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A B S T R A C T

Reliability analysis of highly sensitive structures is crucial to prevent catastrophic failures and ensure safety. 
Therefore, these safety-critical systems are to be designed for extremely rare failure events. Accurate statistical 
quantification of these events associated with a very low probability of occurrence requires millions of evalu
ations of the limit state function (LSF) involving computationally expensive numerical simulations. Variance 
reduction techniques like importance sampling (IS) reduce such repetitions to a few thousand. The use of a data- 
centric metamodel can further cut it down to a few hundred. In data-centric metamodeling approaches, the 
actual complex numerical analysis is performed at a few points to train the metamodel for approximating the 
structural response. On the other hand, a physics-informed neural network (PINN) can predict the structural 
response based on the governing differential equation describing the physics of the problem, without a single 
evaluation of the complex numerical solver, i.e., data-free. However, the existing PINN models for reliability 
analysis have been effective only in estimating a large range of failure probabilities (10− 1~10− 3). To address this 
issue, the present study develops a PINN-based data-free reliability analysis for low failure probabilities (<10− 5). 
In doing so, a two-stage PINN integrated with IS (PINN-IS) is proposed. The first stage is employed to approx
imate the most probable failure point (MPP) appropriately while the second stage enhances the accuracy of LSF 
predictions at the IS population centred on the approximated MPP. The effectiveness of the proposed approach is 
numerically illustrated by three structural reliability analysis examples.

1. Introduction

There are different sources and types of uncertainties in engineering 
modeling for reliability analyses [1]. Reliability analysis [2] primarily 
deals with the estimation of failure probabilities based on a performance 
function or limit state function (LSF), considering the uncertainties of 
different variables. In structural reliability analysis [3–5], LSF repre
sents a quantity by which the resistance of a structure overcomes the 
loads acting on it. Therefore, a negative value of LSF represents the 
failure of the structure. Mathematically, the probability of failure (Pf ) is 
defined as a multi-dimension integral of the joint probability density 
function (PDF) of random variables over the failure domain. However, 
the evaluation of the integral is quite difficult due to the irregular shape 
of the multi-dimensional failure domain. In this regard, various 
analytical and simulation techniques based approximation are devel
oped. Analytical approaches approximated the LSF around the most 
probable failure point (MPP) using Taylor series expansion. Depending 

upon the order of expansion series, analytical approaches are classified 
as first-order reliability methods (FORM) [6–8] and second-order reli
ability method (SORM) [9,10]. However, the presence of a disjointed 
failure domain or multiple MPPs can increase the difficulty in obtaining 
an unbiased estimate and need special treatment [11]. On the other 
hand, Monte Carlo simulation (MCS) techniques are based on statistical 
analysis and random sampling. The brute-force MCS being the most 
accurate and conceptually straightforward forward is frequently used in 
reliability analysis. However, the required number of repetitive evalu
ations of the LSF rises rapidly with the decrease of failure probability 
and ultimately becomes practically infeasible for estimating low 
probabilities.

To this end, variance reduction simulation techniques like impor
tance sampling [12–15], subset simulation [16,17], line sampling [18,
19], directional simulation [20] etc. are developed to achieve a similar 
level of accuracy with a considerably reduced number of simulations. 
Still, several thousand simulations are necessary, and it becomes an 
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important issue for structural reliability problems that involve compu
tationally expensive numerical techniques to evaluate the LSF. In this 
regard, the metamodeling technique is an efficient alternative where the 
LSF is approximated by metamodel trained using the actual structural 
responses in a limited number of carefully selected data points. Appli
cation of polynomial response surface [21,22], Kriging [23,24], artificial 
neural networks [25,26], radial basis function [27], support vector 
regression [28–30], sparse Bayesian regression [31,32], polynomial 
chaos expansion [33,34] etc. can be noted in structural reliability 
analysis.

Physics-informed neural networks (PINN) recently developed by 
Raissi et al. [35] is a special type of metamodel that does not require any 
labelled data for approximating a response. The network is optimised 
based on knowledge gained through the governing differential equation 
(DE) that describes the physics of the problem. Automatic differentiation 
[36] estimates the derivatives involved in the DE. Different deep neural 
network architecture has been proposed for PINN [37,38]. Wang et al. 
[39] investigated the limitation of the PINN training process via gradient 
descent and proposed an improved algorithm of gradient descent guided 
by a neural tangent kernel for resolving the issue. The 
gradient-enhanced PINNs are also used for structural dynamics [40]. If 
there exists model form error (i.e., the physics known is not exact), the 
final predicted results will be erroneous, as the modeling error is prop
agated to the PINN solution. There are several developments including 
the multi-fidelity framework [41,42] and other hybrid frameworks to 
eliminate model form errors [43]. However, these approaches need the 
generation of high-fidelity data from actual field measurements or lab
oratory experiments. Thus, a data-free approach is not possible when 
problems have model-form errors. A comprehensive review of the 
development of PINN in different fields can be found in Karniadakis 
et al. [44]. Applications of PINNs for structural response approximation 
can also be noted [45–48]. Physics-guided machine learning methods 
are developed for structural dynamics simulation [49] and for uncer
tainty quantification of nonlinear dynamical systems [50]. Various 
physics-informed machine learning approaches for reliability applica
tions are reviewed by Xu et al. [51].

The PINN-based metamodeling approach for stochastic analysis was 
first proposed by Chakraborty [52]. The study suggested that random 
variables can be concatenated with spatiotemporal variables as inputs to 
the fully connected neural network. Latin hypercube sampling is 
employed to uniformly generate samples of random variables in the 
collocation points. However, the region near the failure plane is crucial 
for the accuracy of the reliability estimate [53]. Noting this, Zhang and 
Shafieezadeh [54] developed an adaptively trained PINN for reliability 
analysis (AT-PINN-RA) where the importance of random variables near 
the failure plane is gradually increased by an active learning approach. 
Besides simulation approaches, a FORM-based approach in combination 
with PINN (PINN-FORM) was recently developed by Meng et al. [55]. 
PINN-FORM does not require concatenating random variables with 
spatiotemporal variables but rather optimises values of random vari
ables simultaneously with network parameters to obtain the MPP. 
Further to these studies, a generic PINN-based framework for the reli
ability assessment of multi-state systems [56], generative adversarial 
networks based PINN for system reliability [57], PINN for first-passage 
reliability estimation of structural dynamic systems [58] and reliability 
analysis of stochastic dynamical systems using PINN based probability 
density evolution method [59] can also be noted.

However, the existing studies on PINN for reliability analysis typi
cally dealt with large failure probability (10− 1~10− 3) problems. In en
gineering risk assessment, rare events refer to occurrences of extreme 
system failures or accidents, which have a very low probability of 
occurrence but can lead to catastrophic consequences [60]. Examples 
include structural collapses of bridges, dams and buildings, aircraft ac
cidents, and failure of facilities at nuclear power plants. Such engi
neering systems are typically designed to stringent reliability levels, 
making their failure exceptionally rare events [61]. In structural safety, 

it is critical to safeguard against failure resulting from extreme events 
due to uncertainties in external forces and structural factors [62]. Thus, 
the estimation of small failure probabilities is of paramount interest in 
structural reliability analysis [60]. However, estimating very low 
probabilities for such rare events through crude MCS requires an 
impractically large number of simulations and exorbitant computational 
costs. Conventional MCS methods are inadequate for efficiently 
modeling the failure in highly reliable systems [63]. There are a number 
of developments in metamodeling-based reliability analysis for esti
mating low failure probability [24,26,29,34,63–68]. However, no 
data-free or PINN-based approach to estimate low failure probability is 
available to the best of our knowledge. Therefore, this work caters to the 
timely demand for a data-free reliability analysis for low failure prob
ability events.

The present study develops a computational framework to estimate 
small failure probabilities using a PINN-based metamodeling approach. 
The estimation of failure probabilities less than 10− 5 is targeted in this 
study. In doing so, the importance sampling (IS) technique is integrated 
with PINN. It is to be noted that IS was previously utilized only for 
training PINN efficiently [69] but not for estimating low failure proba
bility. In particular, the proposed approach consists of two stages. The 
first stage approximates the MPP using PINN-based metamodel and MCS 
samples. Whereas, the second stage obtains the failure probability based 
on the IS technique. The IS population is centred on the MPP approxi
mated in the first stage. During the training of the PINN in the second 
stage, the samples from the IS population are selected batch-wise to 
ensure better accuracy at those samples as it directly affects the accuracy 
of failure probability. Thus, the present study proposed an effective 
sampling strategy for training of the physics-informed neural network to 
estimate low failure probabilities. This two-stage training strategy helps 
in getting accurate results with a limited number of iterations. The 
proposed two-stage physics-informed neural network approach is new 
and different from the existing physics-informed neural network ap
proaches. Specifically, it is designed for estimating low failure proba
bilities. The effectiveness of the proposed two-stage PINN-based 
metamodeling approach is illustrated numerically with three structural 
reliability analysis problems.

2. Physics-informed neural network

PINN proposed by Raissi et al. [35] is an alternative numerical solver 
for different types of differential equations (DEs). The network archi
tecture, training algorithm and advancement for reliability analysis are 
described briefly in the following under different sub-heads.

2.1. Network architecture

A fully connected neural network being the most common and 
simplest is used as the architecture of the PINN [54]. The network ar
chitecture can be expressed as follows, 

Ο = ψL+1(WL+1hL + bL+1)

hL = ψL(WLhL− 1 + bL)

⋮
hi = ψ i(Wihi− 1 + bi)

⋮
h1 = ψ1(W1I + b1)

(1) 

where, O, I and hi are the output vector, input vector and output of 
hidden layers, respectively. There are L number of hidden layers. The 
output of (i-1)th layer is treated as input of ith layer, and the mapping is 
executed through a nonlinear activation function ψ i, the weight matrix 
Wi and the bias vector bi. The input and output layers can be treated as 
0th and (L+2)th layers. For a compact representation, Eq. (1) is written as 
Ο = net(I) where, net(•) represents a fully connected network. In the 
case of PINN, the input vector is composed of the spatial variables x and 
the temporal variable t. If there exists a governing DE f(x, t) = 0 that has 
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a solution u(x, t) then an approximation of the solution û(x, t) is given by 
the output of PINN. Hence, a PINN model can be expressed as follows, 

û(x, t)=net(x, t) (2) 

The activation functions are preselected for a PINN model and the 
values of Wi and bi (also known as network parameters) are to be ob
tained through network training that is described in the next section.

2.2. Network training

Unlike training of a deep neural network, PINN for forward DE 
problems does not require any training data, i.e., data-free [54]. It re
quires the generation of collocation points where the violation of initial 
and boundary conditions and that of the DE are measured and mini
mized to obtain the network parameters. In doing so, the derivatives of 
û(x, t) with respect to spatial and temporal variables are obtained by the 
automatic differentiation [36]. Using the value of these derivatives and 
û(x, t), the deviation from the initial and boundary conditions and the 
error in the DE are calculated as follows, 

LIC(x, t, uIC) = û(x, t)|IC − uIC
LBC(x, t, uBC) = û(x, t)|BC − uBC
LDE(x, t) = f(x, t)

(3) 

where, uIC and uBC are initial and boundary values of u(x,t), respectively. 
The network parameters are learned by minimizing the mean squared 
error loss [35], 

MSE=MSEIC + MSEBC + MSEDE (4) 

where, 

MSEIC =
1

NIC

∑NIC

i=1

⃒
⃒LIC

(
xi

IC, t
i
IC, u

i
IC
)⃒
⃒2

MSEBC =
1

NBC

∑NBC

i=1

⃒
⃒LBC

(
xi

BC, t
i
BC, u

i
BC
)⃒
⃒2

MSEDE =
1

NDE

∑NDE

i=1

⃒
⃒LDE

(
xi

DE, t
i
DE
)⃒
⃒2

(5) 

In the above equation, 
{
xi

DE, tiDE
}NDE

i=1 denote the collocation points for f(x,

t), 
{
xi

IC, ti
IC, ui

IC
}NIC

i=1 and 
{
xi

BC, ti
BC, ui

BC
}NBC

i=1 represent the initial and 
boundary training data on u(x, t), respectively.

2.3. PINN for reliability analysis

The use of PINN for reliability analysis is introduced by Chakraborty 
[52]. The limit state function (LSF) g of a structure can be expressed as, 

g(ξ)= uc − u(ξ) (6) 

where, ξ represents the random variables involved in the structure, and 
uc is the allowable limit of the structural response u. The failure of the 
structure is represented by g(ξ) < 0. The introduction of uncertainty in 
some structural parameters enables variation in the DE with these pa
rameters, i.e., the DE becomes f(x, t,ξ) = 0. Subsequently, the objective 
of PINN has been changed to build a metamodel for u that not only 
depends on spatiotemporal variables (x, t) but also varies with random 
variables ξ. Keeping this in mind, Chakraborty [52] proposed the 
concatenation of random variables ξ with spatiotemporal variables (x, t)
as input variables to the PINN model, i.e., 

û(x, t, ξ)=net(x, t, ξ). (7) 

Following Eq. (7), the training points are modified as 
{
xi

DE, ti
DE, ξ

i
DE
}NDE

i=1 , 
{
xi

IC, ti
IC, ξ

i
IC, ui

IC
}NIC

i=1 and 
{
xi

BC, ti
BC, ξi

BC, ui
BC
}NBC

i=1 for satis
fying the DE, initial and boundary conditions, respectively. Accordingly, 

the errors described in Eq. (3) and the MSE loss described in Eqs. (4) and 
(5) are updated.

2.4. Elimination of loss terms for initial and boundary conditions

Further, the PINN model can be improved by incorporating the 
initial and boundary conditions into the input-output relation as follows 
[54], 

û(x, t, ξ)= uIC,BC + Bnet(x, t, ξ) (8) 

where, uIC,BC is a function that satisfies all the initial and boundary 
conditions, and the function B = 0 at points associated with these con
ditions. With the above modification, the scale difference arising from 
the different terms in the loss function, e.g., from the initial (LIC) and 
boundary conditions (LBC) are nullified. Eventually, the related loss 
terms MSEIC and MSEBC are no longer required and can be eliminated 
from the total loss MSE described in Eq. (4).

3. Proposed two-stage physics-informed neural network

The proposed PINN-based metamodeling approach for small failure 
probability problems is basically a two-stage training procedure of the 
network. The PINN model after the first stage of training approximates 
the most probable failure point (MPP), based on which an importance 
sampling (IS) population is built. The training in the second stage en
hances the accuracy of the LSF at the samples of the IS population that 
are ultimately responsible for estimating the failure probability by the IS 
technique. Thus, the proposed approach is called the Physics-Informed 
Neural Network integrated with Importance Sampling (PINN-IS).

3.1. First stage

In the first stage, the entire input space is considered equally 
important for the accuracy of the PINN-based metamodel as the failure 
plane is not a known a priori. For this reason, ncp uniform random 
samples are generated within the physical limits for each random vari
able. In the case of an unbounded random variable, uniform random 
samples are generated within five times the standard deviation σ from 
the mean μ [54]. For all spatial and temporal variables, ncp uniform 
random samples are generated at each iteration within the range of their 
physical limits i.e., over the whole domain. Therefore, ncp combinations 
of input variables are fed to the network at each iteration for calculating 
the DE loss. The network parameters are updated following the Adam 
optimization algorithm which is frequently used in different PINN ap
plications. After 5000 iterations the lowest loss is recorded, and the it
erations are stopped when the loss is less than the recorded loss. This 
new stopping criterion ensures a final network with parameters corre
sponding to the lowest loss in the entire training process.

The final network after the first-stage training is employed to 
approximate the LSF at NMCS MCS samples. The failure point having the 
highest joint PDF can be treated as the MPP. Mathematically, the 
approximated MPP (μMPP) can be expressed as, 

μMPP = arg max
ξi

{
I
[
g
(
ξi)]fξ

(
ξi)

}
(9) 

where, ξi represents the ith sample with a joint PDF fξ
(
ξi). The indicator 

function, I[g(ξ)] is equal to 1 for g(ξ) < 0 and 0, otherwise. The 
approximated MPP (say, μMPP) is used as the centre of the quasi-optimal 
density function for an IS population. If there is no failure point found 
from NMCS MCS samples, then the MCS sample with the lowest magni
tude of LSF will be considered as the centre. NIS importance samples are 
generated from a multi-normal distribution with MPP as the mean 
vector and original standard deviation as the standard deviation for each 
random variable [70,71]. Then the joint PDF for the importance 
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sampling density function, fIS at any point ξ is obtained as, 

fIS(ξ)=
∏n

k=1
ϕ
(

ξk − μMPP
k

σk

)

(10) 

where, n is the dimension of ξ and σk represents the original standard 
deviation of ξk. If any random variable follows a truncated distribution, 
then the corresponding normal distribution is also truncated by its 
original truncation limits. It can be noted that the first stage involves 
searching for a suitable centre for a quasi-optimal IS population, not an 
accurate MPP. Subsequently, the IS technique will estimate failure 
probability and therefore the accuracy of MPP estimation does not affect 
the accuracy of the failure estimate in a single-MPP problem [66]. 
However, the proposed method is not suitable for a multi-MPP problem. 
In detail, only one MPP with the highest joint probability density will be 
selected in case of multi-MPP problems. Subsequently, only one IS 
population around this MPP will be generated. Therefore, the contri
butions from the failure region far from the selected MPP will be 
neglected. In addition, it is also difficult to obtain a convergent MPP 
from the MCS sampling pool for the high-dimensional problem. Thus, 
the proposed approach is not suitable for multi-MPP or 
high-dimensional problems.

3.2. Second stage

The training in the second stage primarily aims to improve the ac
curacy of the prediction at NIS importance samples. For this, the DE loss 
in these samples is minimized. However, the calculation of DE loss at NIS 
importance samples for each iteration increases the computation cost 
significantly. The computation can be accelerated if DE loss is calculated 
for a smaller number of samples. To do this, NIS importance samples are 
split into 100 batches of n100 points (i.e., n100 = NIS/100). At each 
iteration, one batch consisting of n100 samples is selected for random 
variables and n100 uniform random samples are generated for each 
spatiotemporal variable. Then, samples of random variables and 
spatiotemporal variables are concatenated to calculate the DE loss. 
Based on the calculated DE loss, the network parameters are updated at 
each iteration following the Adam optimizer. After 5000 iterations, the 
same stopping criterion as introduced in the first stage is applied. The 
final PINN after the second-stage training is employed to approximate 
the LSF at NIS importance samples. The failure probability is estimated 
based on the IS technique as [72], 

Pf =
1

NIS

∑NIS

i=1
I
[
g
(
ξi)] fξ

(
ξi)

fIS
(
ξi) (11) 

where, fξ and fIS are the joint PDFs for the actual input space and the 
generated IS population, respectively. The size of the IS sampling pool 
should be such that the coefficient of variation (COV) of the estimated 
failure probability is below an acceptable value. The acceptable COV for 
the estimated failure probability is chosen as 0.1 in the present study.

3.3. Outline of PINN-IS

It can be noted that the fully connected neural network structure is 
adopted for the present study, the same as that used by Chakraborty [52] 
and AT-PINN-RA [54]. Like Chakraborty [52], no adaptive sampling 
approach is adopted in the first stage of the algorithm. However, new 
training points are generated at each iteration instead of generating a 
large set of collocation points and calling them by mini-batches. Unlike 
AT-PINN-RA [54], the first stage treated the whole input space as 
equally important to find an approximate MPP. The accuracy of the 
PINN model at the first stage is not important near the failure plane as it 
is not employed for reliability estimation by any simulation technique. 
Therefore, adaptive sampling is not necessary at this stage rather the 
MPP is to be approximated appropriately. Unlike PINN-FORM [55], the 

approximated MPP is not utilized to obtain the reliability index or an 
equivalent failure probability but is used as the centre for generating a 
quasi-optimal IS density function. Finally, the failure probability is 
estimated by the IS technique using the LSF prediction of the PINN 
model obtained after the training in the second stage. Therefore, 
training points are selected batch-wise from the IS population at each 
iteration in the second stage to improve the accuracy of the prediction at 
those points. Hence, the proposed approach is significantly different 
from the existing PINN approaches for reliability analysis. The 
step-by-step procedure is outlined in Algorithm 1. 

Algorithm 1. Step-by-step procedure for implementing the proposed 
two-stage PINN framework to determine low failure probability events

1) Initialize the PINN model parameters Wi and bi.
2) Generate ncp uniform random samples of both the spatiotemporal and random 

variables in the range of their physical limits or [μ − 5σ,μ + 5σ].
3) Scale variables between − 1.0 and 1.0. Concatenate all the variables as 

{
xi

DE , tiDE, ξ
i
DE
}ncp

i=1 and feed the network.

4) Calculate the DE loss at 
{
xi

DE, ti
DE, ξ

i
DE
}ncp

i=1 and obtain the total loss MSE described in 
Eq. (4). Following sec. 2.4 and Eq. (8), update input-output relation to automati
cally satisfy initial and/or boundary conditions, as a consequence, MSEIC =

MSEBC = 0 and MSE = MSEDE.
5) Update Wi and bi by Adam optimization algorithm. Go to 2) if iteration <5000.
6) Record the lowest MSE among all previous iterations as MSElowest

stage1 if iteration =
5000.

7) if iteration >5000 and MSE >MSElowest
stage1, Go to 2), otherwise, end of training.

Obtain the first-stage PINN model.
8) Generate NMCS MCS samples according to the PDF of random variables.
9) Employ the first-stage PINN model to find the approximated MPP μMPP as 

described in Eq. (9).
10) Generate NIS importance samples by a multi-normal distribution centred at μMPP 

as defined in Eq. (10).
11) Split NIS importance samples into 100 batches of n100 points.
12) Initialize the second-stage PINN model parameters Wi and bi.
13) Select one batch of n100 importance samples for random variables and generate 

n100 uniform random samples for each spatiotemporal variable.
14) Scale variables between − 1.0 and 1.0. Concatenate samples of all variables and 

feed the second-stage PINN.
15) Calculate MSE.
16) Update Wi and bi by Adam optimization algorithm. Go to 13) if iteration <5000.
17) Record the lowest MSE among all previous iterations of the second stage 

iterations as MSElowest
stage2, if iteration = 5000.

18) if iteration >5000 and MSE >MSElowest
stage2, Go to 13), otherwise, end of training.

Obtain the second-stage PINN model.
19) Employ the second-stage PINN model to approximate the LSF at NIS importance 

samples.
20) Estimate Pf based on the IS technique as formulated in Eq. (11).

4. Numerical study

The proposed two-stage PINN-based metamodeling approach for 
reliability analysis involving small failure probability is illustrated by 
considering three structural analysis examples. The first example con
siders a straight bar subjected to an axial load. The deflection of a 
cantilever beam under a uniform distributed load is studied in the sec
ond example. The last example is the deflection of a thin square plate 
under a non-uniform loading. The resulting unique DEs in these three 
examples are solved by the proposed two-stage PINN approach. Both 
ordinary and partial DEs are considered in these example problems. The 
PINN consists of five fully connected hidden layers with each layer 
having 50 neurons and the sigmoid activation function is employed. 
However, it is well known that the sigmoid activation saturates at the 
two ends and gives rise to the vanishing gradient problem. The highest 
gradient of the sigmoid activation is observed at zero and then gradually 
decreases in both directions. The input of the activation function should 
be closer to zero to get a higher gradient value. Following this, the 
proposed algorithm scales the input variables between − 1.0 and 1.0 to 
ensure a significant gradient value. Adam algorithm with a learning rate 
of 0.001 is employed to optimize the network parameters of the PINN. 
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The values of ncp, NMCS and NIS are taken as 500, one million and 50,000, 
respectively. The results are also obtained by the MCS technique fol
lowed by an IS technique using the analytical solutions to validate the 
accuracy of the proposed approach.

4.1. A straight bar subjected to an axial load

A straight bar shown in Fig. 1 is taken as the first example. The left 
end of the bar is fixed, and an axial force F acts on the right end. The 
cross-sectional area A, the Young’s modulus E and F follow triangular 
probability distributions. Table 1 shows the distribution parameters of F, 
A and E. The following differentiation equation describes the problem, 

du
dx

−
F

AE
= 0 (12) 

where, u is the displacement of the bar at a distance x from the fixed end. 
The initial condition of the problem is stated as follows, 

u=0 at x = 0 (13) 

The LSF is defined as follows, 

g= umax − (u)x=5 (14) 

where, umax is the maximum allowable displacement of the bar.
In this problem, there are four input variables (one spatial variable x, 

and three random variables F, A and E) and one output variable for 
approximating the displacement u. The network can be expressed as, 

û =net(x, F,A,E) (15) 

To automatically satisfy the initial condition, the above relation can 
be modified as follows, 

û = xnet(x, F,A,E) (16) 

Therefore, only the loss term related to DE is to be minimized. In the 
proposed PINN-IS approach, 500 collocation points are generated for the 
spatial variable x between 0.0 and 5.0 at each iteration. For three 
random variables, 500 samples are generated within their distribution 
truncation limits. Following the algorithm described in section 3, a PINN 
model is finalized in the first stage of the algorithm. Based on the PINN 
model, u at x = 5 m is approximated in one million MCS points to get the 
MPP. Then, 50,000 importance samples are generated for three random 
variables and divided into 100 batches each containing 500 samples. In 
the second stage of the algorithm, samples of one batch are concatenated 
with 500 uniform random samples of x at each iteration to train the 
PINN. Once, the PINN model is converged, u at x = 5 m is obtained for 
50,000 importance samples and Pf is calculated based on Eq. (11). Re
sults obtained by the proposed PINN-IS approach are labelled as ‘Two- 
stage PINN-IS’. Using the analytical solution, the value of u at x = 5 m is 
obtained for one million MCS samples to get an approximate MPP. Based 
on the MPP, 50,000 importance samples are generated to calculate Pf 

using Eq. (11). This reliability estimation approach is denoted by the 
‘MCS + IS’ and its results are considered as the benchmark. The pro
posed algorithm and ’MCS + IS’ are identical in selecting simulation 
samples (for MCS and IS techniques) and reliability estimation methods. 
In particular, both methods first select an approximate MPP from an 

MCS pool for the subsequent IS technique. The only difference is that 
‘MCS + IS’ uses the actual LSF and the proposed approach employs an 
approximate LSF. For this reason, the ‘MCS + IS’ has been used for 
benchmarking results and not as a competitive method. As the existing 
literature for reliability analysis using the PINN model uses single-stage 
training and is not suitable for small failure probability problems, the 
PINN model converged after the first stage of the proposed approach is 
also employed to estimate the failure probability based on the IS tech
nique and this approach is labelled as ‘Single-stage PINN-IS’. However, 
numerous metamodel-based algorithms are available to solve the 
problem with a small failure probability. These methods are data-driven, 
which means they require to be trained with input-output data and 
hence, involve actual function evaluations. Active learning-based 
adaptive Kriging combined with IS or AK-IS [66] being a well-noted 
approach among them is also considered for comparison. The conven
tional IS technique where MPP is obtained by FORM is also employed to 
estimate failure probability. To study the performances of the FORM, 
conventional IS, AK-IS, ‘MCS + IS’, ‘Single-stage PINN-IS’ and ‘Two-
stage PINN-IS’ approaches in different failure probability ranges, the 
value of umax in the LSF is varied. IS, AK-IS, ‘MCS + IS’, ‘Single-stage 
PINN-IS’ and ‘Two-stage PINN-IS’ approaches are repeated 10 times to 
study the variations in the results due to the use of pseudo-random 
numbers for the generation of random samples. For a meaningful com
parison, the MCS populations used by ‘MCS + IS’, ‘Single-stage PINN-IS’ 
and ‘Two-stage PINN-IS’ approaches are identical in each case of repe
tition. The different statistics of 10 repetition results of IS, AK-IS, ‘MCS 
+ IS’, ‘Single-stage PINN-IS’ and ‘Two-stage PINN-IS’ approaches are 
depicted by boxplots in Fig. 2(a) and (b) and (c) for umax = 4.4 × 10− 3 m, 
4.5 × 10− 3 m and 4.6 × 10− 3 m, respectively. The variations of IS, AK-IS, 
‘MCS + IS’ and ‘Two-stage PINN-IS’ approaches are comparable or 
similar. Larger variations of ‘Single-stage PINN-IS’ results are observed 
than the other approaches. Table 2 shows the result of FORM, the 
average Pf values estimated by the IS, AK-IS, ‘MCS + IS’, ‘Single-stage 
PINN-IS’ and ‘Two-stage PINN-IS’ approaches for different values of umax 

and their corresponding number of actual function evaluations required. 
Results of IS, AK-IS, ‘MCS + IS’ and ‘Two-stage PINN-IS’ approaches are 
very close to each other, but ‘Two-stage PINN-IS’ requires no actual 
function evaluation. The absolute percentage errors of ‘Single-stage 
PINN-IS’ and ‘Two-stage PINN-IS’ approaches with respect to ‘MCS + IS’ 
are also reported in the table. The average result of 10 ‘MCS + IS’ rep
etitions is considered as the reference to calculate the absolute per
centage errors of the average results of the other two approaches. In the 
case of ‘Single-stage PINN-IS’, high errors are observed for estimating 
lower Pf values than 10− 5. On the other hand, the ‘Two-stage PINN-IS’ 
approach produces very accurate results (errors are in the range of 
0.32%–5.67%) for all three ranges of Pf values. This observation in
dicates the efficiency of the proposed two-stage PINN model for esti
mating small failure probabilities. This example problem with a 
different parameter setting was previously studied by Meng et al. [55]. 
Their PINN-FORM approach took 0.5 million iterations to estimate a 
large failure probability value. Whereas the proposed PINN-IS approach 
produces accurate results using about 10,000 iterations for a much 
smaller (10− 5 to 10− 7) failure probability.

The problem statement is modified to study the performance of the 
Fig. 1. A straight bar subjected to an axial load.

Table 1 
The triangular distribution parameters of random variables of the straight bar.

Random 
Variable

Mean SD Lower bound Upper bound

F 10.0 × 103 N 1.0 × 103 N 7.550 × 103 

N
12.449 × 103 

N
A 0.0001 m2 0.00001 m2 0.755 × 10− 4 

m2
1.245 × 10− 4 

m2

E 2.06 × 1011 

N/m2
0.15 × 1011 

N/m2
1.693 × 1011 

N/m2
2.427 × 1011 

N/m2
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proposed approach for high-dimensional problems. In doing so, the E is 
assumed to be a function of N independent random variables. If λi rep
resents the ith independent random variable, then E is expressed as, 

E= E1 +
E2

7

̅̅̅̅̅̅
21
N

√
∑N

i=1
λi (17) 

where, E1 = 2.07 × 1011 N/m2 and E2 = 2.0 × 1010 N/m2. Each of λi 

follows a triangular probability distribution with zero mean and is 
bounded between − 1.0 and 1.0. The values of F, A and umax are taken as 
10 × 103 N, 0.0001 m2 and 2.72 × 10− 3 mm, respectively for reliability 

analysis. After the modification, the problem has N+1 variables (1 
spatial and N random variables). Two different values of N (i.e., 12 and 
21) are considered to illustrate how the dimensionality affects the per
formance. The reliability results are obtained by IS, AK-IS, ‘MCS + IS’ 
and the proposed methods, which have ten repetitions, like the previous 
case. The average values of the failure estimates and the total number of 
function evaluations required by ten repetitions are reported in Table 3. 
Results of IS, AK-IS, ‘MCS + IS’ and ‘Two-stage PINN-IS’ approaches are 
very close to each other for the 12-dimensional case. A higher difference 
in average reliability results by these approaches is observed for the 21- 
dimension case compared to the 12-dimension case. The result produced 
by the proposed ‘Two-stage PINN-IS’ lies between IS and ‘MCS + IS’ 
results, whereas AK-IS overestimates the failure probability for the 21- 
dimension case. Poor performance of ‘Single-stage PINN-IS’ is 

Fig. 2. Summary of statistical observation on results obtained from repetitions of different reliability analysis approaches for (a) umax = 4.4 × 10− 3 m, (b) umax = 4.5 
× 10− 3 m and (c) umax = 4.6 × 10− 3 m.

Table 2 
Results of reliability analysis for the straight bar.

Reliability 
approach

Pf [no. of function evaluations] and (absolute error in %)

umax = 4.4 × 10− 3 

m
umax = 4.5 × 10− 3 

m
umax = 4.6 × 10− 3 

m

FORM 3.594 × 10− 4 [37] 3.057 × 10− 4 [37] 2.272 × 10− 4 [37]
IS 8.224 × 10− 6 [37 

+ 50,000]
1.816 × 10− 6 [37 
+ 50,000]

2.705 × 10− 7 [37 
+ 50,000]

AK-IS 8.240 × 10− 6 [37 
+ 0]

1.816 × 10− 6 [37 
+ 0]

2.705 × 10− 7 [37 
+ 0]

MCS + IS 8.253 × 10− 6 [106 

+ 50,000]
1.854 × 10− 6 [106 

+ 50,000]
2.575 × 10− 7 [106 

+ 50,000]
Single-stage 

PINN-IS
6.383 × 10− 7 [nil] 
(92.27%)

8.141 × 10− 7 [nil] 
(56.01%)

1.328 × 10− 8 [nil] 
(94.84%)

Two-stage 
PINN-IS

8.397 × 10− 6 [nil] 
(1.74%)

1.860 × 10− 6 [nil] 
(0.32%)

2.429 × 10− 7 [nil] 
(5.67%)

Table 3 
Results of reliability analysis for the high-dimension cases of the straight bar.

Reliability 
approach

Pf [no. of function evaluations] and (absolute error in %)

N = 12 N = 21

FORM 2.272 × 10− 5 [40] 2.547 × 10− 5 [67]
IS 3.320 × 10− 6 [40 + 50,000] 4.795 × 10− 6 [67 + 50,000]
AK-IS 3.374 × 10− 6 [40 + 0.1a] 5.397 × 10− 6 [67 + 2.8a]
MCS + IS 3.332 × 10− 6 [106 +

50,000]
4.372 × 10− 6 [106 +

50,000]
Single-stage PINN- 

IS
7.201 × 10− 9 [nil] (99.78%) 2.803 × 10− 7 [nil] (93.59%)

Two-stage PINN-IS 3.360 × 10− 6 [nil] (0.84%) 4.509 × 10− 6 [nil] (3.13%)

a The average value of ten repetitions is shown up to the first decimal place.
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observed in both cases. The summary of statistical observation on results 
obtained from repetitions of different reliability analysis approaches for 
the high-dimension case of the straight bar is shown in Fig. 3. Variation 
in the proposed ‘Two-stage PINN-IS’ results increases with dimension
ality. One possible reason for this variation is the process of MPP eval
uation. The IS pool for the proposed ‘Two-stage PINN-IS’ is based on the 
MPP obtained by the ‘Single-stage PINN-IS’ which is largely affected by 
the performance of ‘Single-stage PINN-IS’. Moreover, it is also difficult 
to obtain a convergent MPP from the MCS pool for high-dimensional 
problems. On the other hand, AK-IS results are based on a fixed MPP 
obtained by FORM. For this, AK-IS results have lesser variation 
compared to the proposed ‘Two-stage PINN-IS’ results. Hence, further 
improvement of the proposed algorithm for higher dimension problems 
should be explored to reduce the variation in results. This aspect is 
considered as a future scope of study.

4.2. A cantilever beam under a uniform distributed load

The second example is a cantilever beam (shown in Fig. 4) with a 
uniformly distributed load w over it. The length of the beam l is taken as 
2 m. The Young’s modulus E, the moment of inertia I and w follow 
truncated normal random distributions. The distribution parameters of 
w, E and I are shown in Table 4. The following DE governs the deflection 
of the cantilever beam due to a uniform loading, 

EI
d2u
dx2 −

w(l − x)2

2
= 0 (18) 

where, u is the deflection of the beam at distance x from the fixed end. 
The initial conditions are zero slope and no deflection at the fixed end, 

du
dx

=0 and u = 0 at x = 0 (19) 

The LSF is defined as follows, 

g= umax − (u)x=l (20) 

where, umax is the maximum allowable deflection at the free end of the 
beam (i.e., x = 2 m).

Like the previous example, there are four input variables (one spatial 
variable x, and three random variables w, E and I) and one output var
iable for approximating the beam deflection u, i.e., 

û =net(x,w,E, I) (21) 

This input-output relation is modified to automatically satisfy the 
initial conditions stated in Eq. (19) as follows, 

û = x2net(x,w, I, E) (22) 

The ‘MCS + IS’, ‘Single-stage PINN-IS’ and ‘Two-stage PINN-IS’ ap
proaches are employed to estimate the Pf for three different values of 
umax in the LSF. Statistics of ten repetition results by IS, AK-IS, ‘MCS +
IS’, ‘Single-stage PINN-IS’ and ‘Two-stage PINN-IS’ approaches are 
depicted in Fig. 5(a) and (b) and (c) by boxplots for umax = 3.9 × 10− 3 m, 
4.0 × 10− 3 m and 4.2 × 10− 3 m, respectively. The ranges of IS, AK-IS, 
‘MCS + IS’ and ‘Two-stage PINN-IS’ are observed to be close to each 
other while that of ‘Single-stage PINN-IS’ are away from the other ap
proaches. The result of FORM and the average results of ten repetitions 
with their required number of actual function evaluations of the IS, AK- 
IS, ‘MCS + IS’, ‘Single-stage PINN-IS’ and ‘Two-stage PINN-IS’ ap
proaches are reported in Table 5. Without any actual function evalua
tion, the ‘Two-stage PINN-IS’ approach produces very similar results as 
IS, AK-IS and ‘MCS + IS’. The absolute percentage errors of the ‘Single- 
stage PINN-IS’ and ‘Two-stage PINN-IS’ approaches are compared in the 
table. In the case of ‘Two-stage PINN-IS’, about 3%–5% errors are 
observed for estimating failure probability in the range of 10− 5 to 10− 6. 

Fig. 3. Summary of statistical observation on results obtained from repetitions of different reliability analysis approaches for the high-dimension case of the 
straight bar.

Fig. 4. A cantilever beam under a uniform distributed load.

Table 4 
The distribution parameters of truncated normal random variables of the 
cantilever beam.

Random 
Variable

Mean SD Lower bound Upper bound

w 2 × 103 N/m 0.2 × 103 N/ 
m

1.4 × 103 N/ 
m

2.6 × 103 N/ 
m

I 1.0 × 10− 5 

m4
0.1 × 10− 5 

m4
0.7 × 10− 5 m4 1.3 × 10− 5 m4

E 2.0 × 1011 

N/m2
0.15 × 1011 

N/m2
1.55 × 1011 

N/m2
2.45 × 1011 

N/m2
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However, the errors of results by ‘Single-stage PINN-IS’ are significantly 
high and rapidly increase for lower failure probabilities.

4.3. A thin square plate with a non-uniform loading

A thin square plate shown in Fig. 6 is considered as the final example. 
The four sides of the plate are simply supported. The thickness of the 
plate (t) is 0.05 m, and the length of each side is π m. A spatially varying 
non-uniform load q0 sin x sin y is applied over the plate. The governing 
partial DEs of the plate are stated as follows, 

∂4u
∂x4 +

∂4u
∂x2∂y2 +

∂4u
∂y4 −

q0 sin x sin y
D

= 0 (23) 

where D is the bending stiffness of the plate and is defined as follows: 

D=
Et3

12(1 − ν2)
(24) 

Here, t is the thickness of the plate, E and ν are the Young’s modulus 
and the Poisson ratio of the plate material, respectively. In this example, 
t = 0.05 m is taken, and q0, E and ν are considered as random variables 

Fig. 5. Summary of statistical observation on results obtained from repetitions of different reliability analysis approaches for (a) umax = 3.9 × 10− 3 m, (b) umax = 4.0 
× 10− 3 m and (c) umax = 4.2 × 10− 3 m.

Table 5 
Results of reliability analysis for the cantilever beam.

Reliability 
approach

Pf , [no. of function evaluations] and (absolute error in %)

umax = 3.9 × 10− 3 

m
umax = 4.0 × 10− 3 

m
umax = 4.2 × 10− 3 

m

FORM 2.402 × 10− 5 [29] 1.644 × 10− 5 [37] 5.180 × 10− 15 [37]
IS 1.036 × 10− 5 [29 

+ 50,000]
4.289 × 10− 6 [37 
+ 50,000]

6.156 × 10− 7 [37 
+ 50,000]

AK-IS 1.037 × 10− 5 [29 
+ 0]

4.295 × 10− 6 [37 
+ 0]

6.061 × 10− 7 [37 
+ 0]

MCS + IS 1.043 × 10− 5 [106 

+ 50,000]
4.264 × 10− 6 [106 

+ 50,000]
6.120 × 10− 7 [106 

+ 50,000]
Single-stage 

PINN-IS
8.875 × 10− 6 [nil] 
(14.93%)

3.015 × 10− 6 [nil] 
(29.31%)

3.615 × 10− 7 [nil] 
(40.93%)

Two-stage 
PINN-IS

1.007 × 10− 5 [nil] 
(3.42%)

4.097 × 10− 6 [nil] 
(3.94%)

5.767 × 10− 7 [nil] 
(5.76%)

Fig. 6. A thin square plate with a non-uniform loading.
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following truncated normal distributions. The distribution parameters 
are shown in Table 6. The boundary conditions of the plate are described 
as follows, 

u = 0 and
∂2u
∂x2 = 0 at x = 0, π

u = 0 and
∂2u
∂y2 = 0 at y = 0, π

(25) 

The LSF for the plate deflection is defined as follows, 

g= umax − (u)x=π/2,y=π/2 (26) 

where, umax is the maximum allowable deflection at the mid-point of the 
plate, i.e., at x = π/2 m and y = π/2 m.

In this problem, there are five input variables (two spatial variables x 
and y, and three random variables q0, E and ν) and one output variable 
for approximating the displacement u. The network can be expressed as, 

û =net(x, y, q0, E, ν) (27) 

To automatically satisfy the conditions described in Eq. (25), the 
input-output relation can be modified as follows, 

û = sin x sin ynet(x, y, q0, E, ν) (28) 

The performances of the ‘MCS + IS’, ‘Single-stage PINN-IS’ and ‘Two- 
stage PINN-IS’ are studied for three different values of umax that yield 
different ranges of Pf values. For each case, ten repetitions are per
formed. Different statistics of ten repetitions by IS, AK-IS, ‘MCS + IS’, 
‘Single-stage PINN-IS’ and ‘Two-stage PINN-IS’ approaches are sum
marised by boxplots in Fig. 7(a) and (b) and (c) for umax = 0.2 m, 0.21 m 
and umax = 0.22 m, respectively. Wide variations of results by ‘Single- 
stage PINN-IS’ are observed while that of IS, AK-IS, ‘MCS + IS’ and ‘Two- 
stage PINN-IS’ approaches are comparable. The result of FORM and the 
average results of IS, AK-IS, ‘MCS + IS’, ‘Single-stage PINN-IS’ and ‘Two- 
stage PINN-IS’ approaches are shown in Table 7. The average results of 
IS, AK-IS, ‘MCS + IS’ and ‘Two-stage PINN-IS’ approaches are very close 
to each other. However, IS, AK-IS and ‘MCS + IS’ approaches require a 
large number of actual function evaluations. The absolute percentage 
errors of ‘Single-stage PINN-IS’ and ‘Two-stage PINN-IS’ approaches are 
also reported in the table. In the case of ‘Single-stage PINN-IS’, the error 
increases from 4% to 40% for reducing the order of failure probability 
from 10− 5 to 10− 6. Whereas, the errors in the case of ‘Two-stage PINN- 
IS’ increase from 1% to 2% only for the same decrement of the Pf value 
which demonstrates its efficacy for estimating low failure probability. 
Like the first example, the present example with a different parameter 
setting was previously also studied by Meng et al. [55] where 0.2 million 
iterations are required by their (PINN-FORM) approach to estimate a 
large failure probability value. However, our proposed approach can 
effectively estimate a low failure probability (<10− 6) using only about 
10,000 iterations.

5. Conclusions

In the present study, a two-stage physics-informed neural network 
(PINN) based metamodeling approach is developed to accurately 

estimate rare events with low failure probability. The first stage of the 
proposed approach is involved in training a PINN model appropriately 
to obtain an approximate most probable failure point (MPP) from a 
Monte Carlo simulation (MCS) population, and the second stage is 
responsible for the efficient training of another PINN model to approx
imate the limit state function (LSF) at samples of IS population centred 
on the approximated MPP. Finally, the failure probability is estimated 
by the IS technique. To compare the accuracy, the MPP from an MCS 
population and subsequently the failure probability based on the IS 
technique are also obtained by utilizing the actual LSF based on the 
analytical solution. The results from this approach are considered as the 
benchmark.

To the best of our knowledge, there is no existing PINN approach for 
small failure problems. Therefore, the PINN model obtained in the first 
stage is also employed to estimate failure probability by the IS technique 
and results (labelled by Single-stage PINN-IS) are compared with the 
proposed Two-stage PINN-IS approach. Three structural reliability 
analysis problems involving small failures are investigated numerically. 
All the problems are studied for a wide range of failure probabilities to 
test the robustness of the approaches. The results of single-stage PINN-IS 
produce large errors in small failure probabilities whereas the results of 
the proposed two-stage PINN-IS are close to that of the benchmark. This 
clearly indicates that the model training in the second stage is particu
larly effective for estimating small probabilities. The key advantages of 
the proposed PINN-IS metamodeling approach include the following, 

• Ability to perform reliability analysis without a single evaluation of 
the actual LSF i.e., data-free.

• Capability of estimating failure probabilities less than 10− 5 with a 
satisfactory level of accuracy.

• Competency to train the PINN models with only about 10,000 
iterations.

• Provision to deal with any probability distribution of random 
variables.

• Flexibility of incorporating any advancement of the IS technique and 
use of improved network architecture (e.g., convolutional neural 
networks and recurrent neural networks)

The proposed approach opens up a new paradigm of data-free reli
ability analysis of structural systems having low failure probability and 
demonstrates the efficacy of PINN-integrated IS. As the proposed algo
rithm is generic in nature, the application is not only limited to struc
tures but can also be extended to solve low failure probability problems 
involving complex physics such as crack propagation, fluid mechanics, 
molecular dynamics etc. In the present study, three basic structural el
ements (bar, beam and plate) are investigated considering uncorrelated 
random variables. PINN-based reliability analysis for correlated random 
variables will be considered in future studies for solving more realistic 
engineering problems. Further, there is scope for enhancement of the 
proposed algorithm for higher dimension problems and problems with 
multiple MPPs. Future work can be extended to complex structures and 
time-dependent reliability analysis by employing advanced neural ar
chitectures, such as convolutional neural networks and recurrent neural 
networks.
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Table 7 
Results of reliability analysis for the thin square plate.

Reliability 
approach

Pf , [no. of function evaluations] and (absolute error in %)

umax = 0.2 m umax = 0.21 m umax = 0.22 m

FORM 2.317 × 10− 4 [37] 5.124 × 10− 4 [37] 2.112 × 10− 5 [37]
IS 1.318 × 10− 5 [37 

+ 50,000]
3.962 × 10− 6 [37 
+ 50,000]

1.152 × 10− 6 [37 
+ 50,000]

AK-IS 1.317 × 10− 5 [37 
+ 0]

3.927 × 10− 6 [37 
+ 0]

1.146 × 10− 6 [37 
+ 0]

MCS + IS 1.326 × 10− 5 [106 

+ 50,000]
3.981 × 10− 6 [106 

+ 50,000]
1.136 × 10− 6 [106 

+ 50,000]
Single-stage 

PINN-IS
1.269 × 10− 5 [nil] 
(4.33%)

3.141 × 10− 6 [nil] 
(21.10%)

6.795 × 10− 7 [nil] 
(40.16%)

Two-stage 
PINN-IS

1.308 × 10− 5 [nil] 
(1.36%)

3.913 × 10− 6 [nil] 
(1.70%)

1.159 × 10− 6 [nil] 
(2.10%)
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