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 A B S T R A C T

Computational pathology models rarely utilise data that will not be available for inference. This means most 
models cannot learn from highly informative data such as additional immunohistochemical (IHC) stains and 
spatial transcriptomics. We present TriDeNT , a novel self-supervised method for utilising privileged data 
that is not available during inference to improve performance. We demonstrate the efficacy of this method 
for a range of different paired data including immunohistochemistry, spatial transcriptomics and expert nuclei 
annotations. In all settings, TriDeNT  outperforms other state-of-the-art methods in downstream tasks, with 
observed improvements of up to 101%. Furthermore, we provide qualitative and quantitative measurements 
of the features learned by these models and how they differ from baselines. TriDeNT  offers a novel method 
to distil knowledge from scarce or costly data during training, to create significantly better models for routine 
inputs.
1. Introduction

Humans are able to easily transfer knowledge gained from studying 
one imaging technique into another. A clinician working with a rare 
type of histological staining who discovers a morphological change 
indicating disease will easily leverage this knowledge when they see 
the same change in routine stains from new patients, such as H&E 
(Haematoxylin and Eosin)1 staining. For a deep learning model, this 
information would be useless, as it would have to be retrained from 
scratch for the new type of staining. There exist methods to enable deep 
learning algorithms to shift domains, however, the generality typically 
comes at the cost of performance on the primary domain (Rusu et al., 
2016).

Deep learning approaches are quickly becoming pre-eminent in 
computational pathology, as they are able to make fast and accurate 
predictions at scale. Furthermore, research interest is beginning to turn 
to methods which do not require manual labelling of data, finding 
features in data without supervision. Despite this, deep learning models 
for pathology images are often only suitable for the task on which they 
were trained, and cannot meaningfully transfer to new domains without 
significant and costly re-training.

∗ Correspondence to: CRUK Scotland Institute, Switchback Rd, Bearsden, Glasgow G61 1BD, Scotland, UK.
E-mail addresses: lucas.farndale@glasgow.ac.uk (L. Farndale), ke.yuan@glasgow.ac.uk (K. Yuan).

1 See Figure S1 for a full list of abbreviations used in the text.

Histology has long been the focus of a large amount of research 
attention in deep learning, and as a result there exist large datasets, 
such as TCGA (The Cancer Genome Atlas) (Weinstein et al., 2013) 
and HTAN (Rozenblatt-Rosen et al., 2020) containing data from rou-
tine examinations, such as H&E stains, CT scans and X-rays. This has 
enabled very powerful models to be trained for these modalities, as 
these datasets are large, well-curated, and often cover many different 
demographics. What these datasets typically lack, however, is strong 
labels for most features present in these images. This means supervised 
models can only be trained on these large training datasets to pre-
dict slide-level labels such as survival, rather than clinically relevant 
features that require more extensive annotation.

Despite not usually having strong labels, many datasets contain 
data from multiple sources and modalities, ranging from common 
techniques such as immunohistochemistry (IHC) (Liu et al., 2022) to 
cutting-edge technologies such as super-resolution microscopy (Qiao 
et al., 2021), spatial transcriptomics (Maniatis et al., 2019), and multi-
plex IHC (Ghahremani et al., 2023). For example, studies using spatial 
transcriptomics typically also obtain H&E stains alongside the genetic 
data.
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Fig. 1. A: TriDeNT  architecture. TriDeNT  incorporates information from privileged input data to complement a primary data source. There are two encoder/projector pairs, 
one for the primary input (e.g. H&E patches), and one for the secondary input (e.g. transcriptomics). The primary patches are augmented and passed to the primary encoder, 
followed by the projector, to output a representation. The privileged data are similarly passed to the privileged data encoder and projector. All representations are then used to 
calculate the self-supervised loss, which enforces invariance between representations. B: Classifier head training. Following this pre-training, the primary encoder is then used as a 
backbone for a downstream task, with a small classifier head appended. This is then trained in a supervised manner, requiring only a small amount of data. C: Use for downstream 
tasks. Finally, this trained model with a classifier head can be rolled out for use.
While models utilising multiple sources of data have been shown 
to be highly effective (Song et al., 2021; Arevalo et al., 2017; Kiela 
and Bottou, 2014), the abounding issue with these approaches is that 
obtaining additional data sources in practice is extremely difficult. 
State-of-the-art techniques are typically prohibitively expensive or im-
practical to be routinely used until long after their invention, and 
consequently their use is limited to a few research activities in excep-
tionally well-resourced labs. Even some more routine techniques, such 
as many immunohistochemical (IHC) stains, are arduous and expensive 
to obtain, register and align with existing data, and the available data 
will vary between samples or patients. It is therefore an important 
research direction to find methods which can use these additional 
privileged data sources during training to build better models of routine 
data, as these can be collected at scale and with fewer resources.

Learning Using Privileged Information (LUPI) methods (Vapnik and 
Vashist, 2009), which seek to improve performance by utilising addi-
tional data during training that is not available during inference, could 
be a framework to achieve this goal. By training models to learn from
privileged data, we can develop models which make use of multiple 
sources to better analyse routine medical imaging without supervision. 
Furthermore, if they are available, manual annotations can be used as 
an additional input source for models to learn from during training 
without being restricted to only learning to output these annotations, 
as in supervised learning.

Primarily motivated by text/image retrieval tasks, there have been 
many LUPI methods developed. In general, these have been in su-
pervised settings, however recently several unsupervised and self-
supervised approaches have been developed. In some cases, exist-
ing unimodal self-supervised architectures have been shown to be 
amenable to LUPI, for example SimCLR (Chen et al., 2020), Barlow 
Twins (Zbontar et al., 2021) and VICReg (Bardes et al., 2021), while 
others have been explicitly designed to cater to this problem setting, 
notably CLIP (Radford et al., 2021), DeCLIP (Li et al., 2021) and 
ALIGN (Jia et al., 2021), which use a contrastive objective similar 
to SimCLR to train models to predict the correct image/text pairings, 
and VSE++ (Faghri et al., 2017) which uses hard-negative mining to 
improve representations.
2

Self-supervised LUPI training has been shown to be a highly ef-
fective method of improving the performance of models whose privi-
leged data contains more task-relevant information than the primary 
data (Farndale et al., 2023; Girdhar et al., 2023). These methods are 
designed to minimise the difference between the representations of 
each input by mapping all embeddings into a shared latent space (joint 
embedding) (LeCun, 2022). However, in the case where we are only 
interested in the output of one branch, this can be restrictive. For 
example, if a feature is not shared between both inputs, these methods 
will neglect it, leading to worse performance (Farndale et al., 2023) 
(Fig.  2(a), see Section 2.3). This was apparent in Girdhar et al. (2023), 
where, despite impressive retrieval performance, the proposed joint 
embedding model significantly underperformed supervised models on 
classification tasks, implying that important features were neglected 
in the primary domain. In this work we present TriDeNT  (Fig.  1, 
Section 2.4), a new method designed to enable features which are only 
present in the primary data to be learned in addition to those shared 
between inputs. The main contributions of this work are:

• We develop a new three-branch self-supervised model architec-
ture, TriDeNT , which utilises privileged information without 
compromising the features learned from the primary data;

• Using standard computational pathology tasks, we find that the 
previous state of the art – standard Siamese self-supervised joint 
embedding architectures (e.g. Girdhar et al. 2023) – embeds 
only information shared between views, meaning performance is 
reduced where not all task-relevant information is present in the 
privileged input;

• We show that TriDeNT  can incorporate features from additional 
stains, spatial transcriptomics, or nuclei annotations, for unpriv-
ileged downstream data analysis, and learns considerably more 
biologically relevant information from H&E images.
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Fig. 2. (a) Abstract description of the features which will be learned by different types of self-supervised models. The colour of the lines reflects the information being leveraged 
by privileged and unprivileged primary models. Features are either strongly present, weakly present, or absent in the primary and privileged data. Unprivileged Siamese models 
learn only features strongly present in the primary input, and are unlikely to learn any features which are only weakly present. Privileged models are likely to only learn features 
strongly or weakly present in both primary or privileged inputs. TriDeNT  combines the benefits of both methods to learn all features strongly present in the primary data, 
even those absent in the privileged data, while also learning features weakly present in the primary data that are strongly present in the privileged data. (b) Schematic for the 
learning process of these models. Black arrows indicate the forward flow of information through the network, and dashed lines indicate the signals which are received during 
backpropagation. Each branch effectively acts as a supervisory signal for the other branches, backpropagating feedback on the best features to learn. The primary model in the 
unprivileged Siamese setting only receives supervisory feedback from the primary data, so only learn primary features. Primary models in the privileged Siamese setting only 
receive supervisory feedback from the privileged data, so neglect many primary features. With TriDeNT , primary models receive feedback from both data types, leading to 
features from both inputs being learned.
2. Methodology

2.1. Self-supervised learning

In contrast to supervised learning which requires labels, and unsu-
pervised learning which utilises task agnostic methods to find structure 
in data, self-supervised learning (SSL) seeks to extract supervisory signals 
from data that it can leverage to produce meaningful representations 
of its inputs. These methods differ from unsupervised methods as 
they require manually engineered architectures for the specific data of 
interest, such as choosing appropriate data augmentations.

There are two types of SSL: (i) generative, e.g., imputation of miss-
ing data, where the missing data provides the supervisory signal, such 
as a word masked from a sentence, and (ii) discriminative, e.g., Siamese
models which map of multiple inputs into the same latent space, using 
the representation of each input as a supervisory signal for the other 
source.

In the typical supervised setting, training consists of passing in-
put/label pairs (𝒙, 𝒚) to a model 𝒚 = 𝜓(𝒙) and optimising 𝜓 for some 
loss function comparing 𝑦 with a ground truth. Siamese self-supervised 
models instead take as inputs pairs (𝒙,𝒙′), and use models 𝒛 = 𝜙(𝒙), 
𝒛′ = 𝜙′(𝒙′) with the aim of minimising the difference 𝑑(𝒛, 𝒛′) between 
3

𝒛 and 𝒛′. Typically this is implemented with 𝜙 = 𝜙′, with 𝒙 and 𝒙′ both 
augmentations of the same input.

This method is amenable to a trivial constant solution where 𝒛 = 𝒄
for some constant 𝑐 for all inputs. Therefore, Siamese methods require 
some regularisation to avoid such collapse. There are two approaches: 
contrastive and non-contrastive. Contrastive methods such as Chen 
et al. (2020), Radford et al. (2021), Caron et al. (2020) use both
positive (matching) and negative (non-matching) pairs, and seek to pull 
together positive pairs while pushing apart negative pairs, either in 
embedding space (Chen et al., 2020; Radford et al., 2021) or through 
cluster assignment (Caron et al., 2020). Non-contrastive methods such 
as Zbontar et al. (2021), Bardes et al. (2021), Chen and He (2021), 
Grill et al. (2020) instead use only positive pairs, and regularise the 
representations to avoid collapse by using architectural constraints such 
as momentum encoders (Grill et al., 2020), stop gradients (Chen and 
He, 2021) and covariance constraints (Zbontar et al., 2021; Bardes 
et al., 2021).

2.2. Knowledge distillation

Knowledge distillation is the transfer of knowledge from a teacher
model to a student model (Hinton et al., 2015), usually with the goal 
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of either teaching a smaller student model to emulate the performance 
or learn some desirable property of the teacher model. This is usually 
achieved by passing the same input to both models, and minimising the 
difference between their outputs, using either their representations or 
possibly a projection head. The student model is usually smaller, and 
the teacher model may be pre-trained. The objective is to teach the 
student model to produce the same or a related output to the teacher, 
possibly using fewer resources.

In this work, we utilise this approach not to distil knowledge on the 
level of the model, but on the level of the data. We consider settings 
where there are multiple sources of data about the same input, such 
as different histological stains from the same sample, and we wish to 
train models to classify only the primary data. By mapping both inputs 
into a joint embedding space, the models’ objective is to produce the 
same representation for each, with the goal of improving the quality of 
representations of the primary data.

2.3. Privileged information

Privileged information is information which is available during 
training but not during inference. In a supervised setting this is defined, 
using the notation of Section 2.1, as having data (𝒙,𝒙∗, 𝒚) during 
training, and optimising a model 𝒚 = 𝜓(𝒙), which will then be used 
in inference without the privileged information 𝒙∗. Most existing work 
on LUPI is focused on understanding supervised learning dynamics 
using support vector machines (SVMs), however, much of this has 
been extended to neural networks (Vapnik and Izmailov, 2017), un-
supervised learning (Feyereisl and Aickelin, 2012; Karaletsos et al., 
2015), and knowledge distillation (Lopez-Paz et al., 2015). The original 
framework (Vapnik and Vashist, 2009) was defined for SVMs, with the 
privileged information being used to estimate the slack values. The 
slack values can be understood equivalently for neural networks as 
loss values. This was leveraged by Yang et al. (2017) to use privileged 
information to estimate loss values for a neural network for multiple 
instance learning, integrating privileged information at both the in-
stance level and the bag level. Rather than directly using privileged 
information to inform predictions, Lambert et al. (2018) use privileged 
information to determine dropout variance during training, leading to 
greater sample efficiency.

Despite the apparent advantage of providing privileged information 
to a model, it has been shown that training with privileged information 
does not satisfy a no-harm guarantee (Lambert et al., 2018). This can 
be due to a variety of factors, such as because estimating properties 
of the privileged information can be more difficult than estimating 
the same properties of the primary data. It was shown in Farndale 
et al. (2023) that Siamese LUPI leads to improved performance on tasks 
where the privileged input contains more task-relevant information 
than the primary input, e.g., a low-resolution image paired with a high-
resolution image. However, it is also observed that if the privileged 
input contains less task-relevant information, it can reduce perfor-
mance. This is because mapping both inputs into the same latent space 
causes task-relevant information in the primary input to be lost if it is 
not shared between branches, as is visualised in Fig.  2(a). Consequently, 
non-LUPI learning can lead to better performance in these scenarios, 
despite the loss of additional task-relevant information which could be 
gained from an privileged input.

Extending the supervised setting to the Siamese self-supervised set-
ting, we have inputs pairs (𝒙,𝒙∗), and use models 𝒛 = 𝜙(𝒙), 𝒛∗ = 𝜙∗(𝒙∗)
with only the model 𝜙 being used for inference. For example, we may 
have a set of H&E images 𝒙 and privileged paired IHC images 𝒙∗ which 
are only available during training.

As Siamese joint-embedding models minimise the difference be-
tween representations in the shared embedding space, any features 
which are not shared between branches will be neglected. There is 
no way to predict a feature in the privileged input from the primary 
input if no information exists about that feature in the primary input. 
4

On the other hand, features which are weakly present in the primary 
input but strongly present in the privileged input may be learned, as 
there is a strong supervisory signal from the privileged data. In the 
non-LUPI setting (Siamese learning without privileged inputs), such 
features are unlikely to be learned due to the absence of the strong 
signal from the privileged input. Formally, following Jing et al. (2021), 
we consider features which have variance that is nonzero but lower 
than the augmentation regime to be weakly present, and those with 
greater variance than the augmentation regime to be strongly present.

2.4. TriDeNT 

The goal of TriDeNT  method is to combine the benefits of both 
LUPI and non-LUPI methods in such a way that the primary encoder 
can make best use of signals from all inputs. We use a three-branched 
approach, with two branches acting on the primary input and a third 
acting on the privileged input. Our method can be considered a gen-
eralisation of the standard Siamese self-supervised architecture. We 
take inputs 𝑿 = (𝒙,𝒙∗) ∈ ( ,∗), where we assume each input 
contains some information about their shared source. The inputs could 
represent any type of input array, such as images, -omics data, or 
patient information. We assume 𝒙∗ contains some mutual information 
with 𝒙. We aim to obtain representations 𝒛, 𝒛∗ ∈ , such that the 𝒛
is a sufficient representation of 𝒙 for some task 𝑇 , that is to say we 
have mutual information 𝐼(𝒛; 𝑇 ) = 𝐼(𝒙; 𝑇 ). Note that, in contrast to 
comparable approaches, we are only interested in optimising 𝒛∗ insofar 
as this benefits 𝒛, as only 𝒛 is to be used for inference.

Inputs 𝒙,𝒙∗ are augmented by stochastic operators 
𝑎 ∶  →  , 𝑎∗ ∶ ∗ → ∗ (1)

respectively, and mapped to representations 𝒛𝑖 ∈  by encoders 𝑓 𝑖 ∶
 𝑖 →  according to the rule 
𝒛𝑖 = 𝑓 𝑖(𝑎̂(𝒙)), 𝑖 = 1, 2, ∗ . (2)

We have defined 𝑎̂ to be 𝑎 if its input is 𝒙 and 𝑎∗ if its input is 𝒙∗, 
as in general there is no reason for augmentations to be the same for 
primary and privileged data. This yields three representations, 𝒛1, 𝒛2, 
and 𝒛∗, where 𝒛1 and 𝒛2 are representations of each augmentation of 
the primary data, and 𝒛∗ is the representation of the privileged data. 
Representations are then mapped to embeddings 𝒆𝑖 ∈  by a projector 
𝑔𝑖 ∶  →  with the rule 𝒆𝑖 = 𝑔𝑖(𝒛𝑖). In general we will have primary 
encoder 𝑓 = 𝑓 1 = 𝑓 2 and projector 𝑔 = 𝑔1 = 𝑔2.

Note that the spaces  and  are not dependent on 𝑖, as these 
are shared latent spaces. Projections into an embedding space are 
used in keeping with existing approaches (Zbontar et al., 2021; Bardes 
et al., 2021; Chen et al., 2020), as this has been shown to improve 
generalisation and feature learning. For inference, augmentations are 
not applied, so 𝑎̂ is set to 𝑎̂(𝑥) = 𝑥. In general, we use the same encoder 
for both branches taking 𝒙 as input, as sharing weights has been shown 
to improve performance on unprivileged tasks (Farndale et al., 2023). 
Typically, we will have  = R𝑛×𝑑 where 𝑛 is the batch size and 𝑑 is the 
dimension of the representation. For pseudocode, see Algorithm S1.

2.5. Objective function

Consider a setting where 𝑁 is the number of branches with the 
primary input and 𝑀 is the number of branches with the privileged 
input. We generalise a two-branch self-supervised loss 2(𝒛𝑖, 𝒛𝑗 ) to 
𝑁 +𝑀 branches by summing over the losses between representations 
such that the 𝑁 +𝑀 branch loss is defined as 

𝑁,𝑀 (𝒛1,… , 𝒛𝑁 , 𝒛∗1,… , 𝒛∗𝑀 ) ∶=
𝑁+𝑀
∑

𝑖≠𝑗
2(𝒛𝑖, 𝒛𝑗 ). (3)

We investigate the case where 𝑁 = 2 and 𝑀 = 1 (giving three 
branches overall) however the method could easily be generalised to 
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Table 1
Datasets and tasks.
 Training Datasets
 Name: SegPath
Reference: Komura et al. (2023)
Tissue: Pan-Cancer 
Split: See Table B.5
Task: None

Contains eight subsets of H&E slides, each with a different paired IF stain (see 
Table B.5). Features 1,583 patients and 18 different tissue types, with no overlap 
between the H&E images in each subset. IF images are only released as binarised 
images using a threshold value determined in the original study (Komura et al., 
2023). Only used for training.

 Name: BCI
Reference: Liu et al. (2022)
Tissue: Breast 
Split: 62,336/15,632
Task: HER2 Status Prediction

HER2 (Human Epidermal growth factor Receptor 2) is a protein which has been 
found to be prognostic for breast cancer.
It is tested for using IHC staining, and classified into 4 grades (0, 1+, 2+, 3+). 
BCI contains paired H&E/IHC patches from 51 breast cancer patients, which have 
been registered for precise correspondence between the H&E/IHC patches.

 Name: PanNuke
Reference: Gamper et al. (2019)
Tissue: Pan-Cancer
Split: 4295/2283
Task: Neoplastic Cell Detection

PanNuke contains H&E patches paired with exhaustive nuclei segmentations from 
19 tissue types. The associated task is
neoplastic cell detection, following Huang et al. (2023), where the model must 
determine whether a patch
contains an abnormal, excessive growth of tissue, whether benign or malignant.

 Name: ALS-ST
Reference: Maniatis et al. (2019)
Tissue: Mouse/Human Spinal 
Cord
Split: See Appendix B.12
Task: Genotype Prediction &
White/Grey Matter Classification

Dataset containing 80 human and 331 mouse spinal cord sections from 7 humans 
and 67 mice who have ALS, a neurodegenerative disease affecting the motor 
neurons. All samples feature a H&E slide with matched and aligned spatial 
transcriptomics.
The tasks are to predict the mouse SOD1 genotype from SOD1-G93A 
(ALS),SOD1-WT (Wildtype), and Knockout, and to classify white matter and grey 
matter.

 Evaluation Datasets
 Name: NCT
Reference: Kather et al. (2018)
Tissue: Colorectal
Split: 100,000/7,177
Task: Tissue Classification

Manually annotated patches of nine tissue types: adipose (ADI), background 
(BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), 
normal colon mucosa (NORM), cancer-associated stroma (STR), colorectal 
adenocarcinoma epithelium (TUM). Patches extracted from H&E slides from 
86/50 patients in the train/test sets respectively.
This task assesses the models’ ability to differentiate features which are primarily 
determined by the H&E image, but can be enhanced by paired information, such 
as presence of immune cells helping classify lymphocytes.

 Name: Camelyon
Reference: Bandi et al. (2018)
Tissue: Lymph Node
Split: 179,394/146,722
Task: Out-of Distribution
Metastasis Detection

There is a large degree of variation between different scanners, staining protocols 
and sample collection methods, so H&E images can look very different depending 
on how, when, and where they were collected. The WILDS distribution of 
Camelyon features 1399 breast lymph node whole slide images from 5 different 
hospitals, with centres 1,2, and 3 comprising the train set, 4 being the validation 
set, and 5 being the test set. There is a large difference between sets, so 
Camelyon assesses models’ generalisation ability.

 Name: MHIST
Reference: Wei et al. (2021)
Tissue: Colorectal Polyps
Split: 2175/977
Task: Polyp Classification

Features patches from 328 whole slide images of colorectal growths, polyps, 
which can become cancerous.
MHIST contains two classes: serrated polyps, which can become cancerous, and
hyperplastic polyps, which are typically benign.
Note that these images are at 8× magnification, so this task assesses the models’ 
generalisation performance across magnification scales.

 Name: Singapore
Reference: Oner et al. (2022)
Tissue: Prostate
Split: 3843/4261
Task: Prostate Gland
Malignancy Classification

Classification dataset with samples from 46 patients who underwent a prostate 
core needle biopsy. Patches are centred on a prostate gland labelled as benign or 
malignant. This task assesses the models’ ability to make classifications based on 
a specific biological feature which was uncommon or absent during training.

 Name: TIL
Reference: Kaczmarzyk et al. 
(2022)
Abousamra et al. (2022)
Saltz et al. (2018)
Tissue: Pan-Cancer
Split: 209,221/56,275
Task: Tumour Infiltrating
Lymphocyte Detection

Features patches from 7983 whole slide images from 23 cancer types. The task is 
to detect tumour infiltrating lymphocytes (TILs),
which are an important biomarker for cancer prognosis, with increased TIL 
density being associated with positive clinical outcomes.
Assesses models’ ability to detect features which co-occur with more prominent 
labels such as tumour. Also assesses relative performance of different paired data, 
as immune-related paired data is far more relevant to performance than other 
stains.

 Name: PANDA
Reference: Bulten et al. (2022)
Tissue: Prostate
Split: 7962/2654
Task: Prostate Biopsy
ISUP Grading

Large dataset featuring 10616 whole-slide images of prostate biopsies, weakly 
labelled with ISUP grades from 1 to 5. Results are reported as Cohen’s 𝜅. 
Assesses performance of models’ representations for aggregated slide level 
predictions on a difficult,
clinically relevant task.

 (continued on next page)
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Table 1 (continued).
 Name: IMP 1K/4K
Reference: Oliveira et al. (2021)
Neto et al. (2022)
Neto et al. (2024)
Tissue: Colorectal
Split: 1132(1K)/4433(4K)/900
Task: Colorectal Dysplasia
Detection

Dataset with 1132 whole slide images (1K) from colorectal biopsies and 
polypectomies, with an extension to 4433 slides (4K). Labels are: non-neoplastic, 
low-grade lesions (conventional adenomas with low-grade dysplasia), and 
high-grade lesions (conventional adenomas with high-grade dysplasia, 
intra-mucosal carcinomas and invasive adenocarcinomas).

 Name: IMP Cervix
Reference: Oliveira et al. (2023)
Tissue: Cervix
Split: 480/120 
Task: Cervical Dysplasia
Detection

Features 600 whole slide images of cervical Loop Electrosurgical Excision 
Procedure (LEEP) samples, with 4 classes: non-neoplastic, low-grade, and 
high-grade squamous intraepithelial lesion.
more branches. Siamese unprivileged learning is the case with 𝑁 =
2 and 𝑀 = 0, and Siamese privileged learning is the case with 
𝑁 = 𝑀 = 1. A short discussion of the use of additional privileged 
branches is presented in Appendix E, where we see that using more than 
one privileged branch could deteriorate performance. In the present 
work we use both contrastive and non-contrastive choices of 2 to 
demonstrate that TriDeNT  is robust to the choice of self-supervised 
loss. We illustrate this using the VICReg (Variance Invariance Covari-
ance Regularisation) (Bardes et al., 2021) objective and the InfoNCE 
([Mutual Information] Noise Contrastive Estimation) objective (Oord 
et al., 2018), which have both been used extensively in self-supervised 
architectures (e.g. Lee et al. 2022, Chen et al. 2020, Radford et al. 2021, 
Girdhar et al. 2023).

For brevity we focus only on architectures which can be summed in 
this way, although this setting can be easily extended to architectures 
requiring more complex structuring of their loss function. For example, 
self-predictive architectures such as BYOL (Grill et al., 2020) and 
SimSiam (Chen and He, 2021) would require designation of online and
target branches and pairings between them.

2.5.1. VICReg
The VICReg objective is defined as 

𝑉 𝐼𝐶𝑅𝑒𝑔(𝒛1, 𝒛2) ∶= 𝜆𝑠(𝒛1, 𝒛2) +
2
∑

𝑖=1

[

𝜇𝑣(𝒛𝑖) + 𝜈𝑐(𝒛𝑖)
]

(4)

where 𝑠(⋅, ⋅) is an invariance regularisation term, 𝑣(⋅) is a variance 
regularisation term, and 𝑐(⋅) a covariance regularisation term, with 𝒛𝑖
being the embedding of branch 𝑖, and 𝜆, 𝜇, 𝜈 weighting coefficients. 
These functions are

𝑠(𝒛𝑖, 𝒛𝑗 ) ∶=1
𝑛

𝑛
∑

𝑘=1
‖𝒛𝑖𝑘 − 𝒛𝑗𝑘‖

2
2, (5)

𝑣(𝒛𝑖) ∶= 1
𝐷

𝐷
∑

𝑑=1
max

(

0, 𝛾 −
√

Var([𝒛𝑖]𝑑 ) + 𝜖
)

, (6)

𝑐(𝒛𝑖) ∶= 1
𝐷

∑

𝑑≠𝛿

[

𝐶(𝒛𝑖)
]2
𝑑,𝛿 , (7)

where 

𝐶(𝒛𝑖) ∶= 1
𝑛 − 1

𝑛
∑

𝑘=1
(𝒛𝑖𝑘 − 𝒛̄𝑖)(𝒛𝑖𝑘 − 𝒛̄𝑖)T, 𝒛̄𝑖 ∶= 1

𝑛

𝑛
∑

𝑘=1
𝒛𝑖𝑘, (8)

𝑛 is the batch size with [𝑧𝑖𝑎]𝑗 ∈ 𝒛𝑖 being dimension 𝑗 of element 𝑎 in the 
batch of representations 𝒛𝑖, 𝛾 is a term determining the desired variance 
of the representations, 𝐷 is the dimension of the representation, and 𝜖
is a small constant to ensure numerical stability. Unlike many Siamese 
networks (e.g. Chen and He 2021, Grill et al. 2020) VICReg can 
admit distinct inputs and architectures on each branch. This is because 
both branches are regularised separately by the covariance term, and 
consequently has been shown to work better than VSE++ (Faghri 
et al., 2017) and Barlow Twins (Zbontar et al., 2021) for multi-modal 
data (Bardes et al., 2021).
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Both the variance and covariance functions 𝑣 and 𝑐 are applied 
to each branch independently, meaning that the invariance between 
branches is achieved simply through the distance function 𝑠. In the orig-
inal description, these functions were implemented with all parameters 
shared between both branches, but this is not a necessary restriction.

2.5.2. InfoNCE
We use the variant of the InfoNCE/NT-Xent/N-pairs losses used in 

SimCLR (Chen et al., 2020), ImageBind (Girdhar et al., 2023), etc., 
which is defined as 

𝐼𝑛𝑓𝑜𝑁𝐶𝐸 (𝒛1, 𝒛2) ∶=
1
2𝑛

𝑛
∑

𝑖=1

(

𝑙(𝒛1𝑖 , 𝒛
2
𝑖 ) + 𝑙𝑖(𝒛

2
𝑖 , 𝒛

1
𝑖 )
)

(9)

with 

𝑙(𝒛𝑎𝑖 , 𝒛
𝑏
𝑖 ) ∶= − log

exp (sim(𝒛𝑎𝑖 , 𝒛
𝑏
𝑖 )∕𝜏)

∑𝑛
𝑘=1 exp (sim(𝒛𝑎𝑖 , 𝒛

𝑏
𝑘)∕𝜏)

, (10)

where sim(⋅) is the cosine similarity, 𝜏 is a temperature parameter, and 
𝑛 is the batch size.

2.6. Primary and privileged features

For an intuitive understanding of the method, it is helpful to con-
sider the representation of each branch as a supervisory signal for 
the others. Our model can therefore be considered a multi-objective 
setting, where the primary encoder 𝑓 aims to balance the information 
extracted from each augmentation of 𝒙 which is shared with 𝒙∗, and 
that which is shared with the other augmentation of 𝒙. In turn, the 
supervisory signals for 𝒙∗ are 𝒛1 and 𝒛2, and consequently they will 
only extract features which can also be found in 𝒙. In our typical 
setting, this corresponds to balancing information which is only weakly 
present in the primary input 𝒙, but strongly present in the privileged 
input 𝒙∗, with information which is strongly present in primary input 
𝒙. The result of this trade-off is that privileged features with a strong 
supervisory signal from 𝒛1 and 𝒛2 are learned, but primary features with 
a strong supervisory signal from 𝒛∗ are also learned. This is in contrast 
to the dichotomy between only learning strong features or only learning 
shared features presented by the standard 2-branch approaches.

2.7. Datasets and tasks

While H&E staining is the routine protocol for tissue analysis, 
pathologists usually rely on IHC or IF staining to obtain information 
about the locations of individual proteins, which may aid further 
investigation or confirm their diagnoses. IHC and IF stains contain 
highly specific information about a particular protein, so add useful 
information beyond that which can be readily identified with H&E 
staining. While this is necessary for human pathologists to identify 
features which cannot be identified by eye in the generic H&E stains, it 
has been shown that neural networks can accurately reproduce many of 
these stains from H&E images (Xu et al., 2019), although in other cases 
this is not possible, such as stains for different immune cell subtypes. 



Medical Image Analysis 102 (2025) 103479L. Farndale et al.
Fig. 3. (a) Difference in accuracy between TriDeNT   and privileged/unprivileged Siamese training on SegPath. Values greater than zero (above the dashed line) indicate a higher 
accuracy for TriDeNT . For example, if TriDeNT   has an accuracy of 90% and the Siamese method has an accuracy of 70%, this will give a 20 percentage point improvement. 
(b) Results for ten evaluation tasks averaged across all eight stains. Supervised baseline is provided for comparison, bold indicates best performance for the given self-supervised 
loss function. Supervised comparisons are only given for patch-level tasks, as train-time patch aggregation for slide-level tasks cannot be comparably achieved. Higher values 
indicate better performance. For full results see Table S4. Value marked † from Farndale et al. (2024). (c) Classification training dataset size performance comparison. Models were 
all pretrained on SegPath and evaluated using the full test set of each dataset. Training was carried out on 100%, 50%, 20%, 10%, 5%, 1%, and 0.2% of each classifier training 
dataset, and averaged over all SegPath stains. Supervised comparisons are trained in the same fashion, but not averaged.
It may be tempting to conclude, then, that learning representations 
of H&E patches which contain information relevant to IHC stains is 
a solved problem, and researchers should simply use these models 
to produce representations of H&E patches which contain features 
relevant to IHC or IF stains. Unfortunately, this has been shown to 
perform poorly (Farndale et al., 2023; Balestriero and LeCun, 2024), 
as image to image translation models are restricted to learning very 
fine grained information, such as the exact locations of nuclei, at the 
expense of the types of low-redundancy coarse grained features which 
are learned by self-supervised Siamese networks.

Nevertheless, the results of these works on image translation im-
ply that much or all of the useful information in IHC and IF stains 
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can be predicted from H&Es. We investigate how representation are 
affected by distilling information from IHC and IF stains into models 
of H&E stains, evaluating both brightfield IHC images and thresh-
olded IF images. We also investigate whether distilling manual nuclei 
segmentations can improve performance, as this is a painstaking pro-
cess for pathologists to perform, but there are now large datasets of 
(semi-)manually generated segmentations, with accurate models able 
to perform segmentation from H&E stains. We finally investigate the 
use of spatial transcriptomics as privileged information, as this contains 
rich complementary information to H&E stains, and is an example of 
how cutting-edge data could be distilled into models of routine data.
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Table 2
Results for models trained on the BCI dataset containing H&E patches paired with 
privileged brightfield IHC.

 

 Loss Method Privileged BCI NCT PanNuke 
 
VICReg

TriDeNT 3 0.8559 0.8347 0.8966  
 Siamese 3 0.8552 0.8019 0.9071  
 7 0.6863 0.8103 0.8506  
 
InfoNCE

TriDeNT 3 0.8800 0.8267 0.9115  
 Siamese 3 0.8319 0.7961 0.8677  
 7 0.7034 0.8045 0.9023  
 CrossEntropy Supervised – 0.6331 0.9245 0.8901  

In Table  1 we provide a short overview of the datasets used in this 
work. For a full description, please see Appendix B.

3. Results

3.1. Embedding knowledge from privileged image modalities

We first demonstrate that TriDeNT  is highly effective for improv-
ing the quality of representations in the primary encoder by distilling 
privileged information from immunofluorescence (IF) images to H&E 
stained images (Fig.  3 and Table S4). Models are trained on the Seg-
Path dataset (Komura et al., 2023), which consists of eight subsets 
of H&E images paired with an image derived from the IF stain of a 
consecutive slice for one of eight antibodies. Evaluation is performed 
on four standard computational pathology tasks (see Appendix B for 
full details). We find that the model significantly increases performance 
by up to 101% compared to a privileged baseline model. TriDeNT 
  retains not only the useful features shared between inputs, but also 
the features which are only present in the primary data, leading to 
better performance on all evaluated tasks. Even in cases where the 
privileged data does not appear to significantly improve performance, 
TriDeNT  still achieves comparable performance, as it obtains a strong 
supervisory signal from the additional H&E branch. This is in contrast 
with the privileged Siamese setting, where it is clear that the pairing 
can cause a seismic drop in classification accuracy if the privileged data 
is not informative for the task being evaluated (see Section 3.6 for a 
more detailed analysis).

We see that there are significant performance gains of up to 101% 
(0.4566 to 0.9169, see Table S4) in the NCT tissue type classification 
task for TriDeNT  against the baseline privileged method. The im-
proved performance from using TriDeNT  is seen across the board, 
with average performance improvements on all tasks, and only a hand-
ful of cases where individual stains underperform baseline models. 
We generally observe that when TriDeNT  performs worse than a 
baseline, it is only marginal, however, there are many cases where 
the performance difference between TriDeNT  and a baseline is enor-
mous. For example, on Camelyon, performance is improved from effec-
tively random guessing at 51% up to 81% with pan-CK as privileged 
information.

Perhaps unsurprisingly given the diagnostic importance of cytoker-
atin stains for detecting tumours, the greatest increases in performance 
against the unprivileged baseline method were generally achieved for 
the pan-CK model, with similar gains for 𝛼SMA. Notably, for the TIL 
task the immune-related stains CD3CD20 and CD45RB achieved the 
best performance, as this privileged information was more task relevant 
than others. Compared to the baseline unprivileged method, there was 
less benefit for pairing CD235a or ERG, perhaps because red blood cells 
(stained by CD235a) and the endothelium (stained by ERG) were less 
relevant to the tasks being assessed. Still, compared to the baseline 
privileged method, performance on CD235a and ERG was significantly 
improved.

We see that in Siamese models, some stains help improve prediction 
accuracy while others hinder it. For example, in the PanNuke neoplastic 
cell detection task, privileged Siamese training is considerably less 
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accurate for MIST1 and ERG stains, which stain plasma and endothelial 
cells respectively, while it is more accurate for 𝛼SMA and pan-CK, 
which stain smooth muscle cells/myofibroblasts and epithelial cells 
respectively. We show in Figure C.7 that this difference in performance 
is associated with differences in the proportion of empty space in the 
privileged information (see Section 3.6 for further discussion). While all 
stainings provide valuable information about their specific cell types, 
some have very few features which can be learned (see Appendix D 
for more details). This causes the primary encoder’s representations to 
collapse and perform poorly on downstream tasks, as Siamese models 
can only learn features which are shared between branches. TriDeNT , 
in contrast, can retain the features from both primary and privileged in-
formation, leading to improved performance over unprivileged models. 
In Section 3.6 we will further discuss how TriDeNT  can mitigate the 
effects of harmful or uninformative privileged information, compared 
to Siamese methods. We also note that there are some small differences 
in the distributions and sample sizes of the tissue samples used for 
different stains. For example, in the most extreme case the unprivileged 
models have a range of 0.1399 for their accuracies on the Singapore 
gland malignancy detection task.

The performance improvements observed in patch-level tasks are 
found to carry over into slide-level tasks, which are shown in Table S5. 
These tasks are generally considered to be of more clinical relevance 
than patch-level tasks, as they involve making predictions on the level 
of the patient. We consider here the detection and grading of dysplasia, 
and the ISUP grading of tumours. We find that a simple aggregation of 
the representations from models trained with TriDeNT  is an effective 
predictor on these tasks, with strong performance across all tasks.

3.1.1. TriDeNT  pretrained models outperform supervised models on small 
datasets

In Fig.  3(c) we demonstrate that TriDeNT   consistently retains a 
higher level of performance as less classifier training data is used. No-
tably, there are dataset sizes where supervised and privileged Siamese 
models collapse to a trivial solution, while TriDeNT  continues to 
perform well. The ability to learn well from tiny, few-shot classification 
datasets is evidence of the utility of models trained with TriDeNT 
 for a variety of downstream applications, as in many biomedical 
settings there are very few samples available for a given topic of 
interest. TriDeNT  can allow researchers and clinicians to make use of 
these few-shot datasets to enable the study of previously unworkable 
datasets.

3.2. Embedding knowledge from additional brightfield images

To demonstrate the generality of the method, we train models 
on the BCI dataset of paired H&E and brightfield IHC patches. We 
only perform evaluation on the BCI, NCT and PanNuke datasets, as 
the BCI dataset is a breast cancer dataset, while the Singapore and 
MHIST datasets are prostate and colorectal polyp specimens respec-
tively, which are far out of the training distribution. We include the 
NCT dataset, despite comprising only colorectal tissue, as these patches 
are well curated into different tissue type classes which mostly bear 
a strong resemblance to those in breast cancer samples. Strikingly, 
TriDeNT  outperforms the supervised baseline by a large margin on 
the BCI task. We propose that there may be features weakly present in 
H&E stains which are highly predictive of HER2 status, and the pairing 
with IHC stains which contain those features very strongly results in 
this improved performance.

As Table  2 shows, we find that TriDeNT  is also highly effec-
tive on all tasks compared to the unprivileged Siamese baseline. As 
there is more information in the privileged paired data, the privileged 
baseline is considerably higher for this task. Despite this, TriDeNT 
 still outperforms both comparable baselines on all tasks but one, 
achieving improvements of up to 25.1% compared to the unprivileged 
baseline and up to 5.8% compared to the privileged baseline. There 
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Table 3
Results for models trained on the PanNuke dataset containing H&E patches paired with nuclear segmentation masks.
 Loss Method Privileged NCT PanNuke Singapore MHIST  
 
VICReg

TriDeNT 3 0.7337 0.9106 0.7975 0.7523 
 Siamese 3 0.6000 0.8274 0.7106 0.6530  
 7 0.7301 0.8682 0.7754 0.7421  
 
InfoNCE

TriDeNT 3 0.7530 0.9115 0.8226 0.7369  
 Siamese 3 0.5289 0.7403 0.6951 0.6264  
 7 0.7199 0.8668 0.8015 0.7451 
 CrossEntropy Supervised – 0.9245 0.8901 0.9103 0.7042  
is only a single task where TriDeNT  does not improve performance: 
evaluation on the PanNuke dataset of a model trained with the VICReg 
loss, performing 1.6% less than the privileged baseline. The brightfield 
IHC stains contain considerably more task-relevant information for cell 
segmentation, so this is unsurprising. This effect can be understood 
visually as the IHC ‘weak’ quadrant in Fig.  2(a) being very narrow and 
containing very few features. Most task-relevant features are strongly 
present in the IHC and therefore there is less to be gained by adding 
the few missing weak features.

3.3. Image annotations are an effective source of privileged information

We find that TriDeNT  is effective not only for integrating ad-
ditional sources of data, but also for manually determining the most 
useful aspects of the data which should be learned, where the user has 
some prior knowledge to incorporate into the dataset. This is intuitively 
the opposite of traditional machine learning approaches, where the user 
has to handcraft inputs to be passed to the model, and the model only 
learns from those features. With our approach, the user can manually 
handcraft inputs, such as the segmentation masks in this example, while 
still giving the model the flexibility to learn other features not known a 
priori to the user. The results in Table  3 demonstrate that TriDeNT  is 
able to train encoders which retain the features of both the nuclei and 
the background/connective tissue. We see performance improvements 
of up to 42.4% compared to the privileged baseline, and up to 5.2% 
compared to the unprivileged baseline.

These results also suggest that, in the privileged Siamese case, 
the features that are learned are those relating to the shape of the 
nuclei, rather than any sub-nuclear features or features relating to the 
connective tissue which would enable better identification of tissue and 
cell types.

3.4. Vision models with privileged spatial transcriptomics data learn more 
biologically relevant features

A key application of TriDeNT  is the distillation of information 
from privileged sources beyond images. As TriDeNT  does not require 
the architecture of each branch to be the same, it is possible to utilise 
any input type on any branch. We investigate the use of spatial tran-
scriptomics (gene expression counts from an array of spatial points on 
a slide) as privileged data to train models for H&E inputs. These data 
have been shown to be highly informative and enable the study of the 
relationship between gene expression and tissue morphology, however, 
they are very expensive to generate, and as such are far from routine 
use. The difficulty of this task is compounded by the established poor 
performance of deep learning methods on tabular data (Shwartz-Ziv 
and Armon, 2022; Borisov et al., 2022).

Despite this, we see consistent improvements of up to 4.4% for 
TriDeNT  over other methods for the spatial transcriptomics white 
matter/grey matter classification task, as shown in Fig.  4(b). It is likely 
the case that there are some mislabelled examples due to the processes 
involved in alignment, so higher accuracy on this task may simply 
not be possible, which could explain the saturation of performance 
around 89% in the mouse example. We observe a similar improvement 
for VICReg on the genotype prediction task, with an improvement 
of up to 2.2%. InfoNCE shows a similar performance for TriDeNT 
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 and unprivileged Siamese models, which both outperform privileged 
Siamese.

To assess the level of information shared between the transcriptomic 
results and the representations of the H&E patches, we investigate 
the cross-correlation between elements of the representations and the 
gene counts for each matching patch. We calculate the cross-correlation 
across the validation set between each element in the representations 
and the count for each gene, and for each gene take the correlation 
of the corresponding element with the maximum correlation or mini-
mum anti-correlation, whichever has the greater absolute value. This 
maximum/minimum is chosen because the vast majority of elements 
will not correlate with any given gene, and the absolute value is taken 
because the sign of the element is arbitrary, so correlation and anti-
correlation are equivalent. We use the absolute value of the correlation 
for the element selected for each gene, and use these to generate 
the histograms in Fig.  4(a). It is clear that privileged training obtains 
representations which are far more correlated to the gene counts than 
unprivileged training, with minimal differences in the correlations 
between TriDeNT  and Siamese approaches. This implies that the 
models have learned equivalently informative representations about 
the coarse-grained features of the genes. Fig.  4(c) demonstrates that 
the correlation strength is significantly greater for TriDeNT  compared 
to an unprivileged Siamese model, and Figures S1 and S2 show the 
relationships between the gene correlations of representations from 
TriDeNT , Siamese methods, and supervised learning. Figures S3 and 
S4 show the geneset enrichment for each method, demonstrating that 
TriDeNT  captures more meaningful interrelationships that are more 
informative about the relationship between tissue morphology and 
gene expression than unsupervised Siamese models. This is especially 
important for scientific discovery, as these analyses are used to generate 
hypotheses for further research. Figure S5 shows UMAP projections of 
the representation space coloured by genotype and gene, to illustrate 
that TriDeNT  identifies distinct morphological clusters which are 
not found by unprivileged Siamese models. Fig.  4(a) also shows that 
the findings are robust to human and mouse datasets, indicating the 
generality of the method.

We also demonstrate the correlations of the model’s representations 
with genes unseen during the self-supervised phase of training (Fig. 
4(a)). We find that the model is not simply overfitting on the given 
genes, as these genes are not present in the training data, yet the priv-
ileged models still demonstrate greater correlation with their counts 
than an unprivileged approach.

Existing approaches for integrating spatial gene expression data 
with tissue morphology (He et al., 2020) have focused on directly 
generating the transcriptomics from the H&E patches. While effective 
for predicting the expression of a given gene, this is highly ineffective 
for learning useful representations of the coarse-grained tissue features. 
Generative models have been shown to produce representations which 
are contain less semantic information than joint-embedding architec-
tures and do not perform as well on downstream tasks (Assran et al., 
2022, 2023). This has also been shown specifically for pathology 
images (Farndale et al., 2023). We confirm this by directly predicting 
the gene counts from the H&E patches, and show in Table 4(b) (Su-
pervised (Transfer)) that transfer task performance is inferior to both 
the TriDeNT  and Siamese approaches. We note that this leads to 
representations which do not generalise well, as is also true for other 
supervised methods and image-to-image translation methods.
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Fig. 4. (a) Correlation histograms between representations and gene count arrays for mouse and human ALS-ST data. Bins are chosen using the maximum of the Sturges (Sturges, 
1926) and Freedman-Diaconis (Freedman and Diaconis, 1981) estimators. In the third histogram, zero-shot models are evaluated on genes which were not seen during training, 
while other models which did see those genes in training are evaluated on the same genes for comparison (of course, unprivileged models never see any genes). Comparison with 
models which saw these genes during training. (b) Spatial transcriptomics results for white/grey matter classification with both VICReg and InfoNCE losses. Baselines provided 
are ‘Direct Gene Prediction’, where a supervised model is trained to predict the gene counts for that patch directly and the representation is then fine-tuned on the white/grey 
classification task, and a standard supervised model. (c) Greater correlation strengths between gene counts and representations of TriDeNT  models than unprivileged Siamese 
models. For each gene, the maximum absolute correlation between the TriDeNT  representations for each patch and the corresponding gene counts are plotted against those for 
unprivileged Siamese representations, with TriDeNT  almost always achieving greater correlation strength. Dashed line is the identity. Appended histograms show distribution of 
data. Mouse data only, see Figure S2 for human data, which shows a similar pattern, and Figure S1 for extended comparisons of mouse data, also including privileged Siamese 
and supervised results.
3.5. TriDeNT   identifies features of both primary and privileged inputs 
from primary input alone

To further analyse the learned representations, we produce UMAP 
projections of the latent space labelled with the tissue types for the 
NCT tissue type classification task, as shown for CD3CD20 and 𝛼SMA in 
Fig.  5(a), and for all SegPath stains in Figures S6 and S7. These figures 
make the reasons for the varying performance of the privileged Siamese 
model more apparent. For stains with better performing privileged 
Siamese models, such as 𝛼SMA, the UMAPs are very similar between 
Siamese methods and TriDeNT, with well-differentiated tissue type 
clusters. In those with worse performance, such as ERG, the tissue 
types are poorly differentiated, often with only adipose and background 
forming distinct clusters from the other classes. On closer inspection, 
it is notable in these projections that TriDeNT   produces more 
well-defined and separated clusters in general than Siamese networks. 
This is further evidenced in Figure S5, where TriDeNT  is shown to 
identify clusters with overexpression of a given gene significantly more 
effectively than an unprivileged Siamese model. Interestingly, we find 
that the privileged Siamese model for CD3CD20 forms distinct clusters 
for the lymphocytes class, which corresponds well to the privileged 
information. In contrast, ERG and MNDA appear similarly but without 
the presence of this cluster, suggesting that the privileged information 
impacts the presence of certain clusters.

We also analyse the activation maps for each model using GradCAM 
as described in Appendix C. This offers more insight into the areas 
of the image which are contributing most heavily to the models’ 
representations. In Fig.  5(b) we present some representative examples, 
however, a larger selection which was chosen at random is presented in 
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Figures S8 to S23. The larger selection makes it easier to see the emer-
gent patterns. We see that unprivileged Siamese models tend to focus 
primarily on image features such as textures and colour, particularly 
when the image contains white background. Privileged Siamese models 
tend to focus on regions associated with their privileged information, 
primarily cell nuclei for panels A, B, and C, and smooth muscle for 
D. TriDeNT  occupies an intermediate position, incorporating both 
features specific to the privileged data and more the general features 
associated with unprivileged Siamese networks.

We can see in Figures S10 and S18 that for ERG, the privileged 
Siamese model focuses almost exclusively on nuclei. As there are very 
few endothelial cells in the dataset, it could be an effective strategy 
to identify anything that could potentially be an endothelial cell to 
minimise the difference between the representations of the H&E model 
and the IF mask model (see Appendix D for more details). In the corre-
sponding unprivileged Siamese image, we see that the model identifies 
some of these nuclei, albeit less strongly, but also focuses heavily on 
the other tissue and even the background, while strongly fixating on 
two spots of debris in the centre of the image. This model has less 
‘incentive’ to learn the weak features related to endothelial cells as 
these occur rarely and are not easy to detect, while more generic strong 
features such as the presence of connective tissue and the prevalence 
of background are more common and predictable from augmented 
images. We see that the TriDeNT  ERG model also largely ignores 
nuclei, primarily focusing on the connective tissue, supporting the 
argument that TriDeNT  learns to ignore the privileged information 
when it is not useful. We note that no VICReg model appears to focus on 
the endothelial cells in the images we have tested, however the InfoNCE 
TriDeNT  and privileged Siamese models do successfully identify this 
cell (e.g. row 2, column 4 in Figures S10 and S18).
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Fig. 5. (a) Sample UMAP projections from 2048 dimensions into 2 for models trained on the SegPath CD3CD20 and 𝛼SMA subsets, evaluated on the NCT test dataset. Points are 
coloured by tissue type. Note that accuracies for these tasks were i) TriDeNT : CD3CD20 0.8982, 𝛼SMA 0.9273; Siamese (Privileged): CD3CD20 0.6625, 𝛼SMA 0.9186; Siamese 
(Unprivileged): CD3CD20 0.8694, 𝛼SMA 0.8570. (b) GradCAM heatmaps for selected images from the SegPath dataset. Evaluated with VICReg loss. Brighter colours represent 
greater activation strengths. For a larger selection, including heatmaps for InfoNCE models, see Figures S8 to S23.
In panel C we see a similar pattern, with the privileged Siamese 
model fixating solely on the nuclei, while the TriDeNT  model takes a 
more balanced approach. The unprivileged Siamese model appears to 
focus on a single cluster of nuclei while neglecting others, and similarly 
identifies an area of fibroblasts with its distinctive pattern but does not 
others.

In contrast to panels A and C which represent models with poor 
privileged Siamese results, panels B and D represent models whose 
privileged Siamese results were comparable to both TriDeNT  and even 
the supervised baseline. It is therefore interesting to note that there 
are far more similarities between the privileged Siamese and TriDeNT 
 models in both cases. Particularly in panel B, TriDeNT  and the 
privileged Siamese model return virtually identical heatmaps, with both 
strongly identifying epithelial nuclei and neglecting the same areas 
of connective tissue. The unprivileged model in this case appears to 
focus solely on the centre of the image, giving a significantly different 
heatmap to the other panels.

Panel D again shows the previous pattern, with the privileged 
Siamese model identifying the features strongly present in the privi-
leged data – fibroblasts – while neglecting the nuclei present. TriDeNT 
 also strongly identifies the connective tissue, but, unlike the priv-
ileged Siamese model, does not completely neglect the nuclei. The 
unprivileged Siamese model primarily identifies background, and does 
not appear to identify the nuclei in this example.

3.6. TriDeNT  mitigates harmful and uninformative privileged information

TriDeNT  is designed to integrate privileged information, and 
the normal assumption is that this privileged information is useful. 
However, the types of information found in real medical data are highly 
heterogeneous and can contain both information that highly useful and 
information that is completely irrelevant. This is studied with two sce-
narios: blank privileged information, and randomly shuffled privileged 
information. Blank privileged information provides no information and 
can only be detrimental to performance, and randomly shuffled privi-
leged information contains information that has no correspondence to 
the primary H&E patch it is paired with. The objective is to assess 
the ability of TriDeNT , and comparable baselines, to mitigate the 
influence of this irrelevant or harmful privileged information.
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Table  4 shows that TriDeNT  achieves comparable performance to 
unprivileged models, implying that TriDeNT  is able to ignore the irrel-
evant and harmful privileged information, and only learn features from 
the primary input. In fact, in some cases with randomly shuffled patches 
TriDeNT  marginally improves performance compared to unprivileged 
training. This could be circumstantial to the dataset and requires fur-
ther research to assess its validity, although an intuitive explanation for 
the improvement could be that the irrelevant information still contains 
some common features between patches, such as the shapes of nuclei, 
which encourage the primary encoder to learn to detect similar round 
shapes in the H&E.

In contrast, the performance of privileged Siamese models is very 
poor, with this baseline achieving the worst performance on every 
test dataset. This is because by mapping into a single shared latent 
space, the primary and privileged models can only learn features which 
are shared between inputs, and nothing can be learned from vacuous 
inputs.

Despite TriDeNT employing no explicit feature selection mecha-
nisms, we see that this method can dynamically select features which 
optimise its objective. When privileged information is useful, features 
are selected which are correlated with the privileged information. 
When the privileged information is irrelevant or harmful, it is ignored 
in favour of the primary features that would be learned by unprivileged 
methods. This is critical for the real-world usefulness and general 
applicability of TriDeNT , which can be used to effectively distil any 
source of privileged information without the potential for damaging 
performance, as routinely happens with privileged models.

3.7. Robustness of TriDeNT  to domain shift and adversarial attacks

A growing concern with computational pathology models is the 
robustness of models to discrepancies between their training data and 
evaluation data. This can be either in the form of unintentional differ-
ences caused by different image acquisition methods, causing a domain 
shift, or in the form of intentional adversarial attacks (Ghaffari Laleh 
et al., 2022). These are malicious attacks that are designed to augment 
the input data in a way that causes the model to make an incorrect 
classification while being imperceptible to humans. The robustness of 
models to these attacks is of interest for translation of models to clinical 
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Table 4
Results for models trained on the PanNuke dataset containing H&E patches paired with redundant or harmful privileged information – blank patches or 
randomly shuffled nuclear segmentation masks – to assess whether TriDeNT  can mitigate the impact of detrimental privileged information. We denote 
the best performance in a category in bold, and the second best with an underline.
 Paired Data Loss Method Privileged NCT PanNuke Singapore MHIST  
 

Blank Patches
VICReg

TriDeNT 3 0.6943 0.8125 0.7592 0.7257  
 Siamese 3 0.5378 0.7227 0.6142 0.5670  
 7 0.7301 0.8682 0.7754 0.7421 
 

InfoNCE
TriDeNT 3 0.7680 0.8092 0.7875 0.7345  

 Siamese 3 0.6466 0.7063 0.6200 0.6034  
 7 0.7199 0.8668 0.8015 0.7451 
 

Shuffled Patches
VICReg

TriDeNT 3 0.7429 0.8235 0.7932 0.7277  
 Siamese 3 0.5075 0.7254 0.6313 0.5865  
 7 0.7301 0.8682 0.7754 0.7421 
 

InfoNCE
TriDeNT 3 0.7598 0.7751 0.7803 0.7316  

 Siamese 3 0.6267 0.7084 0.6269 0.6689  
 7 0.7199 0.8668 0.8015 0.7451 
Fig. 6. (a) Average adversarial robustness to PGD attacks for models trained on Segpath stains. For full results see Tables S13 and S14. (b) Standardised Success Rate (SSR) for 
these models. Lower values are better, with bold indicating best performance and underline indicating second best.
use due to the criticality of their predictions to human health. These 
models must not be vulnerable to small perturbations, either as a result 
of malicious actors or unintentional variation in measurement.

A concern with TriDeNT  and other models using privileged in-
formation could be that the successful distillation of information leads 
models to be less robust. Privileged models are learning at least some 
weaker features than unprivileged models, and consequently could in 
theory be easier to exploit than unprivileged models which learn only 
strong features in the primary information (see Section 2.3 and Fig.  2(a) 
for definitions and discussion of weak/strong features).

In Fig.  3 we have presented results on the Camelyon test set, 
which assesses models’ domain transfer performance when trained on 
images from three hospitals and evaluated on images from another, 
with large differences between hospitals. This shows that TriDeNT  can 
achieve very strong performance on different domains, implying that 
the features learned with the TriDeNT  training regime are more 
robust. This is in contrast to unprivileged models, which achieve little 
better than random guessing.

We present results for the adversarial robustness of all SegPath 
models in Fig.  6. We used a white-box adversarial attack – Projected 
Gradient Descent (PGD) (Madry et al., 2017) – to assess the robustness 
of each model, and find that TriDeNT  has a similar robustness to 
unprivileged models, while privileged Siamese models are considerably 
less robust. This is because TriDeNT  retains the strong primary fea-
tures as well as the weaker, privileged features, and consequently is less 
affected than the privileged Siamese models which are reliant solely 
on the weaker privileged features. This is an important finding for the 
clinical relevance of TriDeNT  compared to unprivileged models, as it 
implies that not only do these models learn features which are more 
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robust to the overt feature shift of domain transfer, they also learn 
features which are similarly robust to potential adversarial attacks. The 
results in Fig.  6(b) show a standardised success rate metric, which is 
defined as the mean standardised value for each model 
𝑆𝑆𝑅𝑚 ∶= 1

|𝐸|
∑

𝜖∈𝐸

𝑆𝑅𝑚𝜖
‖𝑆𝑅𝜖‖

, (11)

where 𝑚 is a model in the set of models (TriDeNT , privileged Siamese, 
and unprivileged Siamese), 𝐸 is the set of perturbation strengths 𝜖, 
and 𝑆𝑅𝑚𝜖 is the success rate of the attack with perturbation strength 𝜖
on model 𝑚. This determines the magnitude of the difference between 
models across all values of 𝜖, while accounting for the different scales 
of these values, with a smaller value indicating better adversarial 
robustness.

4. Discussion and conclusions

In this work, we have proposed TriDeNT , a modelling approach 
which has been demonstrated to effectively integrate privileged sources 
of data into single-source models during training to improve perfor-
mance. The model works by providing two supervisory signals to the 
primary encoder, which dynamically respond to the features which 
the primary encoder can extract. Experiments have shown that this 
approach can greatly outperform standard Siamese privileged and un-
privileged methods, and even supervised learning, without significantly 
increasing the computational overheads. There are a vast number of 
biomedical datasets which contain paired data, such as paired -omics 
datasets (Weinstein et al., 2013; Schorn et al., 2021), different imaging 
methods (e.g. PESO Bulten et al., 2019), and even multiple images of 
the same source, such as the 7-pt skin lesion dataset (Kawahara et al., 
2018), CheXpert (Irvin et al., 2019) and CheXphoto (Phillips et al., 

2020).
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4.1. Integrating privileged data is invaluable for research and discovery

The utility of TriDeNT  for research applications can be found not 
only in increasing the efficacy of primary data models for prediction 
accuracy, but also in training models to extract coarse-grained features 
which are relevant to the privileged input. Our results demonstrate that 
models trained with TriDeNT  will perform better on tasks where the 
privileged information is more task relevant. This is demonstrated, for 
example, where H&E prediction of HER2+ status is greatly improved 
by pairing with HER2 IHC stains (Table  2), where immune-related 
privileged SegPath stains lead to better performance on the TIL task 
(Fig.  3(a)), and where performance on metastasis- and malignancy-
related tasks are most improved by privileged pan-CK stains (Fig.  3(a)). 
This is also shown qualitatively with the GradCAM activation heatmaps 
in Fig.  5(b). A typical use case is that a scientist with a paired dataset 
could train a model to then evaluate an unpaired dataset, without 
needing to acquire more paired data. We have shown that the features 
which are found by privileged methods are significantly different from 
those found by unprivileged methods. This means that TriDeNT  could 
enable the identification of novel morphological clusters that are func-
tionally important, such as those in our analyses in Figs.  5(a) and S5 
which might not emerge from other methods of training or training on 
the new dataset alone.

4.2. TriDeNT  does not need large datasets

Self-supervised methods typically require very large datasets (Reed 
et al., 2022), however our results, especially those for PanNuke (Sec-
tion 3.3) and ALS-ST (Section 3.4), demonstrate that TriDeNT   offers 
improvements over comparable baselines for comparatively small pre-
training datasets. We also studied the effect of evaluation dataset 
size in Section 3.1.1, showing that TriDeNT  continues to achieve 
strong performance even when the classifier head is trained on a tiny 
dataset. This performance can only be expected to improve further 
if pretrained models are used, either from a general source such as 
ImageNet (Russakovsky et al., 2015) or from more specific pretraining 
tasks. We expect that this would be particularly useful in cases where 
the privileged paired model is pretrained, as teacher–student distilla-
tion would likely lead to greater performance in the student (primary) 
model.

4.3. TriDeNT   can incorporate image annotations into representation 
learning

Our experiments have demonstrated that models trained using Tri-
DeNT  learn significantly different features to those trained in standard 
self-supervised settings, and that this can be leveraged to manually 
encode information by the user. For example, we demonstrated in 
Section 3.3 that the model can be made to learn features related to 
nuclear segmentation masks, without requiring human prior knowledge 
of what those precise features might be. This offers new opportunities 
to make better use of the manual annotations which are provided with 
many datasets but typically only used as target labels for supervised 
learning. We have shown that these annotations can be used to create 
more generalist, robust and effective models when transferred to other 
tasks, either related or unrelated to the annotations.

Of course, not all annotations are manual, and machine-generated 
annotations, such as those from HoVer-Net (Graham et al., 2019), could 
be incorporated into training procedures. Currently there exist a huge 
number of models which have been trained for one specific task, such as 
nuclear segmentation (e.g. Graham et al. 2019), tissue type annotation 
(e.g. Kather et al. 2016), virtual restaining (e.g. Xu et al. 2019), feature 
detection (e.g. Aubreville et al. 2023), etc., and all of these could be 
incorporated into new generalist models using TriDeNT .
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4.4. Future research

While TriDeNT  offers a new capability for multi-modal distillation 
in medical imaging, further improvements can be made. Model weights 
were always frozen for downstream tasks, so the tasks detailed in 
this work are all zero-shot, meaning fine-tuning these models could 
lead to improved performance. Design choices were primarily made 
for simplicity and parity with previous work, and hyperparameters 
were chosen based on previous work on Siamese networks (e.g. Bardes 
et al. 2021, Chen et al. 2020), so it is highly likely that the results 
are skewed in favour of these Siamese networks. Training was also 
only carried out for 100 epochs (200 for the spatial transcriptomics 
examples) on a batch size of 128, so models could potentially improve 
further with longer training times and larger batch sizes. Despite this, 
we have shown that TriDeNT  outperforms these methods, often by 
a considerable margin. Improvements could be made by adjusting the 
loss function, or by implementing more elaborate interactions between 
branches. The scope of this study was limited to histopathology, how-
ever TriDeNT  could be broadly applicable to other domains in both 
imaging and other modalities. We expect TriDeNT  to have extensive 
applications for multiplexed imaging, as the best way of integrating 
these multiple sources of information has not been established.

We also anticipate that utilising different network architectures 
on different branches could yield interesting results, such as pairing 
convolutional neural networks (CNNs) with graph neural networks, 
transformers or simply a larger CNN. We showed this is a possibility 
in Section 3.4, where a primary CNN is paired with an multilayer 
perceptron for the privileged spatial transcriptomics data. This would 
enable different features and patterns to be identified and could lead 
to models which utilise the efficiency of CNNs with the power of these 
additional methods.

Code and data availability

The TriDeNT   codebase is available at github.com/lucasfarndale/
TriDeNT. All datasets used are publicly available from the following 
links:

• ALS-ST – als-st.nygenome.org;
• BCI – bupt-ai-cz.github.io/BCI/;
• Camelyon – wilds.stanford.edu/datasets/;
• IMP 1K/4K – rdm.inesctec.pt/km/dataset/nis-2023-008;
• IMP Cervix – rdm.inesctec.pt/km/dataset/nis-2024-003;
• MHIST – bmirds.github.io/MHIST;
• NCT Colorectal Cancer – 10.5281/zenodo.1214455;
• PANDA – kaggle.com/c/prostate-cancer-grade-assessment/data;
• PanNuke – warwick.ac.uk/fac/cross_fac/tia/data/pannuke;
• SegPath – dakomura.github.io/SegPath;
• Singapore Prostate Cancer – 10.5281/zenodo.7152243.
• TIL – 10.5281/zenodo.6604094;

The exact patchings and dataset splits are available from the authors 
upon reasonable request where this is permitted by the dataset’s license.
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