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A B S T R A C T

For the use of micro-mechanics based constitutive models for fibre reinforced strain hardening
cementitious composites in finite element simulations of structural components, it is required
to link the crack opening at the scale of fibres to the cracking strain at the scale of structural
components. We aim to establish this link by incorporating a micro-mechanics based fibre
bridging stress crack opening law into a macroscopic damage-plasticity approach, which we
call CDPM2F. The model is implemented in the open-source finite element program OOFEM.
The model produces mesh-insensitive results and its response agrees well with experimental
results for failure in tension, shear and compression reported in the literature.

. Introduction

Strain hardening cementitious composites (SHCC), studied for instance in [1–3], are fibre reinforced cementitious materials which
xhibit significantly larger strains at maximum tensile stress than ordinary fibre reinforced concrete [4]. The hardening response is
nfluenced by several properties, such as aspect ratio of fibres, the interface response between fibres and matrix, matrix strength,
ibre stiffness and strength, as well as volume fraction of fibres used. One important property is the interface response between
ibre and matrix, which leads to a fibre force versus crack opening curve, which exhibits hardening beyond the debonding stage.
he mechanism responsible for this hardening response is the jamming of fibre material at the interface which is generated by the
urface of the fibres being peeled off due to the slip between fibre and matrix [5]. If the fibre properties are chosen to provide
train hardening of the fibre reinforced composite [6], the hardening response in tension is characterised by multiple cracking of
he matrix with very small crack spacing [5]. Once the tensile capacity of the fibre reinforced composite is reached the softening
esponse is accompanied by localisation of distributed cracking into a single crack [7].

In certain types of SHCC, such as engineered cementitious composites (ECC), fibres with a high aspect ratio (e.g. greater than
00) and a fibre diameter of less than 50 μm are used [8]. Generating meshes for these thin fibres for finite element simulations
f structural components is not feasible. As an example, in [9] a long specimen with a single steel reinforcement bar and ECC
atrix was investigated. For this experiment, the centre length is 813 mm. The square cross-section has an edge length of 127 mm.
he steel reinforcement bar has a diameter of 16 mm. Consequently, the matrix volume in the central part of the specimen is
13 × 127 × 127 − 813 × 𝜋162∕4 = 12.9 × 106 mm3. For the PVA fibres used, the fibre length is 12.7 mm and the fibre diameter is
.04 mm, which results in the volume of a single fibre of 12.7 × 𝜋 × 0.042∕4 = 0.016 mm3. Therefore, for a fibre volume fraction
f 0.02 as in the experiments the number of fibres is 0.02 × 12.9 × 106∕0.016 = 16.2 × 106. Consequently, for analysing these type
f structural specimens made of SHCC such as ECC, it is desired to develop macroscopic constitutive models which represent the
verage SHCC response based on fibre properties.
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Fibre bridging constitutive laws developed in the literature are the basis for the development of these constitutive models. These
aws relate the average tensile stress transmitted by randomly arranged fibres across a matrix crack to the crack opening. Bao and
ong [10] proposed bond stress-slip models for general fibre reinforced composites. Lin and Li [11] developed a constitutive model
f fibre bridging based on a bond stress-slip hardening relation which is focused on SHCC. This popular bridging law was further
xtended to consider two sided pullout in [12]. The results obtained with this extension are close to those obtained with the one
ided pullout model. In [13], the fibre bridging law was further extended to consider fibre fracture.

These type of fibre bridging constitutive laws have been used successfully in macroscopic models [14–17]. In these models, a very
ine finite element mesh is used to be able to describe the individual matrix cracks during the strain hardening process. Although
hese type of models are successful in simulating structural components, they are computationally intensive, because of the need of
ine meshes to reproduce the crack spacing.

In another group of models, the individual fibre force versus crack opening relation is used efficiently in a rigid body spring
odel framework [18,19]. These models are useful to investigate detailed fracture processes of small components. However, since

ibres are modelled explicitly, these modelling approaches have not been applied to larger structural components. In addition, the
se of crack opening of the matrix relies on being able to model individual cracks during the hardening stage of SHCC.

The aim of this research is to develop a macroscopic constitutive model for SHCC in which the hardening response is described
n the form of a stress strain law and which, at the same time, is based on a fibre bridging model in a way, so that the constitutive
odel can be used for general triaxial stress states. We aim to achieve this by combining the fibre bridging model developed in [11]
ith the concrete damage plasticity model CDPM2 reported in [20]. The expected advantage of the proposed modelling concept
ver existing models is that the hardening stage of the tensile response of SHCC is modelled using a stress–strain relation, which
llows for the use of large element sizes, because the formation of individual cracks during the hardening stage is not modelled. The
roposed techniques are developed for cementitious materials. However, it is believed that the concept applies to a wide range of
hort fibre reinforced composites. The model response is compared to experimental results for direct tensile, shear and compression
ests made of SHCC. It is shown that the proposed modelling approach can reproduce the experiments well and produces results
ithout pathological mesh dependence.

. Concrete damage-plasticity model CDPM2F for SHCC

The present section describes CDPM2F, which is an extension of the concrete damage-plasticity model CDPM2 to SHCC proposed
n this study. The original CDPM2 is a 3D concrete damage-plasticity model presented in [20], which has been shown to produce
ood results for a wide range of concrete fracture tests [21,22]. These tests include tensile, shear and compressive fracture processes
f unconfined and confined concrete. Here, CDPM2 is extended to CDPM2F by combining it with a fibre bridging law proposed
n [11].

CDPM2 is based on the concept of combining scalar damage with tensorial plasticity. The nominal stress 𝝈 is

𝝈 =
(

1 − 𝜔t
)

�̄�t +
(

1 − 𝜔c
)

�̄�c (1)

ere, 𝜔t and 𝜔c are the tensile and compressive damage variables, respectively. Furthermore, �̄�t and �̄�c are the positive and negative
parts of the effective stress �̄�, respectively. The two parts of the effective stress are determined from the principal components of
the effective stress �̄� = 𝐃e

(

𝜺 − 𝜺p
)

. Here, 𝐃e is the elastic stiffness, 𝜺 is the strain and 𝜺p is the plastic strain. For a description of the
equations of CDPM2, it is referred to [20], which contains all required details. Here we focus on the extension of CDPM2 to SHCC,
for which we only adjust the tensile damage part of the model which is derived based on a 1D tensile response of the material of
the form

𝜎 = (1 − 𝜔t )�̄� =
(

1 − 𝜔t
)

𝐸
(

𝜀 − 𝜀p
)

= 𝐸
(

𝜀 − 𝜀cr
)

(2)

because in 1D tension �̄�t = �̄� = 𝐸
(

𝜀 − 𝜀p
)

. In (2), the inelastic strain component 𝜀cr is defined as

𝜀cr = 𝜀p + 𝜔t
(

𝜀 − 𝜀p
)

(3)

where 𝜀p is the irreversible and 𝜔𝑡
(

𝜀 − 𝜀𝑝
)

is the reversible inelastic strain part. The damage variable 𝜔t is in the range from 0
(undamaged) to 1 (fully damaged). The composition of the two parts of the inelastic strain are controlled by the hardening modulus
𝐻p of the plasticity part of CDPM2 [20], which determines the effective stress of the undamaged material. The damage variable 𝜔t
is then used to reduce the effective stress to obtain the nominal stress. For 𝐻p = 0, the majority of the cracking strain is composed
of the irreversible part, because the plasticity part does not exhibit any hardening and damage is only used to reduce the stress
from the level of the tensile strength during the softening response. For 𝐻𝑝 → 1, the plastic strain approaches zero and the cracking
strain is mainly reversible.

For SHCC, the 1D stress–strain law in (2) is the sum of stresses transmitted in the matrix and by the fibres as

𝜎 = 𝐸
(

𝜀 − 𝜀cr
)

= 𝜎m(𝛿) + 𝜎f (𝛿) (4)

where 𝜎m is the matrix and 𝜎f is the fibre stress in direct tension and 𝛿 is the crack opening. For the fibre stress, we propose a new
model described in Section 3. For the concrete stress, we use an exponential stress crack opening curve of the form

𝜎m (𝛿) = 𝑓t exp
(

− 𝛿
)

(5)
2

𝛿f
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Here, 𝑓t is the tensile strength of the matrix and 𝛿f is the crack open threshold which controls the softening slope. Since the damage-
plasticity model is a function of the cracking strain 𝜀cr and the matrix and fibre models are functions of the crack opening 𝛿, a link
between crack opening and cracking strain is required which will be introduced in Section 4. With this link, both cracking strain in
(3) and crack opening are functions of the damage variable 𝜔t , which is determined iteratively from (4).

3. Fibre bridging stress versus crack opening

In this section, the model for the fibre stress versus crack opening 𝜎f (𝛿) in (4) is derived. The model is an adjustment of the
approach presented in [11] to make it suitable for the iterative solution process used in this study. First, we will summarise the
original approach in [11] and then present our modification.

3.1. Original model by Lin and Li (1997)

We present here in compact form the equations reported in [11] so that readers can follow the modification of the model, which
was then used in the continuum based damage-plasticity approach CDPM2.

In [11], the pullout force 𝑃 of a single fibre crossing a single crack is given as a function of the crack opening 𝛿 as

𝑃 (𝛿) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜋𝑑2f 𝜏0 (1 + 𝜂)
𝜔

√

(

1 + 𝑐𝛿
𝐿f

)2
− 1 if 0 ≤ 𝛿 ≤ 𝛿0

𝜋𝑑2f 𝜏0 (1 + 𝜂)
𝜔

[

sinh
(

𝜔 𝐿
𝑑f

)

− sinh

(

𝜔
(

𝛿 − 𝛿0
)

𝑑f

)]

+ 𝜋𝜏0𝛽 (1 + 𝜂)
(

𝛿 − 𝛿0
) (

𝐿 −
(

𝛿 − 𝛿0
))

if 𝛿0 ≤ 𝛿 ≤ 𝐿

0 if 𝐿 ≤ 𝛿

(6)

where 𝐿 = 𝐿f∕2 − 𝑧∕ cos(𝜙) is the embedment length and 𝐿f is the fibre length (see Fig. 1a). Here, 𝑧 is the distance form the centre
of the fibre to the crack surface and 𝜙 is the fibre orientation, as shown in Fig. 2(b). Furthermore, 𝜏0 is the bond strength at the
onset of slip, 𝛽 is the hardening parameter, 𝑑f is the diameter of the fibre and 𝑐 = 𝛽𝐿f∕(2𝑑f ). At the displacement threshold

𝛿0 =
𝐿f
𝑐

(

cosh
(

𝜔𝐿
𝑑f

)

− 1
)

(7)

he debonding process is completed.
In (6),

𝜂 =
𝑉f𝐸f
𝑉m𝐸m

(8)

and

𝜔 =
√

4 (1 + 𝜂) 𝛽𝜏0∕𝐸f (9)

where 𝐸f and 𝐸m are Young’s moduli and 𝑉f and 𝑉m = 1 − 𝑉f are volume fractions of fibre and concrete matrix, respectively. For
our modified model described in Section 3.2, a spatial variation of the fibre distribution is considered, which is explained in the
calibration part of Section 4. In [11], it is assumed that one-sided pullout occurs. Therefore, the pullout displacement is equal to
the crack opening. The pullout force versus crack opening is shown in Fig. 1a for 𝑧 = 0 and 𝜙 = 0, where the displacement (crack
opening) is normalised by dividing it with 𝐿f∕2 and the force is normalised by dividing it with the force at 𝛿0. The expression in
(6) was derived in [11] based on the assumption that the fibre is rigid. Therefore, for plotting Fig. 1a, the stiffness ratio 𝐸f∕𝐸m was
set to 200 so that the force approaches zero at a displacement of 𝐿f∕2. As seen in Fig. 1a, the response is strongly influenced by
the parameter 𝛽, which controls the hardening response at the fibre scale [11]. The greater 𝛽 is, the greater is the crack opening at
which the maximum bridging stress is reached. This parameter enters the expression of 𝑐, which will play an important part in the
development of our model in Section 4.

The bridging stress 𝜎f acting on a crack surface as function of the crack opening 𝛿 was proposed in [11] as

𝜎f =
4𝑉f
𝜋𝑑2f

∫

𝜋∕2

𝜙=0 ∫

(𝐿f ∕2) cos𝜙

𝑧=0
𝑃 (𝛿) 𝑔 (𝜙) 𝑝 (𝜙) 𝑝(𝑧)d𝑧d𝜙 (10)

Here, 𝑃 (𝛿) is the pullout force of one fibre across one crack. Furthermore, 𝑝 (𝜙) = sin𝜙 is the probability density function of
inclination angle 𝜙 and 𝑔 (𝜙) = exp (𝑓𝜙) which includes the snubbing factor 𝑓 . This factor accounts for fibres being inclined at
the crack plane as shown in Fig. 2a. Furthermore, 𝑝(𝑧) = 2∕𝐿f is the probability density function of the shortest distance from the
centre of fibre to the crack plane, which is assumed to be uniformly distributed for 0 < 𝑧 < 𝐿f∕2 [11].

Integrating (10) numerically is computationally demanding, if it has to be carried out many times within finite element
simulations. Lin and Li [11] derived an approximate closed-form solution of (10) as

�̃�𝑓 =
𝜎𝑓
𝜎0

=

⎧

⎪

⎪

⎨

⎪

⎪

2
𝑘

[

1 − 1
𝑘
cosh−1

(

1 + 𝜆 𝛿
𝛿∗

)]

√

(

1 + 𝜆 𝛿
𝛿∗

)2
− 1 + 2𝜆𝛿

𝑘2𝛿∗
if 0 ≤ 𝛿 ≤ 𝛿∗

(

1 + 𝑐𝛿
) (

1 − 𝛿
)2 if 𝛿∗ ≤ 𝛿 ≤ 1

0 if 1 ≤ 𝛿

(11)
3

⎩
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Fig. 1. Original fibre model according to [11]: (a) Normalised pullout force versus normalised crack opening. (b) Average fibre stress versus crack opening
computed from (11) and numerical integration of (10).

Fig. 2. Schematic illustration of (a) snubbing effect and (b) single fibre crossing a crack.

where 𝛿 = 2𝛿∕𝐿f is the normalised crack opening and 𝑘 = 𝜔𝐿f∕
(

2𝑑f
)

. Furthermore, the reference stress at the end of debonding
without hardening is

𝜎0 =
1
2
𝑔𝜏0𝑉f (1 + 𝜂)𝐿f∕𝑑f (12)

The normalised crack opening at the end of the debonding stage is

𝛿∗ = 2𝜆
𝑐

(13)

where

𝜆 = cosh (𝑘) − 1 (14)

Furthermore,

𝑔 = 2
4 + 𝑓 2

(1 + exp (𝜋𝑓∕2)) (15)

A comparison of the numerical integration of (10) and the approximate solution in (11) is shown in Fig. 1b. It can be seen that (11)
is overall in good agreement with the numerical integration. However, there is a jump in the curve predicted by (11), which can
produce numerical difficulties if (11) is used as part of an iterative approach within a constitutive model for finite element analysis.
We address this problem in the next section.

3.2. Reformulate fibre stress-crack opening law

The approximate solution of the fibre bridging stress in (11) exhibits a jump at 𝛿 = 𝛿∗ as shown in Fig. 3a and b, which results
4

in numerical problems when the bridging stress in (11) is used within the damage-plasticity model in (4) to determine the damage
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Fig. 3. Fibre stress versus crack opening for approximate relation with jump at 𝛿 = 𝛿∗ and proposed modification without jump: (a) full curve, (b) zoom to area
round 𝛿 = 𝛿∗.

ariable iteratively. The jump is present because of simplifications in the integration of (10) for the pullout part of the fibres. For
≤ 𝛿 ≤ 𝛿∗, the bridging stress in (10) is composed of

�̃�f = �̃�debondingf + �̃�pulloutf (16)

ere �̃�debondingf and �̃�pulloutf are fibre stresses due to debonding and pullout, respectively, which are present before all fibres are
ebonded. The pullout part is represented in (11) by the term

�̃�pulloutf = 2𝜆𝛿∕(𝑘2𝛿∗) (17)

urthermore, we know that �̃�debonding = 0 at 𝛿 = 𝛿∗ since 𝛿∗ is the crack opening at which all fibres are fully debonded. Therefore,
e propose to resolve this jump by adding a linear function to the pullout part so that the new pullout part of the bridging stress

or 𝛿 ≤ 𝛿∗ as

�̃�pulloutf = 2𝜆𝛿∕(𝑘2𝛿∗) + 𝑎𝛿∕𝛿∗ (18)

ere, the parameter 𝑎 is determined by enforcing zero jump of the bridging stress expressions for 𝛿 ≤ 𝛿∗ and 𝛿 ≥ 𝛿∗ at 𝛿 = 𝛿∗, which
esults in

2𝜆∕𝑘2 + 𝑎 =
(

1 + 𝑐𝛿∗
) (

1 − 𝛿∗
)2 (19)

olving (19) for 𝑎 gives

𝑎 =
(

1 + 𝑐𝛿∗
) (

1 − 𝛿∗
)2 − 2𝜆∕𝑘2 (20)

o that the new expression for the pullout part of the bridging stress is

�̃�pullout = 2𝜆𝛿∕(𝑘2𝛿∗) +
[

(

1 + 𝑐𝛿∗
) (

1 − 𝛿∗
)2 − 2𝜆∕𝑘2

]

𝛿∕𝛿∗ (21)

his is a function of fibre and matrix parameters only. Consequently, the bridging stress formulation that we use for this work is

�̃�𝑓 =
𝜎𝑓
𝜎0

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2
𝑘

[

1 − 1
𝑘
cosh−1

(

1 + 𝜆 𝛿
𝛿∗

)]

√

(

1 + 𝜆 𝛿
𝛿∗

)2
− 1+

2𝜆𝛿
𝑘2𝛿∗

+
[

(

1 + 𝑐𝛿∗
) (

1 − 𝛿∗
)2 − 2𝜆∕𝑘2

]

𝛿∕𝛿∗
if 0 ≤ 𝛿 ≤ 𝛿∗

(

1 + 𝑐𝛿
) (

1 − 𝛿
)2 if 𝛿∗ ≤ 𝛿 ≤ 1

0 if 1 ≤ 𝛿

(22)

which provides a reasonable agreement with the solution obtained from numerical integration.

4. Link between cracking strain and crack opening

The aim of the present work is to incorporate a micro-mechanics based fibre model into a macroscopic constitutive model, which
is based on stress–strain relations and in which the inelastic processes are represented by a cracking strain as a function of a damage
variable. Therefore, we require a link of the crack opening 𝛿 to the cracking strain 𝜀 used in (4).
5
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As mentioned before, SHCC materials subjected to tension exhibit distributed cracking, because of the slip hardening pullout
esponse of individual fibres. For displacements greater than the displacement at which the bridging stress reaches its maximum,
oftening occurs which is accompanied by the formation of a single localised crack. For converting crack opening to cracking strain,
e are required to know the crack opening at which the softening process starts. With this information, we use then the crack band
pproach for the localised part of the cracking response, i.e. we scale the cracking strain with respect to the element length to obtain
esh independent results [23]. We assume that the matrix is so brittle in comparison to the fibre response, that the condition for

oftening is given by the fibre response only.
Independently of 𝑐, the debonding phase exhibits always hardening so that the earliest that softening can occur is when 𝛿 = 𝛿∗.

herefore, we can focus our attention on the part of the fibre stress function in which 𝛿 ≥ 𝛿∗. For softening to occur, the condition
�̃�𝑓∕d𝛿 = 0 has to be met. Differentiating �̃�f in (22) with respect to 𝛿 for 𝛿 ≥ 𝛿∗ and setting it to zero results in

d�̃�𝑓
d𝛿

=
(

𝛿 − 1
) (

3𝑐𝛿 − 𝑐 + 2
)

= 0 (23)

et us first study the case that softening occurs at the end of debonding. Setting 𝛿 = 𝛿∗ into (23) and using the expression for 𝛿∗ in
13), we obtain a condition for the onset of softening at 𝛿 = 𝛿∗, which is 𝑐 = 6𝜆 + 2. Therefore, for 𝑐 ≤ 6𝜆 + 2 softening occurs at
he end of debonding, i.e. 𝛿cu = 𝛿∗ = 2𝜆∕𝑐. On the other hand, for 𝑐 > 6𝜆+ 2, softening will occur when the condition d�̄�𝑓∕d𝛿 = 0 is
et for 𝛿 > 𝛿∗. The present study is limited to fibre arrangements which exhibit strain hardening beyond 𝛿 > 𝛿∗, i.e. 𝑐 > 6𝜆+ 2. For

his case, the displacement at the onset of softening 𝛿 = 𝛿cu is obtained by solving (23), which gives 𝛿cu = (𝑐 − 2) ∕ (3𝑐). The other
olution to (23) is that 𝛿 = 1, which is the case of complete pullout and is not of interest here.

Therefore, the critical displacement at which softening occurs is

𝛿cu =

{

2𝜆∕𝑐 if 𝑐 ≤ 6𝜆 + 2
(𝑐 − 2) ∕ (3𝑐) if 𝑐 > 6𝜆 + 2

(24)

he corresponding critical stress �̃�cu is obtained by setting (24) into (22) which results after mathematical manipulations in

�̃�cu =

⎧

⎪

⎨

⎪

⎩

(1 + 2𝜆) (2𝜆∕𝑐 − 1)2 if 𝑐 ≤ 6𝜆 + 2
4 (𝑐 + 1)3

27𝑐2
if 𝑐 > 6𝜆 + 2

(25)

The information about 𝛿cu and �̃�cu can now be used to develop a link between the cracking strain 𝜀cr and the crack opening 𝛿.
In the present study, we propose for hardening to link the crack opening to the cracking strain for 𝜀cr < 𝜀cu as

𝛿(𝜀cr ) = 𝛿cu

1 − exp
(

−
𝜖cr
𝜉

)

1 − exp
(

−
𝜖cu
𝜉

) (26)

where 𝜀cu = 𝛾cu𝛿cu∕𝑠m is the cracking strain at the peak of the bridging stress and 𝑠m is the saturated crack spacing. Here, 𝜉 is a
parameter, which controls the slope of the relationship between the maximum displacement and the cracking strain at maximum
bridging stress. Furthermore, 𝛾cu is a parameter, which originates from the variation of fibres and relates the average crack opening
𝛿cu to the maximum crack opening 𝛿cu at maximum bridging stress as 𝛿cu = 𝛾cu𝛿cu. For 𝜀cr = 𝜀cu, (26) results in 𝛿(𝜀cr ) = 𝛿cu. The link
between 𝛾cu and the variation of fibres is explained in Section 5.

Once softening is initiated, i.e. 𝛿(𝜀cr ) = 𝛿cu, only one crack continues to open while the other cracks are unloading. For softening,
we use the crack band approach to obtain mesh-independent results [23]. For this part of the model, the crack opening as a function
of the cracking strain is modelled by a transition from the saturated crack spacing 𝑠m at the peak of the bridging stress-crack opening
curve to the element length ℎe at the point at which the bridging stress is equal to zero. We assume that the unloading of cracks
occurs to the origin without any irreversible crack opening. This is in acceptable agreement with the macroscopic constitutive model
in which the current bridging stress relation is embedded (see Section 2), which exhibits in tension negligible irreversible inelastic
strains. In our simulations in Section 6, the hardening modulus 𝐻p is chosen large enough to reproduce the hardening response
prescribed by (22) correctly. With this hardening modulus, the plastic strain in tension is small. However, in compression there is
still significant plastic strain, which is important for modelling shear, because plasticity provides volumetric–deviatoric coupling
which isotropic damage does not provide [24].

First, we consider 𝑠m∕𝛾cu < ℎe, i.e. there are more than one crack in a finite element. For 𝛾cu < 1, the crack openings vary
within one element. During hardening, the crack opening of all cracks increases. At the onset of softening, the crack with the largest
opening has reached 𝛿cu. The other cracks have smaller crack openings at the same stress, because the volume fraction of these
cracks is greater than for the one crack in which 𝛿cu is reached first. The average of these smaller crack openings at the onset of
softening is called here 𝛿uncu . As softening progresses, the crack with the greatest opening continues to open while the other cracks
will close. The schematics of two different crack openings is shown in Fig. 4 Based on this assumption, we write for the onset of
softening

𝜀cuℎe = 𝛾cu
𝛿cu
𝑠m

ℎe = 𝛿cu + 𝛿uncu

(

ℎe
𝑠m

− 1
)

(27)

Here, 𝛿 and 𝛿un are the crack openings of the localised and unloading cracks, respectively, at the onset of softening.
6
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Fig. 4. Schematics of 𝛿cu and 𝛿uncu onset of softening when 𝑠m∕𝛾cu < ℎe.

Consequently, the unloading displacement at the onset of softening is expressed in form of the maximum crack opening as

𝛿uncu = 𝛿cu
𝛾cuℎe − 𝑠m
ℎe − 𝑠m

(28)

For the derivation of the link between cracking strain and crack opening during softening, we distinguish again between two
rack openings. The first one is the average crack opening 𝛿un of the unloading cracks and the second one is the crack opening 𝛿
f the widening crack in which the displacements are localised. The bridging stress of the two types of cracks must be the same to
atisfy equilibrium. Therefore, the unloading displacement is determined as

𝛿un =
𝛿uncu
𝜎cu

𝜎f =
𝛿uncu
𝜎cu

𝜎0

(

1 +
𝛽𝛿
𝑑f

)

(

1 − 2𝛿∕𝐿f
)2 (29)

where 𝜎f is the bridging stress determined from the crack opening 𝛿 of the crack in which the displacements localise according to
(22). The cracking strain is then the sum of the crack openings divided by the element length ℎe, which results in

𝜀cr =
(

𝛿 +
(

ℎe∕𝑠m − 1
)

𝛿un
)

∕ℎe (30)

Setting 𝛿un in (29) into (30) results in

𝜀cr =
1
ℎe

(

𝛿 +
(

ℎe∕𝑠m − 1
) 𝛿uncu
𝜎cu

𝜎0

(

1 +
𝛽𝛿
𝑑f

)

(

1 − 2𝛿∕𝐿f
)2
)

(31)

From this function, 𝛿 is determined iteratively. To avoid local snapback, i.e. snapback at the constitutive level, 𝜀cr must increase with
increasing 𝛿, which provides an upper limit for the element size ℎe. This upper limit is determined by setting the second derivative
of (31) with respect to 𝛿 equal to zero and solve for the critical displacement at which the slope of the softening curve is the steepest.
This displacement is then set into the first derivative of (31) with respect to 𝛿, which has to be greater than zero. This provides then
an inequality for ℎe, which needs to be satisfied to avoid local snapback. The first derivative of (31) with respect to 𝛿 is

d𝜀cr
d𝛿

= 1
ℎe

{

1 +
9𝑐 (𝑐 − 2)

(

2𝛿∕𝐿f − 1
) (

𝛾cuℎe∕𝑠m − 1
) [

𝑐
(

2𝛿∕𝐿f − 1
)

+ 2
(

2𝑐𝛿∕𝐿f + 1
)]

4 (𝑐 + 1)3

}

(32)

and the second derivative is
d2𝜀cr
d𝛿2

=
9𝑐

(

𝛾cuℎe − 𝑠m
)

(𝑐 − 2)
(

𝐿f − 2𝐿f 𝑐 + 6𝑐𝛿
)

𝐿2
f ℎe𝑠m (𝑐 + 1)3

(33)

These derivatives are rather complicated, but the critical displacement at the steepest softening and the limit on the element length
are of compact form. By setting (33) equal to zero and solving for 𝛿, the critical displacement at which the softening is the steepest
is determined as 𝛿 = 𝛿crit = 𝐿f (2𝑐 − 1)∕(6𝑐). Inserting 𝛿 = 𝛿crit into (32), setting (32) equal to zero and solving it for the element
length ℎe gives

ℎe = ℎcrite = (7𝑐 − 2)𝑠m∕(𝛾cu(3𝑐 − 6)) (34)

Since this derivation is for ℎe > 𝑠m∕𝛾cu, the expression in (31) is valid for elements in the range 𝑠m∕𝛾cu < ℎe < (7𝑐−2)𝑠m∕(𝛾cu(3𝑐−6)).
Let us now consider the case that ℎe < 𝑠m∕𝛾cu. This case arises if a fine mesh is used in the numerical analysis. This means

that there is no displacement in the element which will unload and the displacement at peak in the element is less than the crack
opening. A reduction factor 𝛾0, which links the crack opening to the displacement at peak, is determined as

𝛾r0 =
𝛾cu
𝑠m

ℎe (35)

hus, the reduction factor results in 𝛾r0 = 𝛾ℎe∕𝑠m at peak. Since for the crack band model, the displacements are localised in one
ow/band of elements, the reduction factor needs to increase so that at the end 𝛾 = 1 and the cracking strain is defined at zero
7
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fibre stress as 𝜀cr = 𝐿f∕2∕ℎe. We choose here a linear transition of the reduction factor so that 𝛾r = 𝛾r0+(1− 𝛾r0)(𝛿−𝛿cu)∕(𝐿f∕2−𝛿cu).
The cracking strain results in

𝜀cr =
𝛾r𝛿
ℎe

=
𝛾r0𝛿
ℎe

+
(1 − 𝛾r0)(𝛿2 − 𝛿cu𝛿)
ℎe

(

𝐿f∕2 − 𝛿cu
) (36)

For 𝛿 = 𝛿cu, we obtain 𝜀cr = 𝛾r0𝛿cu∕ℎe. For 𝛿 = 𝐿f∕2, we have 𝜀cr = 𝐿f∕(2ℎe). From this equation, the crack opening is determined as

𝛿 =
𝐿f 𝛾r0 − 2𝛿cu −

√

𝐿2
f 𝛾

2
r0 − 4𝛿cu

(

𝐿f 𝛾r0 − 𝛿cu
)

+ 8(1 − 𝛾r0)𝜀crℎe
(

𝐿f − 2𝛿cu
)

4(𝛾r0 − 1)
(37)

With this 𝛿, the fibre stress can be calculated using (22). With the softening law derived, all parts of the bridging stress cracking
strain law are complete. The fibre stress is now defined as a function of the cracking strain by using (26) and (31).

To summarise, we developed a link of the crack opening 𝛿 to the cracking strain 𝜀cr for the fibre part which is split into a
hardening and softening part. For hardening, we have (26). For softening, we need to consider multiple cases. For 𝑠m∕𝛾cu < ℎe, we
determine the crack opening iteratively from (31). For 𝑠m∕𝛾cu > ℎe, the explicit expression in (37) is used. The softening part of
the model provided by (31) and (37) is only valid for ℎe < (7𝑐 − 2)𝑠m∕(𝛾cu(3𝑐 − 6)). Furthermore, the entire derivation is for strain
hardening fibre arrangements with 𝑐 > 2 + 6𝜆.

5. Calibration

The calibration of CDPM2F, which is an extension of CDPM2 to strain hardening materials is split into two parts. First, the
calibration of CDPM2 is addressed. Then, the calibration of the fibre model is discussed.

The input parameters for the matrix are those of the CDPM2 model. Many of the input parameters of CDPM2 have default
values, which are used in this study and are described in [20]. We assume in this study that these parameters apply also to the
matrix of SHCC. Five parameters of CDPM2 do not have default values and are required to be determined. These parameters are
the Young’s modulus 𝐸m, the tensile strength 𝑓t , the compressive strength 𝑓c and the crack opening threshold in tension 𝛿f , which
for the present exponential law in (5) is calculated from the fracture energy 𝐺F as 𝛿f = 𝐺F∕𝑓t . Furthermore, Poisson’s ratio 𝜈 of
the matrix is required. In addition to these five parameters, there is the strain threshold 𝜀f which controls the softening response
in compression. Furthermore, the hardening modulus was set for all analyses to 𝐻p = 0.05 to ensure that for the majority of the
stress–strain response the effective stress is greater than the fibre stress.

For the fibre model, nine input parameters are required for the fibre stress–strain relation. Some of these parameters can be
directly obtained from the specifications of the fibre manufactures and the design of the material. These parameters are Young’s
modulus of fibres 𝐸f , length of fibre 𝐿f , diameter of fibre 𝑑f . The next group of input parameters are related to the fibre stress
versus crack opening law. These parameters are the volume fraction 𝑉f , shear strength of interface 𝜏0, hardening parameter 𝛽, the
snubbing factor 𝑓 . Furthermore, there are the parameters 𝜉 and 𝛾cu, which control the relation of crack opening and cracking strain.
Here, 𝑉f and 𝛾cu are two parameters which depend on the spatial variation of the distribution of fibres and are calculated indirectly
using the uniform volume fraction 𝑉f0 and the fibre distribution coefficient 𝛼, which represents the degree of variation of the spatial
fibre distribution [25].

We assume that we can link the fibre volume fraction 𝑉f at a cracked section to the dispersion as

𝛼 = exp
𝑉f − 𝑉f0

𝑉f0
(38)

so that

𝑉f = (1 + ln 𝛼)𝑉f0 (39)

There is a lower limit for 𝛼 so that strain hardening is guaranteed. The condition for strain hardening is

𝜎cu = 𝜎0�̄�cu ≥ 𝑓t (40)

Using the expression for �̄�cu in (25) and 𝜎0 in (12) we obtain

1
2
𝑔𝜏0𝑉f (1 + 𝜂)

𝐿f
𝑑f

4 (𝑐 + 1)3

27𝑐2
≥ 𝑓t (41)

For the minimum volume 𝑉f = 𝑉f ,min, which is required to provide a bridging stress equal to 𝑓t , we write

1
2
𝑔𝜏0𝑉f ,min (1 + 𝜂)

𝐿f
𝑑f

4 (𝑐 + 1)3

27𝑐2
= 𝑓t (42)

ere, 𝜂 is a function of 𝑉f ,min according to (8). Also, the factor 𝐿f∕𝑑f is linked to 𝑐. Using these two expressions, we obtain
(

𝐸f − 𝐸m
)

𝑉 2
f ,min +

(

𝐸m + 𝐸m𝑍
)

𝑉f ,min − 𝐸m𝑍 = 0 (43)

here

𝑍 =
27𝑓t𝛽 𝑐 (44)
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Now, from (43), we obtain

𝑉f ,min =
−
(

𝐸m + 𝐸m𝑍
)

+
√

(

𝐸m + 𝐸m𝑍
)2 + 4

(

𝐸f − 𝐸m
)

𝐸m𝑍

2
(

𝐸f − 𝐸m
) (45)

We set now 𝑉f ,min into the expression for 𝛼 in (38) which gives

𝛼min = exp
𝑉f ,min − 𝑉f0

𝑉f0
(46)

Here, 𝛼min is the lower limit of 𝛼, so that the region with a critically low fibre distribution still exhibits strain hardening.
Parameter 𝛾cu depends also on 𝛼. We assume that 𝛾cu is a linear function of 𝛼 as

𝛾cu =
(1 − 𝛼) 𝜀0𝑠m
𝛿cu

(

1 − 𝛼min
) +

𝛼 − 𝛼min
1 − 𝛼min

(47)

which is motivated by experimental results in [25,26]. Let us explore (47). For 𝛼 = 𝛼min, we have 𝛾cu = 𝜀0𝑠m∕𝛿cu. Thus,
𝜀cu = 𝛾cu𝛿cu∕𝑠m = 𝜀0. For the other limit, let us consider the case of a fibre reinforced specimen at ultimate stress 𝜎cu for which
all cracks exhibit the same crack opening and are equally spaced, which corresponds to 𝛼 = 1, i.e. fibres are uniformly distributed
within the volume. For this idealised assumption, 𝛾cu = 1 and, therefore, 𝜀cu = 𝛿cu∕𝑠m. This concludes the calibration of the model.

CDPM2F is implemented in the open source finite element program OOFEM [27]. The implementation of the procedure for the
computation of the effective stress and the compressive damage variable is the same as in CDPM2. For determining the tensile
damage variable, three steps are carried out. First, the cracking strain is converted into crack opening. Then, the fibre and matrix
stresses are computed as function of the crack opening. Finally, the damage variable is determined iteratively from the balance of
nominal stress and sum of fibre and concrete stress.

6. Material response

The stress–strain law derived in the previous sections is aimed to evaluate the tensile response of SHCC based on micro mechanical
properties of fibres and matrix. By incorporating this law into CDPM2 to form CDPM2F, a tool is available to predict the structural
response of SHCC members in 3D. In this section, CDPM2F is applied to simulate the performance of structural members subjected
to tension, shear and compression. The model response is compared to experiments in which the matrix is made of engineered
cementitious composites (ECC), which is one type of SHCC.

6.1. Tension

The first example is a tensile test of an ECC specimen reported in [28]. The geometry with loading setup and the medium finite
element mesh with an element size of 2 cm are shown in Fig. 5a and b, respectively. The out-of-plane thickness is 12.7 mm. The
three-dimensional finite element mesh consists of tetrahedral elements and was generated with the mesh generator T3D [29].

From the experiments in [28], two sets were modelled which differ mainly in fibre properties. For set 1 with short and thin fibres,
the model input parameters for the matrix are Young’s modulus 𝐸m = 15.9 GPa, Poisson’s ratio 𝜈 = 0.2, tensile strength 𝑓t = 1.12 MPa,
compressive strength 𝑓c = 15.5 MPa and crack opening threshold 𝛿f = 0.01 mm. Here, 𝐸m and 𝑓c were chosen from [28]. Tensile
strength 𝑓t was chosen to be smaller than in the experiments to avoid initial softening in the constitutive response. The stress is
composed of fibre stress and matrix stress. The matrix stress reaches its maximum at a much smaller strain than the fibre stress.
Therefore, it could be that after the matrix stress reaches its maximum the decrease of the matrix stress (softening) is greater than
the increase of the fibre stress (hardening). This would then lead to a decrease of the overall stress even if the final fibre bridging
stress is greater than the sum of fibre and matrix stress when the matrix stress reaches its maximum. The parameters 𝜈 and 𝛿f
were given typical values for mortar. The fibre properties are Young’s modulus 𝐸f = 60 GPa, length 𝐿f = 6 mm, fibre diameter
𝑑f = 0.014 mm, 𝑓 = 0.5, 𝛽 = 0.015, 𝜏0 = 1.8 MPa, 𝑠m = 12 mm, 𝜉 = 10, 𝛼 = 0.53 and 𝑉f0 = 0.015. The last two parameters result in
𝛾cu = 0.2 and 𝑉f = 0.0055. These fibre properties result in 𝑐 = 𝛽𝐿f∕

(

2𝑑f
)

= 3.2. Here, 𝐸f , 𝐿f , 𝑑f and 𝑉f0 are chosen from [28]. The
other parameters were given reasonable values for ECC so that the response agreed with the experimental results.

For set 2 with long and thick fibres, the model input parameters for the matrix are Young’s modulus 𝐸m = 15.9 GPa, Poisson’s
ratio 𝜈 = 0.2, tensile strength 𝑓t = 1.12 MPa, compressive strength 𝑓c = 15.5 MPa and crack opening threshold 𝛿f = 0.01 mm. Again,
𝐸m and 𝑓c were chosen from [28]. Tensile strength 𝑓t was chosen to be smaller than in the experiments to avoid initial softening in
the constitutive response The parameters 𝜈 and 𝛿f were given typical values for mortar. The fibre properties are Young’s modulus
𝐸f = 60 GPa, length 𝐿f = 12 mm, fibre diameter 𝑑f = 0.04 mm, 𝑓 = 0.5, 𝛽 = 0.015, 𝜏0 = 1 MPa, 𝑠m = 4 mm, 𝜉 = 10, 𝛼 = 0.59 and
𝑉f0 = 0.02. The last two parameters result in 𝛾cu = 0.23 and 𝑉f = 0.00094. This gives 𝑐 = 𝛽𝐿f∕

(

2𝑑f
)

= 2.3. Again, 𝐸f , 𝐿f , 𝑑f and 𝑉f0
are chosen from [28]. The other parameters were given reasonable values for ECC so that the response agreed with the experimental
results. The end areas of the specimen shown in dark grey in Fig. 5 are modelled as aluminium with Young’s modulus of 70 GPa and
Poisson’s ratio of 𝜈 = 0.2. The comparison of FE model and experiments is shown in Fig. 6 in the form of stress versus strain for the
mesh with an element size of 2 cm. Here, stress is the force divided by the cross-sectional area and strain is the end displacement
of the specimen divided by the length.

CDPM2F produces for the tensile response of ECC with the two fibre properties results which are in good agreement with the
experiments. As expected from the expression of �̃� in (25), the set with greater 𝑐 produces the greater bridging stress.
9
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Fig. 5. (a) Tensile test setup used in the model based on the experiments reported in [28]; (b) Medium three-dimensional tetrahedral finite element mesh with
element size 2 cm. The out-of-plane thickness is 12.7 mm.

Fig. 6. Comparison of set 1 and 2 of finite element model with element size 0.02 m with experimental results reported in [28].

Next, it is checked that the model does not exhibit pathological mesh-dependence. Coarse, medium and fine meshes with element
sizes of 4, 2 and 1 cm, respectively, are used for the ECC with short fibres. The input is the same as for the comparison with the
experiments. The results are shown in the form of tensile stress versus strain in Fig. 7. The first part of the response up to the onset
of softening is mesh independent. For the softening part a difference in the curves is present. However, for all three curves softening
starts at the same strain and also reach zero stress at the same strain. The pre- and post-peak responses can be further understood
by studying the strain profiles for the three meshes. For the hardening part, the strain contours are shown in Fig. 8 at an average
strain of 0.004 in Fig. 7.

The strains are more or less uniform in the concrete specimen and independent of the mesh size. Slightly higher strains are
visible close to the ends of the ECC specimen next to the aluminium plates due to the higher stiffness of the plates which constraints
the ECC material in the lateral direction. The ECC material is strain hardening at this stage of the analysis.

In Fig. 9, the maximum principal strain contours are shown at an average strain of 0.012 in Fig. 7. At this softening stage of the
analyses, strain is localised in mesh dependent zones as assumed for the crack band approach. The difference between the curves
for the meshes in the softening regime is explained by the link between crack opening and cracking strain defined in (37). With the
input chosen for the present comparison to the experiments in [28], we have ℎe < 𝑠m∕𝛾cu. Therefore, the reduction factor determined
in (35) is used in the simulations, which varies linearly during softening.
10
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Fig. 7. Convergence of set 2 model.

Fig. 8. Contour plot of the maximum component of the principle strain at an average strain of 0.004 for mesh sizes (a) 4 cm, (b) 2 cm and (c) 1 cm. The
upper threshold for the maximum strain was chosen as 0.006.

In the tensile analyses, the hardening modulus was set to 𝐻p = 0.05. This value was chosen because it allows for a good
representation of the debonding stage of the tensile test as shown in Fig. 10. Larger values of 𝐻p result in less plasticity, which
can be problematic in analyses in which compression plays a role.

6.2. Shear

The second example is an ECC panel subjected to shear as reported in [30]. The geometry and loading setup is shown in Fig. 11a.
The specimen consists of two regions modelled to be elastic (shown as dark grey) and a middle region modelled as ECC material.
The out-of-plane thickness of the specimen is 50 mm. A coarse, medium and fine mesh with element sizes of ℎe = 4, 2 and 1 cm
were used. The three-dimensional tetrahedral meshes were generated with T3D [29]. The mesh with an element size ℎe = 2 cm is
shown in Fig. 11b.

Many of the material parameters were chosen using the information provided in [30]. Some of the model parameters were
calibrated to obtain a good agreement with the experimental results. For the ECC specimen, model input parameters for the matrix
are Young’s modulus 𝐸 = 20 GPa, Poisson’s ratio 𝜈 = 0.2, tensile strength 𝑓 = 1.4 MPa, compressive strength 𝑓 = 53 MPa and
11
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Fig. 9. Contour plot of the maximum component of the principle strain at an average strain of 0.012 for mesh sizes (a) 4 cm, (b) 2 cm and (c) 1 cm. The
upper threshold for the maximum strain was chosen as 0.15.

Fig. 10. Stress–strain response for set 1 with 𝐻p values ranging from 0.01 to 0.2.

crack opening threshold 𝛿f = 0.015 mm. Furthermore, 𝜀f = 0.000085, which is close to the default value of 0.0001. Here, 𝐸m and 𝑓c
were chosen from [30]. The tensile strength was reduced (experimental value is 2.2 MPa) to avoid initial softening in the initial part
of the stress–strain curve. The parameters 𝜈 and 𝛿f were given typical values for mortar. The fibre properties are Young’s modulus
𝐸f = 48 GPa, length 𝐿f = 12.7 mm, fibre diameter 𝑑f = 0.04 mm, 𝑓 = 0.8, 𝛽 = 0.03, 𝜏0 = 0.63 MPa, 𝑠m = 18 mm, 𝜉 = 10., 𝛼 = 0.9 and
𝑉f0 = 0.02. The last two parameters result in 𝛾cu = 0.808 and 𝑉f = 0.0179. The parameters result in 𝑐 = 𝛽𝐿f∕

(

2𝑑f
)

= 5.01. Here, 𝐸f ,
𝐿f , 𝑑f and 𝑉f0 are chosen from [30]. The other parameters were given reasonable values for ECC so that the constitutive response
agreed with the experimental results of ECC in tension, which are part of the same experimental study [30]. For the elastic regions,
the Young’s modulus is 𝐸m = 90 GPa and Poisson’s ratio is 𝜈 = 0.2. This higher Young’s modulus is chosen to represent the larger
out of plane thickness in the outer region. For the flexural reinforcement, Young’s modulus 𝐸s = 210 MPa and a yield strength
𝑓rt = 448 MPa were chosen. The diameter of reinforcement bar is 20 mm. The embedment length of the reinforcement in the ECC
material is 60 mm. With these input parameters, the tensile stress–strain response is in reasonable agreement with the experimental
results in [30] as shown in Fig. 12.

The main purpose of the shear test is to generate a constant shear force between loading points, so that the specimen is mainly
subjected to shear. In the experiments in [30], the average shear strain is calculated by the measured displacements at two sets of
four points in specimen as shown in Fig. 11. With these two sets A and B, the horizontal strain 𝜀 , vertical strain 𝜀 and diagonal
12
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Fig. 11. (a) Geometry and setup of ECC panel subjected to shear based on [30] and (b) three-dimensional tetrahedral finite element mesh with element size of
2 cm.

Fig. 12. Model strain–stress curve under tension compared with experimental results reported in [30].

strain 𝜀3 are calculated as described in [30]. From these three strain components, the engineering shear strain is calculated as

𝛾average = 2𝜀3 − 𝜀1 − 𝜀2 (48)

Here, the same approach is used for post-processing the FE results.
The comparison of shear stress and shear strain relation between model and experiment is shown in Fig. 13. The model can

generally predict the trend of the shear stress and shear strain curve in the experiments. The shear strain at peak shear stress is
almost same as in the experiment. However, the predicted peak shear stress is different, which might be due to the underlying
CDPM2 model response and not due to the fibre extension. The first component of principle strain for the three mesh sizes at a
shear strain of 0.025 is shown in Fig. 14. The strain is not localised at peak stress in the FE model. In Fig. 14, the dark areas of
the contour plot represents distributed cracks because even at high values of principal strain the material is still in the hardening
stage. For the small element size of ℎe = 1 cm, a nonuniform strain distribution can be seen, which implies that distributed cracks
form more likely at the top and bottom parts of the specimen at the peak value of shear stress. To illustrate the failure process,
the evolution of the principal strain for the fine mesh is shown in Fig. 15. The value of the first principle strain at the middle part
of the specimen increases with further displacement as shown in Figs. 15. The crack propagation process of the experiment is not
described by Li et al. [30]. Still, this type of crack distribution is predicted for a similar short shear beam test for other models
described in [14] and [31].
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Fig. 13. Model shear strain-shear stress curve of different mesh size compared with experiment. The experimental results are from [30].

Fig. 14. Contour plot of maximum component of principle strain at an average shear strain of 0.025: (a) mesh size 4 cm, (b) mesh size 2 m, (c) mesh size
1 cm. Here, the colour black corresponds to a threshold of 0.02.

Fig. 15. Contour plot of maximum component of principle strain at an average shear strain of: (a) 0.05, (b) 0.06, (c) 0.07. Here, the colour black corresponds
to a strain threshold of 0.06.
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Fig. 16. (a) Compression test geometry and loading setup based on experiments reported in [32] and (b) FE mesh with element size 2 cm.

Fig. 17. Stress–displacement curves for different mesh sizes of the structural model compared to experimental result. The experimental results are reported
in [32].

6.3. Compression

The last example is a compression test of an ECC cylinder tested in [32]. The geometry and loading setup is shown in Fig. 16a. The
ECC specimen is loaded at the top and bottom by means of aluminium plates. The three-dimensional finite element mesh shown in
Fig. 16 consists of tetrahedral constant strain elements which were generated with the mesh generator T3D [29]. Meshes of loading
plates and specimen are conform. Therefore, there is no slip between specimen and loading plates. Three element mesh sizes were
used with element size ℎe = 4, 2 and 1 cm to investigate the effect of mesh size on the results. This test differs from the tension
and shear test, because the compressive response of CDPM2F is not affected by the bridging law that we introduced in the previous
sections, so that for pure compression the response of CDPM2F is equal to the response of CDPM2. Therefore, we state here only
the input parameters of the matrix. For the ECC cylinder, the input parameters are chosen as matrix Young’s modulus 𝐸 = 30 GPa,
15
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Fig. 18. Influence of mesh size on zz component of strain tensor contour plot of compression tests at displacement 0.6 mm: (a) mesh size 0.04 m, (b) mesh
size 0.02 m, (c) mesh size 0.01 m.

Poisson’s ratio 𝜈 = 0.2, matrix tensile strength 𝑓c = 2.2 MPa, matrix compressive strength 𝑓c = 39.28 MPa and matrix softening strain
threshold for compression as 𝜀f = 0.00001. For the aluminium plates at the top and bottom of the specimen an elastic constitutive
model is used with Young’s modulus 𝐸 = 70 GPa and Poisson’s ratio 𝜈 = 0.2. The stress–displacement curves of the finite element
model with different element sizes are compared with the experimental results from in Fig. 17.

Stress–displacement curves of models with different mesh sizes are agree well with experimental results. An almost mesh-
independent response is observed. Contour plots of the vertical strain 𝜀zz for the three meshes are shown in Fig. 18 for a vertical
displacement of 0.6 mm (see Fig. 17) for the three meshes. The model predicts distributed strains which are greatest in the middle
of the specimen, because the edges are restrained by the loading platen.

7. Conclusion

A new plastic-damage approach CDPM2F was developed for the mechanical response of ECC which combines a well accepted
fibre law in [11] with the concrete damage plasticity approach CDPM2 [20]. The main conclusions are that

• the model is capable of linking fibre properties to composite response.
• dispersion of fibres is successfully incorporated by the parameter 𝛼, which represents the degree of variation of the spatial

fibre distribution.
• the model is able to reproduce three-dimensional structural behaviour of components made of ECC.
• the model produces results in both tension, compression and shear which do not exhibit pathological mesh-dependence.

Future work will focus on using the model for structural analysis of steel reinforced members for which the matrix is made of
ECC.
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