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Abstract

Understanding the resident microbial communities and their above and below ground interactions with plants will provide
necessary information for crop disease protection and stress management. In this study, we show how diversity of core
microbiome varies with disease susceptibility of a crop. To test this hypothesis, we have focused on identifying the core
microbial species of cotton leaf curl disease (CLCuD) susceptible Gossypium hirsutum and CLCuD resistant Gossypium
arboreum under viral infestation. Derivation of core membership is challenging as it depends on an occupancy threshold
of microbial species in a sampling pool, whilst accounting for different plant compartments. We have used an abundance—
occupancy distribution approach where we dynamically assess the threshold for core membership, whilst marginalizing for
occupancy in four compartments of the cotton plant, namely, leaf epiphyte, leaf endophyte, rhizosphere, and root endophyte.
Additionally, we also fit a neutral model to the returned core species to split them into three groups, those that are neutral,
those that are selected by the plant environment, and finally those that are dispersal limited. We have found strong inverse
relationship between diversity of core microbiome and disease susceptibility with the resistant variety, G. arboreum, pos-
sessing higher diversity of microbiota. A deeper understanding of this association will aid in the development of biocontrol
agents for improving plant immunity against biotrophic pathogens.

Introduction

Microbes are minute but essential components of the envi-

ronment which play crucial roles in the host plant’s response

to disease. Insights into plant-microbe interactions have
revealed a great deal about the underlying mechanisms that
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authors. dates possess the ability to shape the rhizospheric microbial

communities where, the composition of these exudates is
genotype-dependent [2, 3]. Furthermore, there is an intri-
cate play between plant hormones at different developmental
stages, and cultivar-specific root exudate production which

are influenced by the rhizospheric cotton microbiome [4].
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Apart from the exploration of the entire microbiome, recent
approaches have revealed interesting insights relating to the
microbes that make up the core of plants and in turn influ-
ence the functional relationships with the host [10]. Core
microbial communities are the smallest subset of stable taxa
identified in plant ecosystems, that can aid the plant in nutri-
ent and water uptake and promote plant health by activating
defense responses against biotic and abiotic stresses [11].

Past attempts at identifying core microbiome membership
relied on a strict occupancy/prevalence threshold [12] that
varied between 50 and 95% depending on a study in consid-
eration, which is always a source of debate. To circumvent
this, Shade and Stopnisek [13] have proposed a dynamic
approach where microbial species are first ranked by their
occupancy according to the considered study design using
both site-specific occupancy, and replicate consistency of
microbial species. Starting with a seed core subset of top-
ranked species, contribution of the core set to beta diversity
is calculated, with species iteratively added until adding one
more species offers diminishing returns on explanatory value
for beta diversity. Thus, the occupancy threshold is learnt
from the dataset. Furthermore, the approach is merged with
Burns et al. [14] approach, where neutral model is applied to
species-occupancy distribution of observed microbial spe-
cies. The 95% confidence intervals of neutral models are
then obtained for species plotted by mean log10 relative
abundance and occupancy. The species that fall outside the
95% model are then inferred to be deterministically, rather
than neutrally, selected. Overlapping the two approaches
then provides a consistent methodology for prioritizing eco-
logically important core microbial species over space and
time, and is explored in this study within the context of plant
resistance against CLCuD.

Materials and Methods
Sample Collection

Sampling for the cotton plants was carried out at Four Broth-
ers Research Farm (31.399043°N, 74.175621°E) and the
Greenhouse at Forman Christian College University, Lahore
(31.523565°N, 74.335380°E). The samples were obtained
for three varieties at the vegetative stage (50 days after
germination DAG) with varying susceptibility to CLCuD:
Gossypium hirsutum susceptible variety (PFV-2); G. hir-
sutum partially tolerant variety (PFV-1); and Gossypium
arboreum resistant variety (FDH-228). The plants exhibited
disease symptoms in G. hirsutum 25 days post infestation.
For CLCuV infection, the plants were grown under heavy
viruliferous whitefly conditions. Furthermore, a total of
five replicates were taken for each of the four selected plant

@ Springer

compartments under study i.e., leaf epiphyte, leaf endophyte,
rhizosphere, and root endophyte.

DNA Isolation

Rhizospheric soil (up to 3 mm around root area) and roots of
cotton plants were collected by gently shaking the roots of
the plant to get rid of the bulk soil, and roots were stored in
a 50 mL falcon tube. Leaves from the upper canopy showing
severe CLCuD symptoms were taken for susceptible vari-
eties. For the resistant variety, upper canopy leaves were
sampled under a heavy whitefly attack to ensure cotton leaf
curl virus (CLCuV) infestation. Samples were placed in an
ice box until they were brought to the lab then stored at
4 °C, and the standard protocol was followed for preparation
before DNA extraction within 2 days. To extract DNA from
leaf epiphytes, the leaves underwent a rigorous washing
process. They were washed three times with a 1x TE buffer
solution that contained 0.2% Triton X. The resulting wash
was collected and filtered using 0.2 uM sterile filter paper,
which was then utilized for DNA extraction. For leaf endo-
phytes, 100 mg of leaf tissue was washed rigorously with
70% ethanol, followed by 3% bleach, and several washings
with sterile distilled water to eliminate leaf epiphytic bac-
teria. It was then ground using a pestle and mortar in PBS
buffer and collected the resulting mixture in a falcon tube.
Roots were sonicated in PBS buffer for 5 min to separate
the closely adhered soil from the rhizospheric soil. The root
was then washed rigorously with 70% ethanol, followed by
3% bleach, and several washings with sterile distilled water
to eliminate rhizospheric bacteria. Eventually, the sterilized
root (100 mg) was macerated in PBS buffer using a pestle
and mortar and the resulting mixture was collected in a fal-
con tube. DNA for all four compartments (leaf epiphyte, leaf
endophyte, rhizospheric soil, root endophyte) was extracted
using the FastDNA™ SPIN Kit for Soil (MP Biomedicals)
by following the manufacturer’s guideline. Samples were
homogenized in the FastPrep instrument for 40 s at a speed
setting of 6.0. The DNA was eluted in 30 pL of elution
buffer.

PCR Amplification and Sequencing

DNA sample dilutions (10 ng/uL per sample) were used for
the amplification of 16S rRNA hypervariable region V3-V4
using the primers: 341F (5'-TCGTCGGCAGCGTCAGAT
GTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3')
and 805R (5'-GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGGACTACHVGGGTATCTAATCC-3") [15].
The choice of primer design was taken into consideration
based on the benchmarking study [16]. The samples were
sequenced on an [llumina MiSeq platform (Macrogen, Inc.
Seoul, South Korea).
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Bioinformatics and Statistical Analysis

We have used the core microbiome approach [13] on an
Amplicon Sequence Variants (ASVs) abundance table
(n=59 samples X P=38,120 ASVs) [17] obtained after pro-
cessing the samples in the QIIME 2 [18] workflow using the
standard deblur software, and then assigning the taxonomy
based on SILVA SSU Ref NR database v138 [19]. After
pre-processing for low read samples and excluding contami-
nants, a total of 50 samples were retained with 34,144 ASVs
with the summary statistics of ASVs per samples as follows:
[1st quartile: 7979; median: 15,522; mean: 14,565; 3rd quar-
tile: 21,387; and maximum: 27,839]. Since we are consid-
ering the four plant compartments i.e., leaf epiphyte, leaf
endophyte, rhizosphere, and the root endophyte, therefore
we have used the compartment-specific occupancy model.
On the abundance table, along with the categorical infor-
mation of these compartment, we have applied the core
microbiome analysis [13]. This is a better suited model for
inferring core microbiome as it frees one from choosing a
crisp threshold (typically 50% or 85% prevalence for defin-
ing the core microbiome). The approach considers sample
occupancy of ASVs across sites along with the replicate
information, and then calculates the minimal occupancy
threshold dynamically by learning from the data. The rank-
ing of ASVs is done using a combination of two metrics:
site-specific occupancy (ASVs occupation in the four com-
partments namely, Leaf Epiphyte, Leaf Endophyte, Rhizos-
phere, and Root Endophyte); and replicate consistency (con-
sistency of ASVs across replicates within each
compartment). The core microbiome analysis was done
separately for each of the three varieties, FDH-228, PFV-1,
and PFV-2, respectively. After ranking the ASVs, the subset

Spatial Study Design
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Fig. 1 Graphical illustration of core microbiome strategy
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of core taxa is constructed by iteratively adding one ASV at
a time to the core set of ASVs, from highly ranked ASVs to
the lowly ranked ones. The contribution of the core subset
to beta diversity is then calculated every time a new ASV
becomes member of the core set using the Bray—Curtis con-
tribution, C = 1 — %S There are two stopping criteria used

all
in [13], of which we have used the following relaxed criteria

(as per recommendation by original authors) at which incor-
poration of the new ASV in the core subset should stop:
addition of an additional ASV does not cause more than 2%
increase in the explanatory value by Bray—Curtis distance.
Independently, the neutral model [14] is fitted to the abun-
dance—occupancy distributions of the ASVs. As a result, the
subset of these ASV's which belong to core subset are further
categorized into three subsets: (a) those that satisfy the 95%
confidence interval of the neutral model, and are driven by
stochastic processes; (b) those that fall above the 95% con-
fidence of the neutral model and are selected by the host
environment (variety in this case); and (c) those that fall
below the model, and are driven by dispersal limitation pro-
cess. The whole process is shown in Fig. 1. The taxonomy
tree of the core microbiome across different varieties and
compartments were then drawn using the R’s metacoder
package [20].

Results and Discussion

At the heart of complex microbial assemblages lies its sta-
ble and shared subset of taxa termed as the ‘core microbi-
ome’. Through omics approaches, the concept of the core
microbiome can be extended beyond taxonomically defined
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membership to include community function and behav-
iour which can provide deeper ecological insights into core
microbiomes [21]. The core microbiome has differentiat-
ing patterns in terms of disease resistance exhibiting higher
diversity in the CLCuD resistant FDH-228 as compared
to the partially tolerant PFV-1 and susceptible PFV-2.
The distinctive phyla such as Sumerlaeota, Myxococcota,
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Gemmatimonadota, Patescibacteria, Deinococcota, Chloro-
flexi and Nitrospirota were identified in the core microbiome
of FDH-228. The resultant core microbiome is shown in
Figs. 2 and 3. Our findings support that CLCuD resistant
variety associated microbiome is dynamic and is therefore
selected by the cotton species itself due to its underlying
functional relationship with the host plant. Despite their
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Fig.2 Core microbiome for three CLCuD varieties are shown in (a)
and identified through species-occupancy abundance diagrams in
(b) incorporating a Plant Compartment Specific Occupancy model
(compartments being Leaf Epiphyte, Leaf Endophyte, Rhizosphere,
and Root Endophyte). The blue dotted line in (c¢) represents the “Last
2% decrease” criteria where ASVs are incorporated in the core sub-
set until there is no more than 2% decrease in beta diversity. (d) The
Phylum level assignment of the ASVs. Independently a neutral model
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is fitted with those ASVs that fall within the 95% confidence interval,
shown in green in (b), and those that fall outside the 95% model con-
fidence to be inferred as deterministically assembled, i.e., non-neutral
ASVs. Points above the model are selected by the host environment,
shown in red in (b), and points below the model are dispersal limited,
shown in blue in (b). The count of neutral/non-neutral ASVs at Phy-
lum level are shown with the bar plots in (e)
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Fig.3 Taxonomic coverage of core microbiome in CLCuD susceptible and tolerant varieties, as calculated in Fig. 1. Left (all compartments)
right (separate coverage in different compartments: leaf epiphyte, leaf endophyte, rhizosphere, and root endophyte)

significance, the removal of a core member does not always
lead to the collapse of the ecosystem due to the redundant
functions that other microbes can perform. Therefore, the
presence of a core member is vital, but not always indispen-
sable for the survival of the community [22].

Our targeted sequencing effort gives a precise insight
into the core microbial communities of the susceptible, par-
tially tolerant, and resistant cotton varieties infected with
CLCuV. On the phylum level, the different plant species
under CLCuD attack had specific effects on the bacterial
communities. The core taxa exhibited varying shifts between
G. hirsutum and G. arboreum. Although, there were a few
ASVs shared between the microbiomes, however, phyla such
as Sumerlaeota and Gemmatimonadota which are known
to thrive in harsh environments, were only identified in the

CLCuD resistant FDH-228. Members of Gemmatimonadota
are known to withstand harsh environments such as saline
soils and form a very small fraction of the bacterial com-
munity [23]. The plant susceptibility to viruses is exhib-
ited in the diversity of the core microbiome. Patescibacteria
were linked with the partially tolerant PFV-1 and resistant
FDH-228. A study found Acidobacteriota in the core taxa
of the interspecific interaction zone of peanut and sorghum
rhizosphere [24]. Acidobacteriota has only been identified
in the core microbial taxa of the CLCuD resistant FDH-
228. After fitting the neutral model, as compared to the
susceptible PFV-2 and partially tolerant PFV-1, we have
found the resistant variety FDH-228 to be selecting more for
Actinobacteriota, Cyanobacteria, Firmicutes, Gemmatimon-
adota, Patescibacteria, Planctomycetota, and Sumerlaeota.
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Actinobacteriota, Patescibacteria, and Planctomycetota, have
been reported in the root endosphere of Myrothamnus flabel-
lifolia which can withstand extreme drought conditions [25].

The selection of core microbes by the host plant is a fun-
damental process that ensures efficient colonization and is
critical in enhancing the ability of these microbes to thrive
and interact with the plant’s environment. Therefore, it is
necessary to demonstrate the importance of microbes that
have been deterministically selected by the host. In this
paper, we have identified the core microbes at the genus level
(Supplementary_Data_Table_2), particularly those that are
fitted above the neutral model and are selected by the host
plant itself. The shared microbial taxa between FDH-228
and PFV-1 include Bacillus, Cutibacterium, Sphingomonas,
Dongia, Methylobacterium-Methylorubrum, Staphylococ-
cus, Massilia, Micrococcus and Escherichia-shigella. The
ones that are selective to the resistant variety FDH-228
include Aureimonas, Aquabacterium, Saccharimonadales,
Stenotrophomonas, Streptomyces, Kocuria, Arenimonas,
Methylophilus, Nocardiodes, Rhodospirallales, and Paen-
isporosarcina. The presence of rare microbiota in the host’s
system exemplifies a significant bacterial reservoir, offering
a plethora of physiological and ecological attributes. Cer-
tain rare microbial species such as Cutibacterium, Kocuria
and members of the family Comamanadaceae were found
as core endophytic bacteria in Jasione plants and contribute
significantly to its diversity and tolerance against arsenic
stress [26]. The bacterial genera selected by the PFV-1 plant
include Acidibacter, Fimbriimonadaceae, Ferrovibrio, Ver-
rucomicrobia bacterium, Devosiaceae, Comamonadaceae,
Paracoccus, Brevundimonas, Enterbactericeae, and Gem-
mataceae. PFV-2 harbors Arsenophonus and Cardinium
symbiont whereas Bacillus, Acinetobacter, Sphingomonas,
and Methylobacterium-Methylorubrum are found in both the
selected G. hirsutum varieties: PFV-2; and PFV-1. Rhizobi-
aceae and Aureimonas are shared between FDH-228 and
PFV-2. Acinetobacter and Aureimonas as components of
the rice phyllospheric core microbiome have been reported
to confer resistance against blast disease upon foliar spray
application [27].

CLCuD is one of the major biotic stresses in Pakistan
causing severe economic losses up to more than US$2
billion per annum [28] in cotton crops, and with Pakistan
being one of the top cotton producers, any strategy to sup-
press CLCuD will have significant impacts. The observed
symptoms of CLCuD include vein thickening, leaf curling,
leaf enation and dwarfing in the highly susceptible cotton
genotypes eventually lead to mortality of the plant [29-32].
There is very little [17] or no evidence to suggest that the
use of plant-associated microbiome will lead to suppression
of CLCuD. The diploid species G. arboreum has resistance
genes against CLCuD, but the widely cultivated G. hirsutum
is susceptible to the disease. Treatment with the members of
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core microbial community inferred from the G. arboreum
may hold the key to safeguard G. hirsutum which is culti-
vated > 90% worldwide [33]. Rhizospheric core microbial
communities are previously known to offer promising plant
disease resistance [34, 35], albeit for Arabidopsis. Nonethe-
less, the construction of synthetic communities (SynComs)
remains challenging and depends on several factors includ-
ing the spatial and temporal dynamics and on the coordina-
tion of the microbes forming the community [36, 37].

Conclusion

Through this research, and using a dynamic inferential
approach, we anticipate that the obtained core microbiome
of G. arboreum (FDH-228: resistant) and its diversity will
aid in developing SynComs and may offer biocontrol poten-
tial by altering the plant—microbe ecology in the CLCuD
infected cotton plant, thereby presenting future microbiome-
mediated driven solutions for sustainable agriculture.
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