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Abstract
The solution approximation for partial differential equations (PDEs) can be
substantially improved using smooth basis functions. The recently introduced
mollified basis functions are constructed through mollification, or convolution,
of cell-wise defined piecewise polynomials with a smooth mollifier of certain
characteristics. The properties of the mollified basis functions are governed by
the order of the piecewise functions and the smoothness of the mollifier. In this
work, we exploit the high-order and high-smoothness properties of the molli-
fied basis functions for solving PDEs through the point collocation method. The
basis functions are evaluated at a set of collocation points in the domain. In addi-
tion, boundary conditions are imposed at a set of boundary collocation points
distributed over the domain boundaries. To ensure the stability of the resulting
linear system of equations, the number of collocation points is set larger than
the total number of basis functions. The resulting linear system is overdeter-
mined and is solved using the least square technique. The presented numerical
examples confirm the convergence of the proposed approximation scheme for
Poisson, linear elasticity, and biharmonic problems. We study in particular the
influence of the mollifier and the spatial distribution of the collocation points.
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1 INTRODUCTION

1.1 Motivation

Finding approximate solutions to high-order partial differential equations (PDEs) is a foundational task in various scien-
tific and engineering problems, including gradient theories of elasticity and plasticity,1–3 phase-field modelling of sharp
interfaces,4–6 and plate and shell models.7–9 The strong form of these PDEs typically impose stringent smoothness require-
ments on the approximation schemes. In certain scenarios, it is advantageous to pursue solutions that adhere to the weak
form of PDEs, where the smoothness requirements are less stringent. Nevertheless, constructing an approximate solution
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for these PDEs commonly involves an ascending sequence of smooth basis functions, which are a subset of the solution
space.

On a parallel note, there has been a growing interest in isogeometric analysis (IGA) that employs smooth basis func-
tions prevalent in computer-aided design (CAD), such as the spline-based NURBS 10,11 and subdivision surfaces,12 to
solve various PDEs. These smooth basis functions found applications within the framework of the finite element method
(FEM) 7,13–16 based on the weak form of PDEs and the Galerkin method. Although the primary aim of IGA is to stream-
line design and analysis, it has undoubtedly leveraged the broader utilisation of smooth basis functions in computational
mechanics.

Solving the strong form of PDEs through the point collocation method (PCM) is feasible when using sufficiently
smooth basis functions. In PCM, the PDEs are directly evaluated at specific spatial points, known as collocation points,
with boundary conditions imposed at the boundary collocation points. Because no integration is required for evaluating
the strong form, collocation presents a straightforward and usually cost-effective alternative to the traditional FEM.17,18

1.2 Previous work

Various smooth basis functions have been employed in the collocation framework, and many of them are also known in
the context of IGA, such as B-splines,19–21 T-splines,22 and NURBS.23–25 These functions are typically mesh-based, and
their smoothness may degrade when the tensor product structure of the mesh breaks, particularly at extraordinary ver-
tices and edges.11,26–30 Mesh-free approximants, including moving least squares,31 radial basis functions,32,33 reproducing
kernel,34,35 and the maximum entropy (max-ent) approximants 36–38 have also been applied for point collocation. Most of
these approximants are not polynomial and often need to satisfy certain consistency criteria 39,40 to maintain polynomial
reproducibility.

Smooth basis functions can be easily constructed through mollification, or convolution, of piecewise polynomials with
a smoothing kernel.41 In a conceptual sense, mollification is fundamentally different from traditional interior approxi-
mation schemes. Interior methods, such as FEM, approximate the solution using interpolants belonging to the solution
space, for example H1. In contrast, exterior methods, such as mollification, enable solution approximation using functions
outside of the solution space, that is, using a piecewise polynomial basis. While interior methods are well-established,
exterior methods, such as the mollification approach, are simpler, more general, and relatively newer. As highlighted in
Febrianto et al.,42 mollified approximants maintain the order of the piecewise polynomial basis, while improving smooth-
ness as determined by the kernel, or mollifier. This gives rise to an appealing characteristic of the mollified basis functions
where the smoothness and polynomial order can be arbitrary. This smooth basis construction strategy shares similarities
with the convolutional definition of B-splines 43,44 and those of simplex splines.45,46

In the mollified approach, the polynomials are defined over cells or meshes, enabling a faithful evaluation of the con-
volution integral, particularly when employing a compactly supported polynomial mollifier. The resulting basis functions
span the same space as the piecewise polynomial, therefore avoiding the need for corrections that imposes the polynomial
reproducibility on the kernel.39,40,47,48 Furthermore, unlike in most mesh-based approximants, the construction of molli-
fied basis functions is not restricted to a specific type of domain discretisation, and their smoothness remains unaffected
by extraordinary vertices. This versatility is particularly advantageous when a specific type of discretisation is faster and
more robust to obtain, such as the Cartesian grid or Voronoi tessellation,49–53 which arguably aligns with the objective of
reducing the cost of domain discretisation.

1.3 Contributions

In this paper, we present a point collocation method for solving the strong form of PDEs using mollified basis functions.
The high smoothness of the mollified basis functions makes them particularly suitable for collocation. Compared to its
Galerkin implementation,42 the mollified-collocation proposed in this work is simpler and more straightforward to imple-
ment. In particular, the mollified-collocation sidesteps the need for accurate and variationally consistent integrations
when evaluating the domain and surface integrals in the weak form.54,55 Furthermore, the mollified-collocation facili-
tates the strong imposition of boundary conditions, thus circumventing the need for auxiliary methods required to impose
stably Dirichlet boundary conditions.42,56–58 In this work, we numerically investigate the convergence of the approximate
solutions of the Poisson, linear elasticity, and biharmonic problems over polytopic elements, see, for example, Figure 1.
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F I G U R E 1 The proposed mollified-collocation method. First the domain (A) is discretised into a set of polytopic cells through Voronoi
tessellation (B). Each cell has an associated piecewise linear polynomial and a Ck−1 smooth kernel is used to obtain smooth high-order basis
functions. The resulting basis functions are used to solve a k-th order PDE problem giving the solution (C). (A) Domain definition. (B)
Voronoi tessellation. (C) Solution contour.

Additionally, we assess the effect of the polynomial order, as well as mollifier smoothness and width on the accuracy of
numerical approximation.

The unstructured shape of the support of mollified basis functions is incompatible with knot-based collocation point
distributions, such as the Greville and Demko abscissae, commonly employed in IGA collocation methods.19,23,59,60

Moreover, in the proposed mollified-collocation, multiple basis functions might overlap over each cell, implying that col-
locating solely at a cell’s centroid or the Voronoi seeds would result in an underdetermined system matrix. To address this
challenge, more than one collocation point in a cell is distributed according to the selected scheme. Additionally, a con-
straint is imposed to ensure that the total number of collocation points exceeds the number of basis functions involved
in the computation, a quantity that can be predetermined based on the number of cells and the polynomial order. This
approach results in an overdetermined (non-square) system matrix, which can be solved using a standard least square
technique. In this study, we explore three schemes for distributing the collocation points: uniform, Gauss quadrature, and
quasi-random schemes. Furthermore, we analyse their effects on the convergence of the approximation error. Specifically,
for quasi-random collocation points, we perform stochastic experiments, and sample perturbations n times to ascertain
the mean and standard deviation of errors.

1.4 Overview

The structure of this paper is as follows. First, we revisit the mollification approach for smoothing piecewise polynomi-
als. We then apply this principle to construct smooth basis functions in one and higher dimensions. Subsequently, we
discuss the evaluation of the basis functions and their derivatives at a point in space. Later, we describe the use of the
mollified basis functions in the collocation framework, including considerations on distributing collocation points in
space. Finally, we present several numerical Poisson, linear elasticity, and biharmonic examples in one, two, and three
dimensions.

2 REVIEW OF MOLLIFIED PIECEWISE POLYNOMIAL APPROXIMANTS

In this section, we review the mollified piecewise polynomial approximants used to discretise PDEs. We begin by describ-
ing the mollification of piecewise polynomial functions, resulting in a global function smoother than the smoothing
kernel, that is, mollifier. This characteristic is particularly advantageous when approximating the solution of PDEs using
the collocation method. Next, we derive the mollified basis functions based on the piecewise polynomial defined in each
domain partition, referred to as a cell. This work focuses on polytopic meshes, such as the Voronoi tessellation, for domain
partitioning. The values of the basis functions can be obtained at a point in space by evaluating a convolution integral,
which is also detailed in this section.
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2.1 Mollification of the piecewise polynomial

For brevity, we illustrate the mollification of piecewise polynomials in a one-dimensional setting. We begin by considering
the domain Ω ∈ R1 discretised into a set of nc non-overlapping cells {𝜔i}, such that,

Ω=
nc⋃

i=1
𝜔i. (1)

On each cell 𝜔i, we define a local polynomial

fi(x) =

{
pi(x) ⋅ 𝜶i if x ∈ 𝜔i

0 if x ∉ 𝜔i
, (2)

where pi(x) is a vector containing a local polynomial basis of order rp and 𝜶i are the respective coefficients of the
basis. Common choices for the basis pi(x) include, but are not limited to, monomials, Lagrange polynomials, and
Bernstein polynomials. While it is possible to vary the polynomial order in each cell, this study exclusively focuses on a
uniform polynomial order for all cells. The sum of the local polynomials defined over the entire domainΩ constitutes the
global polynomial

f (x) =
∑

i
pi(x) ⋅ 𝜶i. (3)

Note that across the cell boundaries this function will be discontinuous.
We consider the smoothing of the piecewise polynomial f (x) through convolution, referred to as mollification, with a

smooth kernel referred to as a mollifier. The mollification of f (x) with a mollifier m(x) is defined as

̂f (x) = m(x) ∗ f (x) = ∫Ω m(x − y) f (y)dy. (4)

We require the mollifier to be non-negative, have a unit volume, and have finite support per our previous work.42

An important characteristic of mollification is that the mollified functions ̂f (x) can exactly reproduce polynomials of
order rp.42

When the derivative of the mollifier m(x) exists, the k-order derivative of the mollified function ̂f (x) is given by

dk

dkx
̂f (x) = ∫Ω

dkm(x − y)
dkx

f (y)dy. (5)

For the mollified function ̂f (x) to be Ck-smooth, suitable for instances where it is considered a candidate solution for a
k-th order PDE, the mollifier must be Ck−1-smooth. Note that the original function f (x) is discontinuous across the cell
boundaries.

An intriguing observation is the parallel between mollification (4) and the widely used convolutional neural net-
works (CNN). A single CNN layer can be represented aŝf (x) = 𝜎(

∑
j m(x − xj)f (xj) + b), where 𝜎 represents the nonlinear

activation function and b is the bias. This equation can be viewed as the discrete form of the mollification in (4), specif-
ically, ̂f (x) =

∑
j m(x − xj)f (xj)wj, where xj and wj are the position and weight of the quadrature points, respectively. In

CNNs, the convolution operator is often referred to as a feature map, with the convolution kernel containing shared
weights, or hyperparameters, which require learning. As an example, Figure 2 illustrates the mollification of a piecewise
polynomial function f (x) with a C1-smooth symmetric (left) and asymmetric mollifier (right). Moreover, choosing a dif-
ferent mollifier here is equivalent to selecting a different feature map in CNN. Although the parallels are evident, this
paper does not pursue this comparison further.

2.2 Mollified basis functions

We now use the mollification approach to derive uni- and multivariate basis functions. In the univariate case, following
the previous discussion in Section 2.1, we partition the domain Ω into a set of non-overlapping cells {𝜔i} where the
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(A) (B)

F I G U R E 2 Mollification of piecewise linear functions with C1-smooth quadratic B-spline mollifier. The resulting function ̂f (x) is
C2-smooth. Mollification with symmetric and asymmetric kernels is used to exemplify the parallel between the convolution operator and
feature maps in CNN. (A) Mollification with a symmetric kernel. (B) Mollification with an asymmetric kernel.

piecewise polynomials {fi(x)} are defined. By introducing the piecewise definition of the global polynomial f (x) from (3)
into the definition of mollification (4), we obtain

̂f (x) =
∑

i
𝜶i ⋅ ∫

𝜔i

m(x − y) pi(y)dy. (6)

Here, a polynomial fi(x) is zero outside of the respective cell 𝜔i. This allows us to consider as an integration domain 𝜔i
instead of the whole domain Ω. We can then express (6) as a linear combination of basis functions and their coefficients

̂f (x) =
∑

i
𝜶i ⋅Ni(x). (7)

The mollified basis function Ni(x) is obtained by convolving the piecewise polynomial basis pi(y) belonging to each cell
𝜔i with the mollifier m(x) such that

Ni(x) = ∫
𝜔i

m(x − y) pi(y)dy, (8)

where the convolution is individually evaluated for each component of pi(x). In this paper, we consider the vector pi(x)
as the monomial basis defined locally in each cell 𝜔i. The local monomials are centred at the centroid ci of each cell,
that is,

pi(x) =
(

1 𝜉 𝜉
2

𝜉
3 …

)
with 𝜉 = 2(x − ci)

hc
, (9)

where hc is the cell size. The scaling by 2∕hc ensures that all mollified basis functions have a similar maximum value,
which improves the conditioning of the system matrix. The derivatives of the basis functions can be obtained using (5)
by considering the derivative of the mollifier

d
dx

Ni(x) = ∫Ω
dm(x − y)

dx
pi(y)dy. (10)

As an illustrative example, we consider a one-dimensional domainΩ = (0, 1) discretised into nc = 6 non-overlapping
cells with uniform spacing hc = 1∕6. Piecewise polynomials up to degree rp = 3 consisting of monomial basis functions
defined over each cell are mollified with a quadratic B-spline mollifier with a width hm = 2 hc and a unit volume. Figure 3
depicts the obtained mollified basis functions and their respective second derivatives. We stress that each mollified basis
can reproduce polynomials up to degree rp. Collocating at positions where either the basis or the second derivative is
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

F I G U R E 3 Basis functions (left column) over nc = 6 uniform cells for rp ∈ {0, 1, 2, 3} using a quadratic B-spline mollifier and their

corresponding second derivatives (right column). The blue dots situated along the x-axis denote the cell boundaries. (A) N0
i (x). (B) d2N0

i (x)
dx2 .

(C) N1
i (x). (D) d2N1

i (x)
dx2 . (E) N2

i (x). (F) d2N2
i (x)

dx2 . (G) N3
i (x). (H) d2N3

i (x)
dx2 .
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zero is often undesirable. For this specific example, such zero-valued positions can be predicted, as shown in Figure 3.
For instance, the linear N1

i (x) and cubic N3
i (x) are zero at the cell’s centre, and the second derivative of N0

i (x) coincides
with the cell boundary. However, predicting such locations becomes challenging for non-uniform arrangements in both
univariate and multivariate cases, especially for polytopic partitions.

Without loss of generality, in the following we continue our discussion on multivariate basis functions, focusing on
the bivariate case. In the two-dimensional setting, for the mollifier, we consider the tensor-product of its one-dimensional
description

m(x) = m
(

x(1)
)
⋅m

(
x(2)

)
. (11)

Consequently, the support of the mollifier□x is a square, and generally, a hypercube in the multi-dimensional case. Simi-
lar to the univariate case, the domainΩ is subdivided into non-overlapping cells {𝜔i}. For the multivariate case considered
in this work, a polytopic discretisation of the domain Ω is used. Nevertheless, other non-overlapping partitions, such as
Delaunay triangulation/tetrahedralisation, quadrilateral/hexahedral mesh, and Cartesian grid, are also viable options.

In each cell 𝜔i, we consider a set of monomial basis functions centred at the centroid of the cell xc,

pi(x) =
(

1 𝜉
(1)

𝜉
(2) (𝜉(1))2 (𝜉(2))2 …

)
with 𝜉

(j) =
2
(

x(j) − x(j)c

)

h
, (12)

where h is the average cell size. In our numerical experiments, h is usually computed as the square root of the average
area of the cells in the domain. The bivariate basis functions are obtained by evaluating the convolution integral

Ni(x) = ∫
𝜔i

m(x − y) pi(y)dy. (13)

As an example, we consider a five-sided polygonal cell 𝜔i. Mollifying either the constant or linear monomials with a
tensor product C2-smooth spline mollifier (34) yields the basis functions presented in Figure 4. Likewise, the derivatives
of the obtained multivariate basis functions with respect to the coordinate axes can be obtained as in (10).

Next, we focus on the support �̂�i of the mollified basis functions corresponding to piecewise polynomials of the cell 𝜔i.
The support �̂�i is given as the Minkowski sum of the cell 𝜔i with the support of the mollifier □0, that is,

�̂�i = 𝜔i ⊕□0 = {x + y| x ∈ 𝜔i, y ∈ □0} . (14)

In our implementation, to obtain the support �̂�i, we first position the mollifier at the vertices of the cell vi,j, that is, □vi,j .
The subscript j is enumerated over the indices of all the vertices of 𝜔i. We then take the union of the vertices of□vi,j for all
j and combine them using a convex hull algorithm to obtain �̂�i. For a comprehensive introduction to Minkowski sums,
we refer the readers to Reference 61.

2.3 Basis evaluation at a point

In this section, we outline the procedure for evaluating the mollified basis functions at a particular point x ∈ Rd. For
the univariate case, the convolution integral in (8) can be symbolically computed, resulting in a closed-form expression
that can be evaluated at any point x ∈ R1. Such closed-form expressions of the basis functions (8) can be obtained using
symbolic programming tools such as Mathematica and SymPy.

When evaluating the multivariate basis functions, the convolution integral in (13) should be numerically computed.
To evaluate the basis Ni(x) at a point x ∈ R2, we first position the mollifier centred at the evaluation point x, defining the
support as □x = supp m(x − y), as shown in Figure 5. Both the kernel and polynomial have compact supports, thus, the
integrand in (13) is nonzero only within the intersection between the support of the mollifier and the cell. This observation
further shrinks the integration domain to

𝜏i,x ∶= □x ∩ 𝜔i, (15)
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8 of 26 ALFARISY et al.

F I G U R E 4 Bivariate constant and linear mollified basis functions with a C2-smooth spline mollifier on a cell 𝜔i ∈ R2. The dashed
lines in (A) and (C) indicate the boundary of the cell. (A) Mollifier and constant local basis functions. (B) Basis functions of order rp = 0
obtained with the mollifier shown in (A). (C) Mollifier and linear local basis functions. (D) Basis functions of order rp = 1 obtained with the
mollifier shown in (C).

where the intersection 𝜏i is convex because both the cell 𝜔i and the mollifier support □x are convex. The convolution
integral used to compute the basis functions is then simplified to

Ni(x) = ∫
𝜏i,x

m(x − y)pi(y)dy. (16)

Here, we focus on a two-dimensional example where the local polynomial is defined within a cell 𝜔i ∈ R2 and a
polynomial mollifier is employed. To evaluate (16), we first triangulate 𝜏i,x by connecting its edges with its centroid. Gauss
quadrature points are then mapped from a reference triangle to each generated triangle to evaluate (16). We consider
an example using a set of polytopic cells {𝜔i}6

i=1 as shown in Figure 5A. To evaluate basis functions at x, we place the
mollifier support centred at x, as shown in Figure 5A. The mollifier support□x intersects three cells: 𝜔1, 𝜔3, and 𝜔4. The
basis functions associated with these cells can be computed by first obtaining their intersection with the mollifier support,
namely 𝜏1,x, 𝜏3,x, and 𝜏4,x. Subsequently, we evaluate the convolution integral (16) over these intersection domains, as
shown in Figure 5B.

In the three dimensional case, 𝜏i,x is a convex polyhedron. The convolution integral over 𝜏i,x can be evaluated by
tessellating the polyhedron into tetrahedra before distributing the quadrature points. An alternative approach involves
the successive application of the divergence theorem to reduce the dimension of integration domains.62 When using a
polynomial mollifier, for example, a tensor product spline, the integrand in (16) is also a polynomial function and can be
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ALFARISY et al. 9 of 26

F I G U R E 5 The intersection of the mollifier located at x with the cells 𝜔i (A) generates the domain for evaluating the convolution
integral 𝜏i,x (B). (A) The mollifier □x overlapping some of the cells 𝜔i. (B) 𝜏i,x.

accurately integrated. For further information on integrating polynomial functions over arbitrary polytopes, interested
readers are referred to References 63–65.

3 POINT COLLOCATION METHOD

In this section, we outline the discretisation using mollified basis functions for solving PDEs. The smoothness and approx-
imation properties of the mollified basis functions render them suitable for solving PDEs in their strong forms. Our
approach assumes that the domain Ω is discretised into non-overlapping convex polytopes, in which piecewise polyno-
mials are defined. Following the discussion in Section 2.3, we emphasise that the basis functions and their derivatives
can be evaluated at arbitrary points in space, which we later refer to as collocation points. Furthermore, we delve into the
considerations involved in determining the collocation points in our numerical studies.

3.1 Discretisation

For simplicity, we consider the Poisson-Dirichlet equation involving a scalar variable u over the domain Ω ∈ Rd with
d ∈ {1, 2, 3} as a model problem:

−∇2u(x) = s(x) in Ω , (17a)

u(x) = u on ΓD , (17b)

where s is the source and u is the prescribed solution field on the Dirichlet boundary ΓD. The main characteristic of the
point collocation method lies in utilising the strong form (17) rather than its weak form. The field variable u is approx-
imated by a linear combination of mollified basis functions, according to the discretisation of the domain Ω into nc
cells,

uh(x) =
∑

i
Ni(x) ⋅ ui. (18)
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10 of 26 ALFARISY et al.

In each cell 𝜔i, the basis functions form a vector consisting of contributions from each monomial. To ensure polynomial
reproducibility near the boundary, the domainΩ is padded with ghost cells with a size proportional to the mollifier width.
Substituting uh as an approximation to u in the Equation (17a) yields

−
∑

i

(
∇2Ni(x)

)
⋅ ui = s(x). (19)

Here, the continuity requirement for the basis functions is at least C2.66 Hence, based on the mollification properties
discussed in Section 2, the minimum continuity for the mollifier m(x) is C1.

We consider a set of points {zj}
nz
j=1, referred to as collocation points, where Equation (19) is evaluated and the boundary

conditions (17b) are enforced. We subdivide the point set into two subsets, that is, interior collocation points {zI
k}

nI
z

k=1 and

boundary collocation points {zB
l }

nB
z

l=1 so that

{zj}
nI

z+nB
z

j=1 =
{

zI
k
}nI

z
k=1 ∪

{
zB

l
}nB

z
l=1. (20)

Here, the capital superscripts I and B distinguish points belonging to the interior and boundary set, respectively. Conse-
quently, the total number of collocation points nz comprises the number of interior points nI

z and boundary points nB
z , so

that

nz = nI
z + nB

z . (21)

In this approach, we require the total number of collocation points nz to be greater than, or at least equal to, the total
number of the basis functions used in discretising the solution field, denoted as nb. We evaluate the Equation (19) at each
interior collocation point zI

k, that is,

−
∑

i

(
∇2Ni(zI

k)
)
⋅ ui = s(zI

k), (22)

and enumerate the index k from 1 to the total number of interior points nI
z. The Dirichlet boundary condition is strongly

imposed at the boundary collocation points zB
l , that is,

∑

i
Ni(zB

l ) ⋅ ui = u, (23)

where the index l goes from 1 to the total number of boundary points nB
z . Similarly, for Neumann type of boundary

conditions, the gradient of the basis functions ∇Ni is evaluated at the associated boundary collocation points.
The two discrete Equations (22) and (23) are compactly expressed in matrix notation as follows

Cu = s. (24)

Matrix C is a non-square matrix with size nz × nb with nz ≥ nb. Matrix C consists of the two blocks CI and CB, correspond-
ing to the contributions of the internal and boundary collocation points. Each row of CI contains the expansion of (22)
when evaluated at an interior point, and CB consists of the evaluation of (23) at boundary collocation points. The entries
of C are non-zero only when the collocation point zj is located within the support of a basis, that is, zj ∈ supp Ni. The
support of the basis is influenced by the mollifier width, thus, we can deduce that matrix C is denser when the mollifier is
wide, and conversely, sparser when the mollifier is narrow. The right-hand size vector s has nz elements and can be sub-
divided into

(
sI uB)T containing the source terms s(zI

k) at the interior points and boundary values u(zB
l ) at the boundary

points.
The choice nz > nb implies an overdetermined linear system. This system can be solved in a least-square sense by

multiplying (24) with C⊤,

C⊤Cu = C⊤s ⇒ Gu = w, (25)
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ALFARISY et al. 11 of 26

where G is a square matrix of size nb × nb. In the case of nz = nb, the linear system of equations (24) has a solution only
when C is non-singular. Therefore, in our implementation we prefer the number of collocation points to be greater than
the number of basis functions nz > nb to avoid a situation where the system yields no solution. The selection of collocation
points in our analysis will be described in the following section.

Our final note concerns the conditioning of the collocation matrix C. The mollified basis functions typically involve
high-order polynomials due to the order of the local approximants and the mollifier, which potentially leads to poor con-
ditioning of C if untreated. Such conditioning problems become more severe for high-order PDEs. In our implementation,
we improve the conditioning of C using two scaling techniques. The first pertains to scaling for the basis functions and
the second involves scaling for the derivatives. The first type of scaling is introduced in the description of local approxi-
mants (9), where each monomial is scaled according to the factor (hc∕2)p, where p is the monomial degree. This scaling
ensures that the maximum value of monomials of any order is the same. The second type of scaling adjusts the n-th deriva-
tive of the basis function using factor (hm)n to account for magnitude discrepancies across the derivatives. Evidently, the
inverse of the second scaling factor should be applied upon acquiring the numerical solution of the linear system.

3.2 Spatial distribution of collocation points

The entries in the linear system (24) depend on the location of the collocation points zj where the basis functions and
their second derivatives are evaluated. Various strategies have been proposed for selecting the position of the collocation
points. When piecewise polynomial approximants are used, Gauss quadrature can be devised as collocation points.67,68

For mesh-free approximation schemes, such as the reproducing kernel particle method (RKPM) and local max-ent
approximation, collocation points can be chosen either similarly to the points representing the basis functions,34,37 or dif-
ferently.33,36 In the context of isogeometric collocation using B-spline and NURBS basis functions, Greville and Demko
abscissae are employed as the locations for collocating the strong form of the governing Equation (19),19,23,59,60 which
exploits the knot structure of B-splines. Moreover, recent studies have reported the existence of collocation points with
improved convergence properties similar to the Galerkin schemes.25,69,70

As mentioned in Section 2.2, mollified basis functions are obtained by convolving piecewise polynomials defined over
a polytopic cell with a mollifier. The support of the basis functions generally do not coincide with the cell boundaries.
Therefore, it is challenging to exploit a specific structure to find optimal coordinates for collocation points when dis-
cretising with mollified basis functions. This is unlike the case with B-splines, where the tensor-product structure can
be used to identify optimal or privileged collocation points. Nonetheless, this work does not pursue the identification
of such optimal coordinates for collocation points. Furthermore, collocating at Voronoi seeds, similar to the nodes in
meshfree methods, leads to underdetermined system matrices because each cell has multiple associated basis functions.
Therefore, we explore several strategies for distributing the collocation points, including uniform, Gauss quadrature, and
quasi-random point distributions.

To ensure stability, we choose the number of collocation points so that the linear system matrix is overdetermined.
This allows for a less stringent approach to selecting the position of collocation points. In our approach, the number of
collocation points, including those on the boundary, can be described by expanding the interior points nI

z in terms of the
number of cells

nz = nI
z + nB

z = 𝛽 nc + nB
z ≥ nb . (26)

Here, the factor 𝛽 ≥ 1 accounts for the total number of monomial basis functions in each cell, which directly corresponds
to the polynomial order rp. The number of boundary collocation points nB

z is explicitly separated in (26) so that 𝛽 can
conveniently be chosen as an integer. For example, in the set of basis functions shown in Figure 3, the total number of basis
functions is (nc + 2) |p|, where nc = 6 and |p| = rp + 1 = 4. Moreover, the addition with two accounts for the appended
ghost cells. Therefore, the total number of basis functions involved is nb = 32. In this case, the closest integer 𝛽 is selected
so that (26) is satisfied, which is 𝛽 = 6.

In this paper, we consider three methods for distributing collocation points: Gauss quadrature, uniform, and
quasi-random point distribution. In the univariate setting, obtaining these point distributions is straightforward, as
depicted in Figure 6. In the multivariate setting, we can obtain the Gauss point arrangement by first tessellating the
convex polytopic cells into simplices (i.e., triangles or tetrahedra in two or three dimensions, respectively). Gauss points
of order 𝛾 are then mapped from the reference simplex. The uniform collocation point distribution can be obtained by
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12 of 26 ALFARISY et al.

F I G U R E 6 One-dimensional collocation point distributions.

placing the points in an equidistant manner in each coordinate axis and subsequently taking their tensor products in
higher dimensions. Note that we only consider uniformly distributed collocation points for numerical examples with ten-
sor product domains. Lastly, the quasi-random point collocation distribution is obtained by introducing perturbation to
an initial point distribution, which is usually chosen as uniform. The random perturbation 𝜖 ∼  (−𝜎, 𝜎) is generated
in each coordinate axis from a univariate uniform density function with maximum perturbation 𝜎. The coordinates of
collocation points are detailed for each example in Section 4.

4 EXAMPLES

In this section, we present several numerical experiments with increasing complexity to investigate the conver-
gence property of the proposed mollified-collocation approach. We initially investigate the performance of the
mollified-collocation scheme in solving one-dimensional Poisson and biharmonic problems. The effects of the piecewise
polynomial degree, mollifier, and collocation points on the convergence are studied. We then proceed with the numeri-
cal study of a two-dimensional elastic plate, a plate with a hole, a plate bending, and a three-dimensional cube. In all the
examples, convergence is studied using the relative discretisation errors as in Reference 37. The relative error between
field v and its numerical approximation vh can be defined as

e(v, vh) =

(∑nz
k (v

k − vk
h)(v

k − vk
h)

T

∑nz
k vk(vk)T

) 1
2

, (27)

where vk and vk
h are the evaluation of the field and its approximation at collocation point zk.

4.1 One-dimensional examples

4.1.1 One-dimensional Poisson problem

As a first example we consider the solution of the one-dimensional Poisson-Dirichlet problem −d2u(x)∕dx2 = s(x) on the
domain Ω = (0, 1) ∈ R1. The source term s(x) is chosen such that the solution is equal to u(x) = sin(3𝜋x). To construct
the mollified basis functions, we first consider the decomposition of the domain Ω into a set of non-overlapping cells
{𝜔i}

nc
i=1 of size hc, i where the piecewise polynomial basis functions pi(x) are defined. We initially consider the coarse nc = 6

non-uniform cells with size of hc,1 = 0.15, hc,2 = 0.2, hc,3 = 0.15, hc,4 = 0.15, hc,5 = 0.2 and hc,6 = 0.15. We then consider
refinement through the bisectioning of each cell. The convolution integral is evaluated by assuming a mollifier function
m(x) with support size of

hm = 2
(

max
j

hc,j

)
. (28)
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ALFARISY et al. 13 of 26

The closed form of the basis functions can be obtained by analytically evaluating the convolution integral involving the
piecewise polynomials and the mollifier. To ensure completeness at the boundary, one ghost cell layer of size hm is padded
to each end of the domain. In the following set of experiments, we study the influence of collocation point distribution,
local polynomial basis pi(x), and the mollifier m(x) on the convergence of the solution approximation.

We first study the influence of three types of point distribution: uniform, Gauss quadrature, and quasi-random, on
the error convergence. Even though the knot-based abscissae are applicable in the one-dimensional case, they are not
extendable for higher dimensions with unstructured polytopic partitions, and therefore, are not considered in the present
analysis. The uniform point distribution is obtained by placing the collocation points over the domainΩ in an equidistant
manner without considering the cell boundaries. By contrast, the Gauss quadrature points are distributed by mapping
the standard Gauss quadrature from the parametric domain onto each cell. Finally, the quasi-random point distribution
is obtained by adding a small random perturbation sampled from a uniform distribution 𝜖 ∼  (−𝜎, 𝜎) to the uniformly
distributed interior collocation points. Here the parameter 𝜎 is chosen as 10% of the equidistant spacing of the uniform
configuration.

The total number of collocation points nz should not be less than the number of basis functions nb to ensure that the
system matrix is not underdetermined. In our one dimensional example, the total number of basis functions involved in
the computation nb depends on the number of cells nc and the order of the local polynomial rp

nb = (nc + 2) (rp + 1) . (29)

The above expression considers the contribution from one layer of ghost cell on each side. We consider the total number
of collocation points nz following (21)

nz = (𝛽 nc) + 2 , (30)

where the term inside the bracket resembles the internal collocation points. For consistency, we use 𝛽 = 6 in the exam-
ples throughout this section following the minimum number of unknown coefficients imposed by the cubic polynomial
basis rp = 3 at the coarsest level nc = 6. The constant two in (30) accounts for the boundary collocation points where
the Dirichlet boundary conditions are imposed. Figure 6 depicts the three distributions of the collocation points for the
one-dimensional test case with cubic polynomials rp = 3 and nc = 6 cells.

Figure 7 shows the error convergence in both the L2-norm and H1-seminorm when using a normalised quadratic
B-spline mollifier and quadratic polynomial order rp = 2. In particular, for the perturbed point distribution, the random
perturbation 𝜖 is first obtained for each interior collocation point, generating a set of quasi-random points. We obtain
such a point distribution one hundred times, from which the mean and standard deviation of solution errors can be
obtained. Figure 7 shows that the three collocation point distributions yield a convergence rate of 2 in both the L2-norm

(A) (B)

F I G U R E 7 One-dimensional Poisson problem. Convergence with normalised quadratic B-spline mollifier and quadratic polynomial
basis for three collocation point distributions: Uniform, Gauss quadrature, and quasi-random. (A) L2-norm error. (B) H1-seminorm error.
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14 of 26 ALFARISY et al.

and H1-seminorm, which aligns with the collocation methods using IGA and max-ent basis functions.23,37 In Figure 7,
the three point distributions yield only small differences in the convergence constants. Furthermore, the quasi-random
point arrangement has the highest mean error among the three point distributions considered. On the other hand, the
quasi-random point distribution has the lowest convergence rate of mean errors among the three point distributions.
Moreover, for this distribution, the standard deviation of the errors increases as refinement progresses.

The second experiment aims to study the influence of the local polynomial order rp ∈ {1, 2, 3} on the error con-
vergence of the numerical approximation. We consider a normalised quadratic B-spline mollifier with width chosen
according to (28). In this example, we choose uniformly distributed collocation points with factor 𝛽 = 6 and spacing
1∕(nz + 1). Figure 8 presents the error convergence for each polynomial degrees rp in both the L2-norm and H1-seminorm.
The convergence rates in the L2 norm are 0.80, 2.27, and 2.58 for polynomial orders rp = 1, rp = 2, and rp = 3, respectively.
A similar trend can be observed in the H1-seminorm, where the average convergence rates are 0.85, 2.21, and 3.16 for poly-
nomial orders rp = 1, rp = 2, and rp = 3, respectively. These results suggest that the proposed approach converges with
rate rp in both error norms with lower rates for the odd polynomial order, particularly in the L2-norm, which resembles
the findings reported in previous studies.23,37

Subsequently, we investigate the influence of mollifier width and smoothness on the error convergence. We use in
this example uniformly distributed collocation points with factor 𝛽 = 6 and a piecewise polynomial of order rp = 2. For
the first case, we modify the width of a quadratic B-spline mollifier through scaling factor 𝜅, that is,

hm = 2𝜅
(

max
j

hc,j

)
with 𝜅 ∈ {0.75, 1., 1.25}. (31)

The increase in mollifier width leads to larger support of the basis functions. This implies that more basis functions have
non-zero values at a collocation point which leads to a denser matrix system. Figure 9 shows that changing the mollifier
width leads to only a slight difference in the error magnitude while keeping the convergence rate as rp = 2 for both the
L2-norm and H1-seminorm.

We next investigate the effect of mollifier smoothness on the convergence of the approximation error. Here, we con-
sider quadratic and cubic B-spline mollifiers which are C1- and C2-smooth, respectively. The obtained mollified basis
functions are C2- and C3-smooth, respectively. This aligns with the smoothness requirement from the PDE that the solu-
tion has to be at least C2-continuous. The mollifier width is chosen according to (28), that is, 𝜅 = 1. Figure 10 displays the
convergence plot for both the L2-norm and H1-seminorm errors. It is evident that higher mollifier smoothness improves
the convergence constants while keeping a convergence rate of rp = 2.

Finally, we address the cost comparison between the proposed mollified-collocation method and the mollified-FEM 42

by estimating the number of point evaluations required to construct the linear system. We consider a quadratic polynomial
with rp = 2 over 48 cells, mollified with a quadratic B-spline mollifier. The resulting basis functions have, as described

(A) (B)

F I G U R E 8 One-dimensional Poisson problem. Convergence with normalised quadratic B-spline mollifier and piecewise polynomial of
order rp = {1, 2, 3}. (A) L2-norm error. (B) H1-seminorm error.
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ALFARISY et al. 15 of 26

(A) (B)

F I G U R E 9 One-dimensional Poisson problem. Convergence with normalised quadratic B-spline mollifier of width factor
𝜅 = {0.75, 1., 1.25} and quadratic piecewise polynomial. (A) L2-norm error. (B) H1-seminorm error.

(A) (B)

F I G U R E 10 One-dimensional Poisson problem. Convergence with normalised quadratic and cubic B-spline mollifier and quadratic
piecewise polynomial (rp = 2). (A) L2-norm error. (B) H1-seminorm error.

in (8), monomials up to order 5. Consequently, the stiffness integrand in the mollified-FEM has monomials up to order 8,
necessitating 5 Gauss quadrature points on each non-overlapping polynomial segment, thus yielding a total of 240 point
evaluations. In contrast, the proposed mollified-collocation method only requires evaluation at a minimum 150 collo-
cation points. This discrepancy is further accentuated in higher dimensions and when using a finer discretisation. The
number of quadrature points in mollified-FEM can be somewhat reduced by using the variationally consistent integration
(VCI) approach. VCI requires the solution of a small dense matrix to derive the corrective coefficients in each cell.

4.1.2 One-dimensional biharmonic problem

We next consider the one-dimensional biharmonic problem d4u(x)∕dx4 = s(x) over the domain Ω = (0, 1) ∈ R1. The
source term s(x) is chosen such that the solution is u(x) = sin(3𝜋x). Both the value u and the first derivative u′ are pre-
scribed at the boundaries x = 0 and x = 1. In this example, the domain Ω is uniformly discretised into nc cells of size
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16 of 26 ALFARISY et al.

(A) (B)

F I G U R E 11 One-dimensional biharmonic problem. Convergence with the C3 spline mollifier with a piecewise polynomial of order
rp = {5, 6}. (A) L2-norm error. (B) H1-seminorm error.

hc = 1∕nc. In each cell, we consider a polynomial of order rp ∈ {5, 6} consisting of rp + 1 monomial basis and their respec-
tive coefficients. Because of the higher derivatives that appear in the PDE, the smoothness requirement for the solution
u(x) is C4, which requires that the mollifier should be at least C3 smooth. Hence, we consider a C3 spline mollifier

m(x) =
⎧
⎪
⎨
⎪⎩

315
128hm

(
1 − 16

(
x

hm

)2
+ 96

(
x

hm

)4
− 256

(
x

hm

)6
+ 256

(
x

hm

)8
)

if |x| < hm
2

0 if |x| ≥ hm
2

(32)

where the mollifier width hm is chosen to be twice the cell size hm = 2hc. We uniformly distribute nz collocation points
with the factor 𝛽 according to (30). We analyse the effect of the total number of collocation points in terms of the factor
𝛽, where 𝛽 = {8, 10} are compared for the fifth-order polynomial and 𝛽 = {10, 12} are considered for the sixth-order
polynomial. These factors are larger than the ones specified in the Poisson examples (Section 4.1.1) because of the higher
order polynomials involved.

The convergence of relative errors in the L2-norm and H1-seminorm are shown in Figure 11. In the L2-norm, the
error converges approximately with rate rp − 2 for both rp = 5 and rp = 6. In the H1-seminorm, a convergence rate of
rp − 2 can also be observed for both polynomial orders. The number of collocation points, dictated by factor 𝛽, affects
the convergence constants in both norms. For the same polynomial order, a higher 𝛽 indicates more collocation points,
which yields lower convergence constants. Morever, a higher number of collocation points improves the conditioning of
the system matrix (24).

4.2 Two-dimensional examples

4.2.1 Two-dimensional elasticity

We next consider the linear elasticity problem ∇ ⋅ 𝝈(x) = b(x) on the two-dimensional square domain Ω = (0, 1) × (0, 1).
The material of the plate has Young’s modulus E = 1000 and its Poisson’s ratio is 𝜈 = 0.3. The body force b(x) is chosen
such that the solution equals to

u(1) = u(2) = sin(𝜋x(1)) sin(𝜋x(2)). (33)

The domain Ω is partitioned into nc cells using the Voronoi diagram of nc non-uniformly distributed seeds. The cells
corresponding to nc = {16, 64, 256} are depicted in Figure 12. One ghost layer is padded around the plate to ensure
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(A) (B) (C)

F I G U R E 12 Voronoi diagram consisting of nc = 16 (A), nc = 64 (B), and nc = 256 (C). The Voronoi seeds are obtained from Reference
42. (A) nc = 16. (B) nc = 64. (C) nc = 256.

completeness near the plate’s boundaries. We consider linear and quadratic local polynomials rp ∈ {1, 2} mollified with
a C2-smooth spline mollifier obtained from the tensor product of a one-dimensional spline curve

m(x) =
⎧
⎪
⎨
⎪⎩

35
16hm

(
1 − 12

(
x

hm

)2
+ 48

(
x

hm

)4
− 64

(
x

hm

)6
)

if |x| < hm
2

0 if |x| ≥ hm
2

(34)

where the mollifier width hm is obtained by averaging the total area of the domainΩ by the total number of internal cells,
that is,

hm = 2
(

1
nc

)0.5

. (35)

We determine the total number of collocation points nz according to the total number of basis functions nb. In particular,
we require nz ≥ nb regardless of the type of point distributions used. The number of basis functions is determined by

nb =
(

nc + ng
)
|pi| (36)

where nc is the number of cells and ng is the number of ghost cells. The notation |pi| indicates the number of monomial
basis functions in each cell, which depends on the order rp and dimension d. For the two-dimensional case, |pi| = 3
applies for the linear and |pi| = 6 applies for the quadratic polynomial order. For example, when the number of internal
cells is nc = 16 and the number of ghost cells is ng = 20, the total number of basis functions for the quadratic case is
nb = (16 + 20) ⋅ 6 = 216.

We arrange the collocation points according to the uniform, Gauss quadrature, and quasi-random distribution in
a similar way as in the previous one-dimensional examples. In the uniform case, we consider a tensor product of the
one-dimensional uniform point distribution over the domainΩ. In the above example with nc = 16 cells and the quadratic
polynomial order, we select nz = 162 collocation points as depicted in Figure 13A. For the Gauss quadrature case, we
first triangulate the polytopic cells and subsequently distribute the quadrature points by mapping them from a reference
triangle. In the case of quadrilateral cells, we use Gauss quadrature points mapped from a quadrilateral reference element,
as illustrated in Figure 13B. The quadrature order is uniformly chosen for all cells so that the criterion nz ≥ nb is satisfied.
For the quasi-random point distribution, we first consider the uniform point arrangement and apply a small perturbation
to each point. Moreover, in each coordinate axis, we consider a perturbation sampled from a uniform distribution 𝜖 ∼
 (−𝜎, 𝜎), where 𝜎 is 15% of the equidistant point spacing (Figure 13C).

Figure 14 shows the solution contour to the elastic plate problem computed over nc = 16 polytopic cells. Figure 15
illustrates the convergence of the solution approximation in the L2-norm and H1-seminorm. The convergence rates of rp
are achieved in both norms for both the linear rp = 1 and quadratic rp = 2. For the linear case rp = 1, the error constants
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(A) (B) (C)

F I G U R E 13 Collocation points according to the uniform (A), Gauss quadrature (B), and quasi-random (C) distributions for the case
with nc = 16 cells. (A) Uniform. (B) Gauss quadrature. (C) Quasi-random.

F I G U R E 14 Solution to the elastic plate problem computed over nc = 16 cell discretisation.

(A) (B)

F I G U R E 15 Two-dimensional elastic plate problem. Convergence with a C2 hexic spline mollifier with piecewise polynomial of order
rp = {1, 2}. (A) L2-norm error. (B) H1-seminorm error.
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of the three point distributions are comparable, with the mean error of the quasi-random distribution having a slightly
lower convergence rate. Furthermore, for the quadratic order rp = 2, the quasi-random distribution has a slightly higher
mean error in the L2-norm and a slightly lower convergence rate compared to the other two distributions. Unlike in the
one-dimensional example, we cannot deduce a trend in the standard deviation of errors with quasi-random collocation
points, which might be indirectly influenced by the non-nested refinement.

4.2.2 Two-dimensional plate bending

In this section, we consider the two-dimensional bending problem on a two-dimensional square plate defined by the
domain Ω = (0, 1) × (0, 1) with boundary Γ. The governing biharmonic equation and the boundary conditions read:

DΔ2u = q in Ω, (37a)

u = 0 on Γ , (37b)

∇u ⋅ n = 0 on Γ . (37c)

Here, D is a constant associated with the material properties and the thickness of the plate. In our computations, we
assume D = 1 and the right-hand term q(x) is chosen according to

q(x) = −16𝜋4(cos
(
2𝜋x(1)

)
− 4 cos

(
2𝜋x(1)

)
cos

(
2𝜋x(2)

)
+ cos

(
2𝜋x(2)

))
(38)

which leads to the solution of

u(x) =
(
1 − cos

(
2𝜋x(1)

))(
1 − cos

(
2𝜋x(2)

))
. (39)

The domainΩ is partitioned into nc non-uniform polytopic cells as used in the previous two-dimensional elastic plate
cells mentioned in Section 4.2.1 and Figure 12. One ghost layer is padded around the plate to ensure completeness near
the plate’s boundaries. We consider quartic and quintic local polynomials rp ∈ {4, 5} mollified with a C4-smooth spline
mollifier obtained from the tensor product of a one-dimensional spline curve

m(x) =
⎧
⎪
⎨
⎪⎩

2772
1024hm

(
1 − 20

(
x

hm

)2
+ 160

(
x

hm

)4
− 640

(
x

hm

)6
+ 1280

(
x

hm

)8
− 640

(
x

hm

)10
)

if |x| < hm
2

0 if |x| ≥ hm
2

. (40)

The mollifier width hm is obtained by averaging the total area of the domainΩ by the total number of internal cells, like
in our plate case (Section 4.2.1). In this example, we consider a Gauss quadrature of order 𝛾 as collocation points mapped
from the simplices division of each cells. The Gauss quadrature order is set as 𝛾 = 7, which satisfies our requirement that
nz ≤ nb. According to (36), for the polynomial order rp = 4, we consider the total number of monomial basis functions in
one cell to be |pi| = 15. Likewise, for rp = 5, there are |pi| = 21 monomials in one Voronoi cell.

Figure 16 shows the solution contour to the plate bending problem computed over nc = 16 polytopic cells. The
convergence of relative errors in the L2-norm and H1-seminorm is illustrated in Figure 17. In both the L2-norm and
H1-seminorm, the error converges approximately with a rate of rp − 2 for both rp = 4 and rp = 5. In addition, the scaling
of the monomial basis introduced in (9) is crucial for the stability of the linear system because of the high-order polyno-
mial involved. Moreover, because of the higher order derivatives involved in this example, we use another scaling factor
of (hm)d, where d is the derivative order, to better condition the linear system, as explained in Section 3.1.

4.2.3 Two-dimensional infinite plate with a hole

In this section, we consider an infinite plate with a circular hole subjected to uniaxial tension. The tension 𝜎∞ = 106 is
applied in the x-direction (Figure 18). Due to symmetry, we consider only a quarter of the plate with a unit length and the
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F I G U R E 16 Solution to the two-dimensional biharmonic problem computed over nc = 16 cell discretisation.

(A) (B)

F I G U R E 17 Two-dimensional biharmonic plate problem. Convergence with C4-smooth spline mollifier with a piecewise polynomial
of order rp = {4, 5}. (A) L2-norm error. (B) H1-seminorm error.

a hole radius of a = 0.25. The material has Young’s modulus of E = 70 × 106 and its Poisson’s ratio is 𝜈 = 0.3. The infinite
plate with a hole problem has a closed-form analytic solution71 as follows

ux =
𝜎∞ a

8𝜇

[
r
a
(𝜅 + 1) cos(𝜃) + 2a

r
((1 + 𝜅) cos(𝜃) + cos(3𝜃)) − 2a3

r3 cos(3𝜃)
]

(41)

uy =
𝜎∞ a

8𝜇

[
r
a
(𝜅 − 3) sin(𝜃) + 2a

r
((1 − 𝜅) sin(𝜃) + sin(3𝜃)) − 2a3

r3 sin(3𝜃)
]
, (42)

where r is the distance from the centre of the hole and 𝜅 is the Kolosov constant

𝜅 = 3 − 𝜈

1 + 𝜈

(43)

for plane stress. Dirichlet boundary conditions are imposed over the entire boundary of the plate.
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F I G U R E 18 Schematic of the elastic plate with a hole problem.

(A) (B) (C)

F I G U R E 19 Distribution of collocation points inside the plate-with-hole domain and on its boundary according to the Gauss
quadrature arrangement. (A) nc = 16. (B) nc = 64. (C) nc = 256.

In this example, we consider an initial mesh of nc = 16 quadrilateral cells as shown in Figure 19A. The refined
meshes are obtained by introducing new vertices in the middle of each edge and subsequently subdividing the cells
into four, see Figure 19B,C for nc = 64 and nc = 256, respectively. As in previous examples, ghost cells are considered
to ensure completeness at the boundary and are explicitly shown in Figure 19. Here, we consider Gauss quadrature of
order 𝛾 as collocation points mapped from the reference quadrilateral to each cell, see Figure 19. The Gauss quadrature
order is 𝛾 = 3 and 𝛾 = 4 for linear rp = 1 and quadratic rp = 2 polynomial orders, respectively. Because the cell edges
do not align with the domain boundary around the hole, some collocation points may lie outside of the domain Ω.
Such collocation points are removed from computation through an auxiliary detection method using the signed distance
function 𝜙(x) of the domain Ω. By definition, the signed distance function 𝜙(x) is positive inside the domain, negative
outside the domain, and the zeroth isosurface 𝜙−1(0) corresponds to the boundary Γ. Therefore, we consider only quadra-
ture points that satisfy 𝜙(zk) > 10−5 as internal collocation points. Furthermore, to enhance accuracy around the hole,
boundary collocation points are mapped from a reference one-dimensional line according to the eight-th order Gauss
quadrature 𝛾 = 8.

To analyse this problem, the C2-smooth spline mollifier is used as described in (34), yielding C3-smooth basis func-
tions. Figure 20 shows the convergence of the solution error in the energy norm. It is evident that convergence rate of rp
is achieved for both the linear rp = 1 and quadratic rp = 2 polynomial orders. Furthermore, we would like to compare the
basis evaluation between the proposed collocation approach and the finite element (FE) implementation.42 As described
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F I G U R E 20 Elastic plate with a hole. Convergence of the relative energy norm error with a C2-smooth spline mollifier and a local
polynomial basis of degree rp = {1, 2}.

in Section 2.3, both approaches require evaluating basis functions at Gauss quadrature points. It is important to note
that the adequate quadrature order needed for the FE is determined by the polynomial order of the integrands, whereas
in the collocation approach, the appropriate quadrature order is determined through a loose criterion (nz ≥ nb) to avoid
underdetermined matrix system. For instance, to integrate the FE stiffness term in the quadratic case rp = 2 with the C2

polynomial mollifier, the integrand has a maximum polynomial order of 16. Therefore, the minimum Gauss quadrature
order required is 𝛾 = 9. Assuming quadrilateral cells, leads to 81 points per cell. By contrast, the proposed collocation
approach requires 𝛾 = 4 to ensure the system is overdetermined. Moreover, although auxiliary techniques such as varia-
tionally consistent integration 54,55 can be used to aid in the FE integration, they still require an adequate base quadrature
order.

4.3 Three-dimensional heat transfer on a solid body

In this example, we consider a steady heat transfer with a constant coefficient of 1, that is,∇2T(x) = f(x). The source term
is applied so that the temperature solution is T(x) = sin

(
𝜋x(1)

)
sin

(
𝜋x(2)

)
sin

(
𝜋x(3)

)
. A linear local polynomial basis func-

tion is then chosen in each cell and a tensor product of the C1-smooth mollifier is used, as described in Reference 42. We
use the proposed mollified-collocation method to solve the heat transfer problem over solid bodies discretised using poly-
topic meshes. Here we consider two objects as our domain: a unit cube and a dodecahedron with a uniform edge length
of 0.3, as shown in Figures 21 and 1, respectively. The objects are discretised using the VoronoiMesh function in Mathe-
matica by distributing quasi-uniform Voronoi seeds over a bounding boxΩ□ larger than the domainΩ. Subsequently, we
exclude the cells corresponding to zero-valued basis inΩ. The resulting active Voronoi meshes consist of 1000 cells for the
box example and 622 cells for the dodecahedron. The discretisation has a total number of basis functions nb = 4000 for
the cube and nb = 2488 for the dodecahedron. Furthermore, an auxiliary intersection algorithm is required to determine
part of the Voronoi cells inside the domain Ω for distributing the collocation points. After obtaining part of the cell lying
inside the domain, we first tessellate this part into tetrahedra and map Gauss points onto each tetrahedron. The bound-
ary collocation points are obtained by mapping the Gauss quadratures onto the surface triangles. This approach results
in nz = 8373 collocation points for the cube example, and nz = 6522 points for the dodecahedron. The isocontours of the
computed temperature are shown in Figures 21 and 1 for the cube and dodecahedron, respectively. It is worth empha-
sising that our method allows for non-boundary fitting discretisation, which simplifies the domain discretisation into
cells.
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ALFARISY et al. 23 of 26

F I G U R E 21 Three-dimensional box case result. The top left image depicts the cell coordinate system, the top right image depicts the
exploded Voronoi mesh that is used in this case, the bottom left image depicts the points distribution, and the bottom right image depicts the
temperature contour of the result. (A) Domain definition. (B) Voronoi mesh. (C) Temperature distribution over the collocation points. (D)
Temperature contour.

5 CONCLUSIONS

We presented a point collocation method that uses the smooth mollified basis functions to approximate the solutions
of Poisson, linear elasticity, and biharmonic equations. The method attained high-order numerical convergence. The
approximation properties of the mollified basis were characterised by the order of local polynomial approximants and the
smoothness of the mollifier. The smoothness of the approximation using mollified basis functions remained intact even
across meshes with irregular polytopic shapes. Here, we considered polynomial mollifiers with compact support and unit
volume. To evaluate the basis functions at a point, a convolution integral is solved by first obtaining a compact integration
domain, which is the intersection between the polytope and a box. They represent the support of the piecewise polynomial
and the mollifier, respectively. Such a geometric intersection can be robustly computed using polytope clipping and convex
hull algorithms implemented in Mathematica, Python, and similar geometry processing libraries.50,72,73 In this work,
we constructed an overdetermined linear system by choosing the number of collocation points to exceed the number of
basis functions. Furthermore, to improve the conditioning of the system matrix, we scaled the basis functions and their
derivatives. These treatments yielded good convergence properties irrespective of the mollifier type, support size, or the
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spatial distribution of the collocation points. Finally, the proposed mollified collocation approach dispensed with the need
for integrating the domain and boundary integrals in contrast to the mollified Galerkin approach.42

There are several promising future extensions of the proposed mollified collocation approach. The first proposition
concerns the requirement for the padded ghost cells to ensure the polynomial reproduction property of the mollified basis
functions throughout the domain. Consequently, the basis functions associated with ghost cells have to be considered
in the computation, which ultimately leads to an increased number of bases. A systematic approach to guarantee poly-
nomial reproduction without needing ghost cells will improve the efficiency of the mollified-collocation method. One
promising avenue includes morphing the kernel when approaching the boundary. In addition, the recent development of
boundary-fitted Voronoi tessellations can be incorporated into the mollified-collocation framework. Efficient implemen-
tations of such algorithms have been reported, for example, References 50,51. Furthermore, an obvious extension of the
proposed method is to consider local p− and h− refinement. Local p− refinement is possible because of the individual
prescription of the local polynomial order for each cell. When Voronoi tessellation is used for domain discretisation, the
h− refinement becomes less obvious. One possible approach involves adding more Voronoi seeds to the area of interest
and regenerating the Voronoi tessellation. The regularity of cells can then be improved using the standard Lloyd’s itera-
tion.49,74 Another promising future work involves exploring and establishing the connection between mollification and
convolutional neural networks.75 This will allow for efficient uni- and multivariate basis evaluations, using open-source
machine learning tools such as PyTorch and TensorFlow. Finally, the choice of local monomial basis requires appropri-
ate scaling factors to better condition the system matrix. Some studies are available on the alternative basis functions for
polytopic elements, for example, References 76–78, which could be adapted for application in the mollified context.
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