1G; Fig. 4A),
select genes with ambiguous classification of CNAs (Group 2), and
three lower ranked genes for which we had fly lines on hand (Group
4G). We then tested Drosophila lines representing these genes in
functional assays, in many cases testing multiple lines for each gene
(Fig. S3A). Control lines included threewith transgenes unrelated to
human genes, and one p53 null allele – expected to have no effect
when p53 was knocked down using RNA interference (RNAi). In
general, we determined how to analyze genes based on their status
in our TNBC-specific CNA analysis: genes comprising deletions
were treated as tumor suppressors, whereas those comprising
amplifications were treated as oncogenes.

Driver genes enhance p53/Myc transformation phenotypes
Our computational analysis and ranking protocol identified a set of
candidate driver genes within TNBC-associated regions of CNA.
To functionally assess candidate genes, we placed candidate
transgenes in trans to ptc>Myc,p53sh, creating a ‘3-hit’ model by
standard genetic crossing. Amplified genes were assessed by
overexpression ( ptc>Myc,p53sh/UAS-candidate); deleted genes
were assessed by RNAi-mediated knockdown ( ptc>Myc,p53sh/
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UAS-RNAi[candidate]) or by removing one functional copy
( ptc>Myc,p53sh/mutant−/+).
To validate our approach, we tested four well-known tumor

drivers: oncogenes Dp110 (officially known as Pi3K92E) and Egfr
were overexpressed, and tumor suppressors Pten and Rb were
reduced by knockdown in the context of ptc>Myc,p53sh. In each
case (4/4), adding the cancer-associated gene to a ptc>Myc,p53sh

background decreased survival to adulthood (eclosion rate; see
Lethality analyses in Materials and Methods; Fig. 3C); adding Pten
also decreased larval survival (pupariation rate; Fig. S3B). These
genes also significantly increased translocation of cells within the
wing disc (Fig. 3D) compared to ptc>Myc,p53sh alone. For Pten, an
example of a driver that showed only mild translocation and
overgrowth of transgenic tissue was significantly increased

(Fig. 3E). In contrast, 0/4 Group 4 lines and 1/4 control lines
showed significant reduction in eclosion (Fig. S3C). Three lines of
Group 4 and three control lines showed significant reduction in
pupariation, perhaps due to variation in genetic background
(Fig. S3D). However, 0/4 Group 4 lines and 0/4 control lines
showed significant change in cell translocation (Fig. S3E).
Furthermore, 0/3 Group 4 lines and 0/2 control lines showed
significant increase in transgenic tissue overgrowth (Fig. S3F). In
summary, well-known drivers enhanced aspects of transformation
in the ptc>Myc,p53sh model while non-drivers did not.

As a first step in identifying functional driver genes within
regions of CNA, we functionally tested 222 fly lines, covering 47 of
the 50 genes in Group 1, 40 of the 53 genes in Group 2, three of
2023 genes in Group 4G, and three control genes. Of the 222 lines

Fig. 2. Overexpression of Myc promotes
tissue expansion and cell translocation in
Drosophila wing discs. (A) Representative
wing discs of flies expressing combinations of
Myc and p53sh as indicated. Genotypically
white (ptc>w) flies served as controls. DAPI
staining (red) highlights tissue boundary, GFP
signal (green) demarcates transgene
expression. Some images rotated for
comparison with borders indicated by dashed
lines. (B) Maximum projections of confocal
z-stacks of the lower half of the wing discs as
in shown in the respective images in A,
dashed lines indicate the region of virtual
sectioning shown in lower inset. (C) Maximum
projections (upper three rows) and z-stacks
(bottom row) of confocal stacks of the lower
half of wing discs such as in A stained with
antibodies against Mmp1 antibody (red) or
cleaved-caspase (white), both indicative of
cell translocation (Rudrapatna et al., 2013);
dashed lines indicate the region of virtual
sectioning shown in lower inset. Arrowheads
in B and C mark delaminating cells.
Brightness and contrast were uniformly
increased to improve visualization. In A-C,
anterior at left, posterior at right, apical at top,
basal at bottom. (D) Quantification of
transgenic tissue overgrowth in flies
expressing Myc and p53sh driven by ptc-Gal4
alone or in combination. Kruskal–Wallis test:
P<0.0001. Other P-values: Student’s t-tests.
(E) Quantification of cell translocation in
transgenic tissue produced by flies
expressing Myc and p53sh driven by ptc-Gal4
or in combination. Kruskal–Wallis test:
P=0.0075. Other P-values: Mann–Whitney
test compared to w controls. No significant
differences were observed between flies
expressing Myc and Myc,p53sh. See also
Fig. S2.
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tested over all groups, 100 exhibited increased lethality when placed
in trans to ptc>Myc,p53sh, compared to ptc>Myc,p53sh alone,
defining 69 separate genes (Tables S4, S9, S10). To determine
whether genes that decreased survival also increase aspects of
transformation, we tested 66 of these genes in a ptc>Myc,p53sh

compared to ptc>Myc,p53sh alone (multiple lines in some cases;
Tables S4, S8-S10) for changes in cell translocation. For genes that
did not show a significant change in translocation in an initial trial,
we also measured tissue overgrowth. Together, 48/66 genes (63/116
lines) –when placed in a ptc>Myc,p53sh background – significantly
increased translocation (Fig. 4A,C and Fig. S4A; Table S12) or
overgrowth (Fig. 4B,C and Fig. S4B; Table S13) phenotypes; these
48 genes were judged to be functional drivers in this context.
We identified some differences in the percentage of drivers

identified (hereafter referred to as ‘hit rate’) within each
computationally defined group. Most tested Group 1 genes were
drivers, including 56% of genes in Group 1I and 75% of genes in
Group 1G. The higher hit rate for Group 1G suggests that genes
in small GISTIC 2.0 regions are especially likely to be regulators of
tumor progression (‘hereafter referred to as ‘drivers’). In Group 2G,
where listings within at least one database were in agreement with our
TNBC-specific analysis for each gene, 76% genes were drivers, a
similarly high hit rate compared to that in Group 1G. However, only
38% genes tested in Group 2I – i.e. regions identified as amplifications

by ISAR but deletions by our TNBC-specific analysis – were drivers.
This suggests that algorithms, such as GISTIC 2.0 and ISAR are
useful for identifying functional amplifications and deletions. That is,
genes appearing in regions identified only as amplifications are
generally unlikely to function as tumor suppressors. We opted not to
test the remainder of the genes in Group 2I.

Altogether, in addition to MYC our analyses identified 48
identified drivers. These 49 genes define a functional set of CNA-
associated putative driver genes (Fig. 5A; Table S1) and account for
the observed copy number aberration of 66 partially overlapping,
computationally defined regions (Table S5). Of note, several of
these driver genes have been reported in in silico or in vitro screens
for drivers (Tables S1 and S6) (Ciriello et al., 2013; Aure et al.,
2013; Vogelstein et al., 2013; Forbes et al., 2015; Marcotte et al.,
2016; Griffith et al., 2017). Furthermore, four of the genes were
determined to have been mutated at a significant rate (Table S2).
Finally, we assessed these genes for effects on survival in the TCGA
breast cancer dataset (Liu et al., 2018). Twelve genes showed a trend
towards increased progression or decreased survival (Fig. 5B) in
patients (Table S7; see Lethality analyses Materials and Methods).
Most (31/49) of these genes showed evidence of confirmation of the
driver status when using at least one of these methods (Table S1).
This analysis demonstrates the strength of our computation/genetics
approach to identifying functional drivers.

Fig. 3. Integrated computational-functional
screen to assess potential TNBC driver
genes. (A) Prioritization scheme of potential
driver genes from CNAs based on TCGA data.
(B) Prioritized groups of genes for functional
testing. Computational evidence is weaker for
Group 2I (dashed border) than Group 2G.
(C-E) Validation of the screening results:
reduced activity after using RNA-interference
(Pteni, Rbfi) or increased activity after
overexpression (Dp110, Egfr). Four known
driver genes in trans to ptc>Myc,p53sh led to
decreased viability (C) (n=4 for Egfr, n=8
otherwise), increased cell translocation (D)
and increased overgrowth of transgenic tissue
(Pteni shown as example in E) compared to
ptc>Myc,p53sh alone. P-values reflect
Student’s t-test where data are normally
distributed or, otherwise, Mann–Whitney test,
compared to genotypically white (w) control
flies (ptc>w). (w). See also Fig. S3 and
Table S3.
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Genetic complexity abrogated drug response in TNBC
models
Work by a variety of laboratories including ours suggest that
one source of resistance to therapeutic drugs is genetic complexity
of the tumor. To test the effects of genetic complexity on drug
response, we used our database of candidate CNA-associated driver
genes to generate six 3-hit models that reflect some of the genetic
complexity in TNBC. Specifically, we paired ptc>Myc,p53sh with
overexpression of oncogenes Dp110, Hey, Myb, Ppcs or aPKC, or
knockdown of the tumor suppressor Rop.
To test the effect of genetic complexity on drug response, we

screened 72 FDA-approved cancer drugs, JQ1 (targeting Myc-
pathway activity), and five novel drugs that have shown activity in

other Drosophila cancer models (Fig. 6A). Drugs were tested at
27°C to provide an optimal level of lethality, allowing us to
use rescue as a quantitative assay. Drugs were mixed into the
culture medium of ptc>Myc,p53sh flies to be consumed orally.
Fluorouracil, a chemotherapy drug used in the treatment of TNBC
(Muss et al., 2009), provided the strongest rescue of ptc>Myc,p53sh-
induced lethality at both 27°C (Fig. 6A,B) and 29°C (Fig. S5A),
mirroring activity in patients with TNBC. In contrast, all six
selected 3-hit TNBC lines built from our functional database failed
to show significant rescue by fluorouracil at either 27°C (Fig. 6C) or
29°C (Fig. S5B).

We examined the impact of fluorouracil on transgenic tissue
overgrowth on two selected 3-hit lines. ptc>Myc,p53sh showed a

Fig. 4. Driver genes produce tissue
phenotypes in the background of
Myc and p53sh. (A) Quantification of
cell translocation for high-priority genes
based on their known link to cancer
progression. genes. Altering genes
marked in red directed a significant
increase in translocation compared to
ptc>w controls (arrow), measured as
P<0.05 in the original experiment and
false discovery rate (fdr)<0.1 in the
aggregate analysis shown here.
Reducing activity of individual genes
from each Group in the context of
ptc>Myc p53sh, 16/52 from Group1I
and 7/21 from Group 1G were
significant. (B) Quantification of
transgenic tissue overgrowth for high-
priority genes. Altering genes marked
in red directed a significant increase
compared to w (arrow), measured as
P<0.05 in the original experiment and
fdr<0.1 in the aggregate analysis
shown here. Some genes that are
significant in this figure were not
significant in their respective
experiments due to variation between
experiments. i indicates RNA-
interference mediated knockdown; *
indicates a heterozygous null
allele;+indicates a duplication. 15/23
from Group1I and 5/12 from Group 1G
were significant. (C) Selected
phenotypes produced by specific driver
genes: cell translocation (PRL-1, Rbfi,
srp), small overt mass (Rbfi), disruption
of morphology (srp), transgenic tissue
overgrowth (Myb, Hey), and large overt
mass (Hey), all compared to w. DAPI
staining (red) highlights tissue
boundary, GFP signal (green)
demarcates transgene expression.
Some images were rotated for
comparison; borders are indicated by
dashed lines. Translocation and
overgrowth were not quantified for Hey
(last image on right) because the large
overt mass phenotype was 100%
penetrant. In all cases, each gene was
placed in trans to ptc>Myc,p53sh and
compared to ptc>Myc,p53sh alone.
See also Fig. S4 and Tables S12, S13.
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trend toward decreased overgrowth in response to fluorouracil (10 or
50 µM; Fig. 6D), consistent with rescue from lethality (Fig. 6A-C).
The response was attenuated in response to overexpression of
Dp110, such that no response to 50 µM was observed. The addition
of Myb produced a strong dose-response in reduction of tissue
overgrowth, yet notably, this did not translate into whole-animal
rescue (Fig. 6C). We conclude that, similar to other tumor types
(Bangi et al., 2016), increased genetic complexity can lead to drug
resistance in models of TNBC.

DISCUSSION
Producing useful genetic models of cancer and designing targeted
therapies require an understanding of the genes that drive tumor
progression. This is especially challenging with TNBC, a disease in
which most driver genes emerge from copy number aberration
rather than mutation, and carry many passengers with them.
Approaches to identifying driver genes in this context have included
statistical analyses of breast tumor-sequencing data (Aure et al.,
2013), pan-cancer analyses (Ciriello et al., 2013; Vogelstein et al.,

2013; Forbes et al., 2015), crowdsourcing (Griffith et al., 2017),
machine learning (Sanchez-Garcia et al., 2014; Schroeder et al.,
2014), cell culture screening approaches in transgenic lines (Kessler
et al., 2012) and breast cancer cell lines (Marcotte et al., 2016;
Koedoot et al., 2019; Patel et al., 2018), and a recent forward-
genetics approach in a mouse model of BRCA1-deficient TNBC
(Miao et al., 2020). Our study complements this body of literature
by providing a systematic characterization of putative TNBC driver
genes in a whole animal model, using a genetic background
representative of a majority of patients with TNBC.

Our data are consistent with previous evidence, i.e. that mutation
of TP53 (Cancer Genome Atlas Network, 2012; Jiang et al., 2019;
Nagahashi et al., 2018) and amplification of MYC (Cancer Genome
Atlas Network, 2012; Jiang et al., 2019; Curtis et al., 2012) are the
two most common genetic aberrations in TNBC, and frequently
occur in combination (Fig. 1). In Drosophila, Myc promoted
aspects of transformation including tissue overgrowth and cell
translocation (Fig. 3). Knockdown of p53 enhanced Myc lethality
but not overgrowth or translocation (Fig. 2). These data indicate that

Fig. 5. Known and novel driver genes in TNBC identified functionally. (A) Map of genomic regions that are amplified (red) and deleted (blue) in TNBC,
and the location of functionally validated TNBC driver genes identified in our screen. Group 2I regions, representing some ambiguity, are represented in pink
and light blue. Genes comprising an ambiguous CNA type are represented with a line extending through both amplified and deleted regions. Genes above
the horizontal axis are oncogenes; genes below the axis are tumor suppressors. MYB (indicated by *) can function as both. (B) Kaplan–Meier curves of
progression-free interval (PFI) or overall survival (OS) in the TCGA breast cancer dataset for CNA driver genes (log-rank P-value<0.1). Amplified genes in
red; deleted genes in blue. HR=Cox hazard ratio. See also Tables S1, S5 and S7. Similar-appearing Kaplan–Meier curves for different genes reflect genes
from the same CNA region that are likely to be altered in the same cohort of patients (see Discussion).
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p53 is likely to affect other processes in the targeted tissue, such as
senescence or metabolism, which can impact survival inDrosophila
(Bangi et al., 2016; de la Cova et al., 2014). Our ‘base’, i.e. theMyc,
p53sh transgenic line, constitutes a simple genetic animal model of
TNBC, exhibiting activation of matrix metalloprotease and caspase

cleavage, previously validated markers of cell translocation and
metastasis-like behavior in fly cancer models (Levinson and Cagan,
2016; Vidal et al., 2006; Sonoshita et al., 2018).

Many fly lines showed increased lethality when placed in trans to
ptc>Myc,p53sh, including all known cancer drivers tested and

Fig. 6. Genetic modifiers abrogate the response of p53sh Myc to fluorouracil. (A) ptc>Myc,p53sh Drosophila strains were cultured in medium containing
screening-optimized doses of cancer drugs at 27°C. Viability was assessed and eclosion rate for each drug is shown in percent. DMSO was used as a
control for drugs dissolved in DMSO and water was used as a control for drugs dissolved in water (black bars). Fluorouracil (red bar) significantly improved
viability (Mann–Whitney U test versus DMSO: P=0.03). (B,C) Fluorouracil was tested on the ptc>Myc,p53sh line at 27°C (B) and the ptc>Myc,p53sh line plus
six selected driver genes (Hey, Ppcs, aPKC, Dp110, Myb, Rop as indicated) at 27°C (C). In each case, addition of an additional driver led to loss of
fluorouracil-mediated rescue. ns, not significant. (D) Fluorouracil was tested at two doses (10 or 50 µM) on control (ptc>w), ptc>Myc,p53sh (Myc p53sh),
ptc>Myc,p53sh,Myb (Myc,p53sh Myb) and ptc>Myc,p53sh,Dp110 (Myc,p53sh Dp11) flies, and transgenic tissue overgrowth was quantified as described in
Fig. 4B. Two-way ANOVA results were (C) genotype: P<0.0001, drug: ns, interaction: ns; (D) genotype: P<0.0001, drug: P=0.0054, interaction: P=0.0883.
Displayed P-values reflect t-tests (see Materials and Methods). See also Table S8.

8

RESEARCH ARTICLE Disease Models & Mechanisms (2024) 17, dmm050191. doi:10.1242/dmm.050191

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

https://journals.biologists.com/dmm/article-lookup/DOI/10.1242/dmm.050191


several negative controls (Fig. S3C,D), suggesting that rescue of
lethality provides a sensitive but not specific assay. However, only
altering cancer-related genes – increasing ortholog expression of
oncogenes or decreasing activity of tumor suppressors – altered
transformation phenotypes in theDrosophilawing disc, providing a
more-specific second-line assay. Based on these functional assays,
we identified or confirmed the cancer driver activity of 49 genes
(Fig. 5A). In some cases, multiple driver genes are present within
the same CNA region (Table S1). This phenomenon was suggested
by computational predictions, such as Helios (Sanchez-Garcia et al.,
2014), and confirmed in our functional experiments. The impact of
multiple driver genes in the same amplification or deletion,
including whether those genes interact, remains an area open for
investigation. We should also note that genes without clear
Drosophila orthologs were not tested using our approach.
Some drivers, such as CCNE1, are well-established cancer

drivers. Others, such as TRIO, are less well-studied but have
previously appeared in the literature and databases of cancer driving
genes. DNAJB6 has the highest Helios score in its region but is not
considered a driver based in an assay of anchorage-independent
growth (Sanchez-Garcia et al., 2014). Its observed effects in a
translocation assay (Koedoot et al., 2019) and our overgrowth
assay highlight the importance of testing for drivers in multiple
contexts, such as an intact epithelium, in which competition with
wild-type tissue can be observed. To our knowledge, PPCS,
TM2D1, INADL, RBM34, C6orf203 and STXBP1 have not been
linked to breast cancer. The variety of driver genes identified in this
study underscores the potential of an integrated computational/
experimental approach.
The high hit rates in Groups 1 and 2G (57-76%) indicate a

significant enrichment in driver genes based on computational work
alone. None of the Group 4 genes tested were identified as drivers.
This suggests computational features can enrich for driver genes
over the initial identification of CNA regions by GISTIC 2.0 and
ISAR. Some genes exhibited paradoxical properties. A small
number of genes were amplified in the TCGA data but demonstrated
decreased expression. For one such gene, MYB, we tested for both
tumor suppressor and oncogene activity, and found that knockdown
led to increased cell translocation (Fig. 4A), while overexpression
led to tissue overgrowth (Fig. 4B). Similarly, our study helped
deconvolve genes in ‘ambiguous’ Group 2 CNA regions. For genes
identified as amplified in one TNBC database and deleted in
another, 76% exhibited driver effects when tested according to
whichever CNA occurred more frequently in TNBC.
In contrast, genes in regions only identified as amplifications by

using ISAR but more frequently deleted in the TNBC set (Group 2I)
were less likely to be drivers (38% hit rate). Our assays demonstrated
that the driver genes identified in this group function as tumor
suppressors, despite appearing in amplified regions (Table S10).
One example, MSRA, has been found to be a tumor suppressor in
other functional studies (Lei et al., 2007; Luca et al., 2010).
Together, these data suggest that, when altered by different CNAs,
the same gene can become either an oncogene or a tumor
suppressor, depending on subtype and biological context.
Developing a functional database allowed us to then ask a

question significant to the development of therapeutics: Does
genetic complexity alter drug response, when the ‘base’ set of
common drivers is the same? We found that, while fluorouracil
rescued our Myc,p53sh base mode from lethality and mitigated
transgenic tissue overgrowth, introducing an additional transgene
variously enhanced or prevented the effect of fluorouracil on tissue
overgrowth in a dose- and gene-dependent manner. Yet in all cases

tested – including examples of both oncogenes and tumor
suppressors, and genes from both Group 1 and 2 – the additional
transgene abrogated fluorouracil-induced rescue from lethality. This
suggests that increasing genetic complexity reduces treatment
response, confirming findings from work in other tumor models
(Bangi et al., 2016). Our data indicate that genetic complexity
may play a role in the poor outcomes for patients with TNBC (Dent
et al., 2007), and suggest genes that are candidates to mediate
chemoresistance. Our system also provides a platform to study the
combinatorial effect of genetic aberrations on multiple tumor-like
phenotypes. In the future, this system could be used to examine the
mechanisms by which specific genetic combinations confer
resistance to therapy.

Using a functional approach, we have identified multiple new
driver genes that help explain specific amplifications and deletions
found in patients with TNBC. Some of these genes are recently
discovered or poorly understood cancer drivers that merit further
research into the specific roles they play in TNBC. Further, we
provide data that some of these genes can mitigate the response of a
Myc,p53sh model to the chemotherapeutic fluorouracil. Further
understanding the functional impact of these driver genes on drug
response may help guide prognosis and drug selection based on
genotype, and suggest new avenues for therapeutic development.

MATERIALS AND METHODS
Analysis of TCGA data
Data from the invasive breast carcinoma dataset were downloaded from
The Cancer Genomic Atlas (TCGA) data portal (National Cancer Institute,
2018, https://www.cancer.gov/ccg/research/genome-sequencing/tcga ). The
dataset contains 1100 cases.

The somatic mutation annotation file (MAF) for this dataset contains 771
cases and 14,375 genes. We uploaded this file to the MutSigCV public
server (Lawrence et al., 2013) to retrieve predicted mutated driver genes for
breast cancer. According to Lawrence et al. (2013), genes with q<0.1 were
considered significant. We also considered genes from COSMIC (Forbes
et al., 2015), the TCGA Pan-Cancer Analysis (Ciriello et al., 2013), the
Vogelstein dataset (Vogelstein et al., 2013) and CIViC as of April 2016
(Griffith et al., 2017) to be driver genes that might be mutated. Mutations in
any of these genes are shown in Fig. 1A. Known predisposing germline
variants were found in 52 cases (Cancer Genome Atlas Network, 2012).
Mutations in any of these ten genes were included in Fig. 1A.

The level 3 copy number SNP array was downloaded for all 1020 samples
for which it was available. Candidate genes included those reported by
GISTIC 2.0 (total amp, basal amp, total del and basal del datasets) (Cancer
Genome Atlas Network, 2012) and ISAR (from the total dataset and the
basal dataset, defined by the authors as ER/progesterone receptor negative)
(Sanchez-Garcia et al., 2014), resulting in 12,621 genes. For each of these,
any gene symbol synonyms were converted to a consensus gene symbol
fromHUGO (Braschi et al., 2019). For each of these genes, coordinates were
retrieved from NCBI build GRCh37 (also known as hg19). Raw copy
number values were retrieved from the SNP array files labeled ‘no_cnv’, in
which germline copy number variants known to occur in the population had
been removed by TCGA. At this step, 541 genes were removed from the
candidate list because they could not be identified due to nomenclature or
missing data, and 51 were removed because they only appeared in known
germline copy number variants not included in the ‘no_cnv’ files.Whenever
a value in the SNP array, in which the data are on a log2 scale, represented a
region covering the entire gene, the copy number for that gene was retrieved
and converted to a linear scale:

copy number ¼ 2^ðSNP array valueÞ
This value was then adjusted according to an estimate of tumor purity

[the fraction of the sample that is tumor (Aran et al., 2017)]. To account
for germline variations in copy number, a fold change over the germline
copy number was calculated, giving this formula for the final adjusted
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copy number:

adjusted copy number ¼ ðOCNþ ðTP � 1Þ�GCNÞ=ðTP�GCNÞ;

where OCN=observed copy number in the primary tumor sample;
GCN=germline copy number; and TP=tumor purity.

In the minority of cases where a tumor-purity estimate or germline copy
number was unavailable, a value of 1 was substituted for each of these
parameters.

Thus, an adjusted copy number value of 1 represents normal in this study.
Similar to other studies of CNAs (Aure et al., 2013; Akavia et al., 2010),
cutoffs of 2^0.3 and 2^-0.3 were used for amplifications and deletions,
respectively, representing the gain and loss, respectively, of one copy in
∼40% of the tumor. The copy number for each region shown in Fig. 1A
represents the average of all genes in the region. The 72 TNBC cases with
both copy number data and somatic mutation data are shown in Fig. 1A.

Neither GISTIC 2.0 nor ISAR was applied to this dataset with TNBC
specifically in mind. Thus, following these analyses, genes irrelevant to
TNBC biology might appear in CNA regions, such as the estrogen receptor
1-encoding gene ESR1. GISTIC 2.0 was applied to the basal-like gene
expression subtype, which only partially overlaps with TNBC. ISAR was
applied to the ER/progesterone receptor-negative subgroup the authors refer
to as ‘basal’, although this would also include CNAs that are relevant to
HER2-positive tumors. These partially overlapping datasets resulted in
some discrepancies. Some regions are referred to as amplifications by
GISTIC 2.0 in the total breast cancer set but as deletions in the basal
subtype set. Similar discrepancies also appeared between the ISAR
and GISTIC 2.0 results (and were referred to as ‘ambiguous CNAs’ in
this current study). As ISAR has been explicitly designed to pick up
amplifications even when they appear in the context of a larger deletion
(Sanchez-Garcia et al., 2014), this might explain some of the discrepancies.

To select genes within CNA regions that are specifically relevant to TNBC
biology and to determine the direction of their effect, we applied an additional
filter. Following the study by Aure et al. (2013), for each gene, we calculated
the binomial probability of seeing the number of TNBC tumors with an
amplification or deletion of that gene that appear, out of the 110 TNBC tumors
in the dataset. We retained genes with a probability <0.05 for further analysis.
Since this step represents an extra filter on top of an already rigorous algorithm
to detect CNAs, we did not use multiple hypothesis correction. By using this
filter, 2321 genes were removed. If more deletions of the gene appeared in the
dataset than amplifications, we marked the gene as a deleted and treated it as a
putative tumor suppressor; when more amplifications than deletions appeared,
we treated it as amplified and a putative oncogene.

Next, we required that candidate genes within CNA regions be differentially
expressed. We downloaded the RNA-seq data for all samples available and
extracted the transcript quantification values for each gene, which had been
generated by TCGA using RSEM (Li and Dewey, 2011; Ciriello et. al, 2015);
2693 genes did not have RNA data available and so were removed at this step.
As described by Akavia et al. (2010), we retained genes with a standard
deviation of greater than 0.25 for further analysis, thus removing 306 genes.
We then converted the transcript quantification values to z-scores for each
gene. For each amplified gene, we performed a statistical test comparing the z-
scores of primary tumors with that amplification and those without. We
performed the equivalent analysis for deleted genes. Where the two
distributions had equal variance, we used a Student’s t-test, and where they
did not, we used the Welch’s test. All distributions were either normally
distributed or had a sample size of≥30, sowe judged parametric statistics to be
valid. We then applied the Bonferroni correction to all resulting P-values.

For further analysis, we retained genes whose copy number had a direct
positive relationship or a non-significant relationship with expression.
Because amplifications could conceivably cause chromatin changes that
reduce the expression of a tumor suppressor, we also retained genes that had
reduced expression when amplified. However, as no theoretical mechanism
could cause increased expression of a cancer driver gene when it is deleted,
we removed genes that were associated with increased expression when
deleted from further analysis (15 genes).

For genes appearing in the ISAR dataset, we selected the top 1-3 genes by
Helios score for Group 1I (Table S3). The remaining genes in the top 3

(for regions with 12 or fewer genes) or top quartile (for regions with more
than 12 genes) of Helios scores made up tier 2. Because the Helios score is
based in part on the frequency of CNAs in the dataset as well as the
relationship between copy number and expression, we did not directly
consider these parameters to define Group 1I.

From the GISTIC 2.0 genes that did not appear in the ISAR data, we selected
genes that 1) have a significant, positive relationship between copy number and
expression, 2) appear in the top 3 (for regions with 12 or fewer genes) or top
quartile (for regions with more than 12 genes) of genes in the region by the
frequency of amplification or deletion occurring in the dataset, and 3) occurred
in small (<10 genes) regions. These genes comprise Group 1G (Table S3).

Genes marked for inclusion in Group 1 were moved to Group 2 when there
were discrepancies between databases. In Group 2G, each gene belongs to at
least one region identified by GISTIC 2.0, and some also belong to
amplifications identified by ISAR. Genes in this group belong to at least one
amplification and at least one deletion, and were analyzed as tumor suppressors
or oncogenes according to the result of our TNBC-specific analysis. In Group
1I, genes belong to amplifications in ISAR but appeared to be deleted more
frequently in our TNBC-specific analysis. Select genes in this group were
analyzed as tumor suppressors. The remaining ISAR and GISTIC 2.0 genes
comprise Group 3 and 4 (Fig. 3B).

Finally, we converted all human genes in these five tiers to fly genes by using
homologs compiled from the Drosophila Interactions Database (DroID)
(Murali et al., 2011; downloaded 1/2014); DRSC Integrative Ortholog
Prediction Tool (DIOPT) (Hu et al., 2011; downloaded 10/2014),
HomoloGene (https://www.ncbi.nlm.nih.gov/homologene), Ensembl (Flicek
et al., 2014) and OrthoDB (Waterhouse et al., 2013) (the latter three
downloaded 7/2014). For genes with multiple possible fly orthologs, we
performed the search manually in DIOPT and performed a tBLASTn (Mount,
2007; Johnson et al., 2008) search of the human protein sequence against the
fly genome. The top scoring orthologs from each of these methods were used
for testing (Table S11).

Fly stocks
Experiments with overexpression of Myc used stock #9675 (Bloomington
Drosophila Stock Center) with genotype hs-FLP y w; UAS-Myc. Initial
experiments with p53 knockdown used a long hairpin under upstream
activating sequence (UAS) control VDRC Id 38235 (Vienna Drosophila
Resource Center). This is represented as p53lh. However, although the long
hairpin siRNA produced an effective knockdown, it also produced a faster
migrating species on western blots, possibly representing expression of a
different P53 isoform. Due to this and the convenience of using a hairpin on
the third chromosome, a short hairpin with guide sequence 5′-
TGCTGAAGCAATAACCACCGA-3′ under UAS control on the third
chromosome, generated in our lab, was used. We generated a recombinant
third chromosome with this UAS-p53sh and UAS-Myc. This line has the
genotype w; UAS-Myc UAS-p53sh; flies in Fig. 1B are in a yellow hairy
singed forked (yhsf ) background, chromosome markers that should not
affect the transgene phenotypes. Both hairpins produce an ∼80%
knockdown in the presence of UAS-Myc, but p53sh does not exhibit the
shift in band size (Fig. S2B).

In initial lethality experiments crossing Myc p53sh to ptc-Gal4, low
numbers of progeny resulted in survival variability after the first two
technical replicates (flips). Therefore, only the first two technical replicates
from each of seven different independent experiments (14 replicates total)
were included in the analysis shown in Fig. 1C.

We combined this line with patched-Gal4 on the second chromosome, the
linked balancer SM5(Gal80)-TM6B, and a hs-hid construct on the Y
chromosome to generate (hs-FLP) (y) w /hs-hid; (ptc-Gal4; UAS-Myc UAS-
p53sh)/SM5(Gal80)-TM6B. This line was used for lethality experiments. We
also generated a version withUAS-GFP on the second chromosome. hs-FLP
was not detected in a PCRof fly genomic DNA from >30 flies from this line,
indicating it likely lost the floating hs-FLP construct on the X chromosome,
and so has genotype (y) w /hs-hid; ptc-Gal4 UAS-GFP; UAS-Myc
UAS-p53sh/SM5(Gal80)-TM6B. This line was used for the overgrowth
and cell translocation assays.

To generate virgins of both these lines, bottles were incubated for 1-3 h at
37°C twice for 1-5 days after lay, activating the hid protein and resulting in

10

RESEARCH ARTICLE Disease Models & Mechanisms (2024) 17, dmm050191. doi:10.1242/dmm.050191

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

https://journals.biologists.com/dmm/article-lookup/DOI/10.1242/dmm.050191
https://journals.biologists.com/dmm/article-lookup/DOI/10.1242/dmm.050191
https://www.ncbi.nlm.nih.gov/homologene
https://journals.biologists.com/dmm/article-lookup/DOI/10.1242/dmm.050191
https://journals.biologists.com/dmm/article-lookup/DOI/10.1242/dmm.050191


death of all fertile males before eclosion. Virgins from heat shocks were only
used for experiments and never put back into the stock.

Genotypes and stock numbers for lines used in the genetic screen are
listed in Tables S9, S10. Genotypes and stock numbers related to Fig. 4A,B
and Fig. S4 are in Tables S12, S13. Stock numbers related to the genotypes
shown in additional figures are as follows, in order (exclusive of w):

Fig. 3C-E and Fig. S3B: VDRC35731, VDRC10696, in house UAS-
Dp110 stock, BL9532

Fig. S3D (and related panels): BL20108, DGRC203601, BL17396,
BL14265

Fig. S3E (and related panels): BL6659, BL6660, BL33623, BL6815
Fig. 4C: BL20713, VDRC10696, d10248, F001574, F000566.

Western blotting
765-Gal4 was crossed to lines carrying p53 knockdown or UAS-Myc to
express the transgenes in the entire wing disc. Wing discs from L3 larvae
were dissected in cold PBS. Ten discs were placed in RIPA buffer with
protease inhibitor and phosphatase inhibitor. LDS sample buffer was added,
and the mixture was heated to 70°C for 5 min, then frozen at −80°C until
further use. Samples were run on a Thermo Fisher 4–12% bis-tris NuPAGE
gel as per manufacturer’s instructions. Protein was transferred onto a PVDF
membrane, which was then probed against p53 (DSHB p53-H3 s 1:1000),
syntaxin (DSHB 8B-3, 1:1000) or Myc (Santa Cruz Myc d1-717, 1:200)
overnight at 4°C. Detection was performed with the Thermo Fisher Pierce™
ECL Western Blotting Substrate as per manufacturer’s instructions.
Quantification was performed in ImageJ using the Gel Analyzer tool.

Lethality analyses
To measure survival with two or fewer genes of interest, ptc-Gal4 was
crossed to the genotype of interest (i.e. UAS-Myc UAS-p53sh) and the
percentage eclosion rate was calculated as: 100×[number of empty pupal
cases/(number of uneclosed pupae+number of empty pupal cases)]. Crosses
for the genetic screen were set up at 25°C as (hs-FLP) (y) w/hs-hid; ptc-
Gal4; UAS-Myc UAS-p53sh/SM5(Gal80)-TM6B ×UAS-gene or UAS-gene/
FM7c 2xTb-RFP or UAS-gene/CyO 2xTb-RFP, or UAS-gene/TM6B.

For genes of interest that were homozygous, or heterozygous on the first,
second or third chromosomes, respectively (Pina and Pignoni, 2012). For
second and third chromosome genes of interest, males of the stock were used
and virgins of the stock we generated as described above.

Because chromosomes of the SM5(Gal80)-TM6B balancer are genetically
linked by a reciprocal translocation, all progeny in the cross had either ptc-
Gal4; UAS-Myc UAS-p53sh or the balancer, which produces a tubby
phenotype. Similarly, because of the balancers used, all progeny that did not
have the gene of interest had a tubby phenotype. Eclosion was calculated as
above only for the non-tubby pupae. Where the gene of interest was
homozygous, a relative pupariation rate was also calculated as 100×[number
of non-tubby pupae/number of tubby pupae]. This was not calculated
where the gene of interest was homozygous lethal and used with a
balancer.

To account for the effect of variation in the genetic background of the
stocks on survival, two biological replicates were set up for each gene of
interest in each experiment. Thesewere flipped four times, for a total of eight
replicates for each genotype. Eclosion and relative pupariation for each gene
of interest were compared to control with a Student’s t-test where
distributions were normal or a Mann–Whitney u test where distributions
were not normal. When either eclosion or relative pupariation was lower
than control (P<0.05), the experiment was repeated. Genes that significantly
lowered lethality in at least two independent experiments were considered
candidates for tissue phenotype analysis. For simplicity, the aggregate of
repeat experiments is shown in Fig. 3C and Fig. S3B-D.

Wing disc analyses
To visualize transformed tissue, we performed the equivalent crosses at 25°C as
described above with a UAS-GFP construct on the second chromosome. Wing
discs from non-tubby L3 larvae were dissected, fixed, and mounted in
Vectashield with DAPI. Apical-basal and anterior-posterior axes were
determined by locating the patched-expressing region of the peripodial

membrane (Wu et al., 2004). Cleaved caspase and matrix metalloprotease were
visualized by immunostaining the fixed tissue (Cell Signaling antibody #9661,
1:200; DSHB antibody 3B8D12, 1:10). To assess translocation, the discs were
visualized at 40× magnification on a Leica DM5500Q confocal microscope and
the number of GFP-expressing cells in the posterior compartment was counted.

Genes of interest that did not have a significant effect on cell translocation
were tested with the more laborious overgrowth assay. Each disc was imaged
at 10× magnification, using identical settings within each imaging session,
and the red and green channels were exported to separate tiff files.
The outline of the disc was selected using the magnetic lasso tool in
Photoshop, and the number of pixels in the enclosed areas was measured.
The number of green pixels within the disc was measured in ImageJ using
the threshold tool at the default setting and then the analyze particles tool.
The relative amount of transformed tissue in each disc was then calculated
as: number of green pixels in disc/number of pixels in disc.

For each of these two calculations (cell counts for translocation, and disc
area ratios for tissue overgrowth), values for each set of discs of a genotype of
interest were compared to control, using Student’s t-test when distributions
were normal or Mann–Whitney u test when distributions were abnormal. For
Fig. 2 and Fig. S2, two-tailed statistics were used. For the genetic screen, only
samples with a mean greater than control were tested, and one-tailed statistics
were used. We then calculated the false discovery rate (FDR)-adjusted
P-values using the Benjamini-Hochberg method available in the Python
package Statsmodels (https://doi.org/10.25080/Majora-92bf1922-011).

In the genetic screen, to account for variation in the baseline
characteristics of the ptc>Myc,p53sh line over time (due to genetic drift)
and slight variation in imaging settings from experiment to experiment,
these statistical tests were first performed using only the controls from each
individual experiment. However, as some experiments contained only a
small number of samples for each genotype, and in order to calculate an
FDR (above), we also performed the comparisons after aggregating the data
for all experiments. Fly lines resulting in enhancement over control with
P<0.05 in the individual experiment and FDR<0.1 in the aggregate were
considered significant.

Drugs
We used a library of drugs approved by the FDA to treat cancer, several
drugs typically used to treat TNBC, as well as novel compounds developed
in our laboratory, which showed anti-cancer activity in other fly thyroid and
colorectal cancer models. Doses were approximations of the maximum
tolerable dose, based on previous experience with other fly models, with
lower doses of some drugs based on preliminary experiments on p53/Myc
(Table S8). Drugs were dissolved in either water or DMSO, and then diluted
1:1000 by volume in the fly food. Water-soluble drugs were compared to a
‘water’ control for which no drug was added to the food. Drugs dissolved in
DMSO were compared to food with 0.1% DMSO by volume.

Drug experiments
We crossed ptc-Gal4 tow; Myc,p53sh at 27°C, where the rate of eclosion on
DMSO was 56%, lower than at 25°C. Flies were allowed to lay on four
replicates of fresh drug food for each drug for 24 h. They were then flipped
into another set of four replicates each and allowed to lay for 24 h, giving a
total of eight replicates for each drug condition. The eclosion rate in percent
was calculated as: 100×number of empty pupal cases/[number of uneclosed
pupae+number of empty pupal cases].

The crosses used for experiments shown in Fig. 6 were performed similarly
to those for the genetic screen. Virgin females of hs-FLP/hs-hid; ptc-Gal4;
Myc,p53sh/SM5(Gal80)-TM6B were crossed with a control line comprising
either genotypew or genes of interest identified in the screen. The eclosion rate
in percent was calculated as described above only for non-tubby pupae. The
relative pupariation rate in percent was also calculated: 100×[number of non-
tubby pupae/number of tubby pupae]. Drug and food conditions were the same
as above.

Statistics
Fig. 1A includes both copy number and mutation data; copy number
calculation is described above. For the purpose of clustering, mutation data
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were converted to numerals ranging from 0 to 2, with values <1 indicating
likely loss of function and values >1 indicating likely gain of function, as
follows: Missense Mutation=2.0, In-frame Insertion=1.9, In-frame
Deletion=1.8, Nonstop Mutation=1.7, RNA Alteration=1.6, Splice Site
mutation=0.3, Frameshift Insertion=0.2, Frameshift Deletion=0.1,
Nonsense Mutation=0.0. Hierarchical clustering was then performed in
Python 3 with the graphing package Seaborn (https://zenodo.org/record/
883859#.Y3BVeuRBw2w) using the ‘clustermap’ function with the default
Euclidean distance metric to generate Fig. 1A. To account for the effect of
mixed data types on this clustering, we repeated this analysis using the
original categorical designations for mutation type (i.e. ‘Missense
Mutation’) and the same copy number data, and performed clustering
using Gower distance (Gower, 1971) with the Python package Gower
(https://zenodo.org/record/883859#.Y3BVeuRBw2w). This method also
did not produce any discernible clusters. Code to reproduce both versions of
the figure is available at https://github.com/jennifereldiaz/fly-tnbc.

Statistical tests were performed either in Python 3 with the statistics
packages SciPy (http://www.scipy.org/) and Statsmodels (Seabold and
Perktold, 2010) or Prism. In Fig. 6D, 2-way ANOVA and multiple t-tests
(unpaired) functions in Prism 8 were used.

Survival analyses utilized the breast cancer portion of the TCGA Pan-
Cancer clinical endpoints database (Liu et al., 2018) and were performed
using the built-in log-rank test, Cox proportional hazard model and Kaplan–
Meier curve function in the Python package Lifelines (CamDavidsonPilon/
lifelines: v0.14.3, https://zenodo.org/record/1252342). Raw P-values from
the log-rank test are shown in the Table S1 rather than false discovery rates,
as this analysis is intended to complement the larger body of computational
and functional studies on these genes rather than serve as a point of
conclusion on its own.
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Fig. S1. Myc and p53-RNAi synergize to impact survival in Drosophila 

a) Western blot of Myc in fly wing discs with quantification below. b) Western blot of p53 in fly

wing discs. Due to loading variability, two sets of exposures are shown for clarity. The lower set 

of exposures were used for quantification, below. See Materials and Methods section for 

discussion of the faster migrating P53 band. c) Survival of Myc-expressing flies when combined 

with p53lh. d) Survival of Myc-expressing flies when combined with p53sh. In c-d, Kruskal-Wallis 

test p<0.0001 and N=11. P-values reflect Wilcoxon tests. y and hs-flip elements were present 

on the X chromosome where denoted. Related to Figure 1. 
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Fig. S2. Overexpression of Myc induced tissue expansion and cell translocation 

in Drosophila wing discs 

Maximum projections (bottom) and z-stacks (top) of confocal stacks of the lower half of wing 

discs (a) showing tissue overgrowth and cell translocation for the same genotypes in Figure 2, 

and (b) wing discs stained with a cleaved-caspase antibody (red) for the same genotypes 

shown in Supplemental Figure 1c. Arrowheads mark delaminating or migrating cells; brightness 

and contrast were uniformly increased to improve visualization of staining. In (b), note p53lh was 

used rather than p53sh (Figure 2). Magnification: 40X. Anterior at left, posterior at right, apical at 

top, basal at bottom. c) Quantification of transgenic tissue overgrowth produced by 

combinations of Myc and p53lh driven by ptc-Gal4. Kruskal-Wallis test: p<0.0001. P-values 

reflect student’s t tests. d) Quantification of cell translocation in transgenic tissue produced by 

combinations of Myc and p53lh driven by ptc-Gal4. Kruskal-Wallis test: p<0.0001 P-values 

reflect Mann-Whitney tests compared to w. No significant difference was seen between Myc and 

p53lh; Myc. Related to Figure 2. 
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Fig. S3. Characterization of positive and negative controls in three Drosophila assays 

a) Distribution of fly lines assessed in the screen among 6 computationally defined groups. b)

Survival of flies to pupariation for positive controls (n=4 for EGFR, n=8 otherwise). c-d) Survival 

of flies to eclosure (c) and pupariation (d) for low priority genes (left panels: n=8 for CG10863-2 

and Iswi*, n=24 for w, n=16 otherwise) and negative controls (right panels: n=8 for all). 

Pupariation could not be assessed in Iswi* because of a balancer. CG10863-1 and -2 are two 

lines for the same gene. The pupariation calculation is normalized by counts of internal control 

pupae and may be more sensitive to noise. e) Quantification of cell translocation in Group 4G 

(left) and control (right) lines. f) Quantification of overgrowth of transgenic tissue in Group 4G 

(left) and control (right) lines. Overgrowth could not be assessed in CG10863-2 because of a 

GFP tag, nor the YFP lines. All genotypes shown are in a background of Myc,p53sh. p-values 

reflect a student’s t test where data are normally distributed, or a Mann-Whitney test otherwise, 

compared to w. Blue error bars indicate a non-significant difference. Related to Figure 3. See 

also Supplemental Table 4. 
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Fig. S4. Some driver genes that appear in ambiguous CNAs produce tissue 

phenotypes in the background of Myc and p53sh 

a) Quantification of cell translocation for genes from Group 2. Genes marked in red cause

significant increase compared to w (arrow), measured as p < 0.05 in the original experiment and 

false discovery rate (fdr) < 0.1 in this aggregate analysis. b) Quantification of transgenic tissue 

overgrowth for genes from ambiguous deletions. Genes marked in red cause significant 

increase compared to w (arrow), measured as p < 0.05 in the original experiment and fdr < 0.1 

in this aggregate analysis. Because of variation from one experiment to another, some genes 

that appear significant in this figure were not significant in their respective experiments. i 

indicates RNAi against the listed gene; * indicates a heterozygous null allele. † indicates Group 

2G; the rest are Group 2I (see Methods). Related to Figure 4. 
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Fig. S5. Genetic modifiers abrogate the survival response of p53sh Myc to fluorouracil at 

29 °C 

Fluorouracil was tested on the ptc>Myc,p53sh line at 29 °C (a) and and ptc>Myc,p53sh plus six 

selected driver genes at 29 °C (b). In each case tested, addition of an additional driver led to 

loss of fluorouracil-mediated rescue. d) Fluorouracil was tested at two doses on ptc>w, 

ptc>Myc,p53sh, ptc>Myc,p53sh,Myb, and ptc>Myc,p53sh,Dp110, and transgenic tissue 

overgrowth was quantified as in Figure 4b. Two-way ANOVA results (b) were genotype: 

p<0.0001, drug: p=0.001, interaction: ns. Displayed p-values reflect t tests (see Methods). The 

final N for each condition is shown on each bar. Related to Figure 6. 
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Table S1. Computational and functional information on each driver gene. * indicates that 

MYB copy number has a possible negative relationship with expression (Supplemental Table 3) 

and was tested as both an oncogene and tumor suppressor. † indicates that GRHL2 did not 

meet criteria for inclusion in the screen but was tested because it shares an ortholog with 

GRHL1. “t-test Result” refers to a Student’s t-test of the effect of copy number on gene 

expression (see Methods). Genes examined in relevant prior studies (experimental or 

computational) in breast cancer or other well-known cancer databases are included under 

“Other Studies”: Breast cancer “essential” genes (41), COSMIC (40), TCGA pan-cancer (28), 

Parsons et al. (75), CiVIC (42), Myc-synthetic lethal (Myc-SL) (46), Aure et al. (38), Vogelstein 

et al.(56), TNBC migration driver genes (47), TNBC tumor addiction genes (48), and driver 

genes in a mouse model of TNBC (49). MutSigCV q-value is shown only for genes with q < 0.1. 

Progression free interval (PFI) and overall survival (OS) p-values reflect a log-rank test for 

patients with the aberration vs. without. Only genes with p < 0.1 are shown, all of which the 

Kaplan-Meier curve plot indicates poorer prognosis with the CNA (Figure 5B-C). See also 

Supplemental Tables 2, 6, and 7. 

Disease Models & Mechanisms: doi:10.1242/dmm.050191: Supplementary information

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

S
up

pl
em

en
ta

ry
 in

fo
rm

at
io

n



Table S4. Fly lines and experimental data for tested genes in Group 4G and negative control 
genes. 

Table S5. Summary of results for all CNA regions considered in this analysis. Regions 
in gray are not likely to be significant in TNBC, but may be relevant to other breast 
cancer subtypes; not all of these were studied to completion. 

Table S2. Results of MutSigCV analysis on TCGA breast cancer somatic mutation dataset. 

Available for download at

https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data

Table S3. Computational data on all considered GISTIC 2.0 and ISAR genes. 

Available for download at

https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data

Available for download at
https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data

Available for download at
https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data
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Table S9. Fly stocks and results for Group 1 genes 
Results symbols: +: p<0.05. ?: 0.05<p<0.4. -: p>0.4 or rescues phenotype. Each symbol 

represents one experiment. 

Table S10. Fly stocks and results for Group 2 genes 
Results symbols: +: p<0.05. ?: 0.05<p<0.4. -: p>0.4 or rescues phenotype. Each symbol 

represents one experiment. 

Table S7. Log-rank test hazard ratios (HR) and p-values for driver genes using the 
TCGA breast cancer dataset. PFI and OS are preferred by the authors of [39] and are 
the metrics shown in Figure 5. HR are reported as negative for deletions here, and this 
is corrected in Figure 5. 

Table S6. Data from other databases for all considered GISTIC 2.0 and ISAR genes. 

Available for download at

https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data

Available for download at
https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data

Table S8. Drugs used in the drug screen. 

Available for download at

https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data

Available for download at
https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data

Available for download at
https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data
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Table S12. Cell translocation assay results 

Stock numbers and statistical results corresponding to Figures 4a and S4a. 

Table S13. Overgrowth assay results 

Stock numbers and statistical results corresponding to Figures 4b and S4b. 

Table S11. Genetic screen results 

In the lethality column, only lines that were significant (p<0.05) in two independent tests are 

considered positive and reported in each numerator. In the validation column, ‘enhance’ refers 

to affecting an increase in the phenotype over Myc,p53sh. Lines were generally only tested for 

tissue overgrowth (called ‘growth’ in Supplemental Tables 9, 10) when negative for cell 

translocation; unless otherwise indicated, a test for tissue overgrowth implies a negative cell 

translocation test. ‘Passenger’ refers to genes lacking functional evidence for driver status in 

this study. ND = not done. 

Available for download at
https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data

Available for download at
https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data

Available for download at
https://journals.biologists.com/dmm/article-lookup/doi/10.1242/dmm.050191#supplementary-data
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