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A B S T R A C T

Background: Endemic fluorosis refers to the condition when individuals are exposed to excessive amounts of 
fluoride ion due to living in a region characterized by elevated levels of fluorine in the drinking water, food, and/ 
or air. In Pakistan, a substantial proportion of the population is thereby affected, posing a public health concern.
Objectives: Assessing how the gut microbiota and its metabolic profiles are impacted by chronic exposure to 
fluoride in drinking water (that caused Dental Fluorosis) as well as to perceive how this microbiota is connected 
to adverse health outcomes prevailing with fluoride exposure.
Methods: Drinking water (n=27) and biological samples (n=100) of blood, urine and feces were collected from 70 
high fluoride exposed (with Dental Fluorosis) and 30 healthy control (without Dental Fluorosis) subjects. Water 
and urinary fluoride concentrations were determined. Serum/plasma biochemical testing was performed. Fecal 
DNA extraction, 16S rRNA analysis of microbial taxa, their predicted metabolic function and fecal short chain 
fatty acids (SCFAs) quantification were carried out.
Results: The study revealed that microbiota taxonomic shifts and their metabolic characterization had been linked 
to certain host clinical parameters under the chronic fluoride exposure. Some sets of genera showed strong 
specificity to water and urine fluoride concentrations, Relative Fat Mass index and SCFAs. The SCFAs response in 
fluoride-exposed samples was observed to be correlated with bacterial taxa that could contribute to adverse 
health effects.
Conclusions: Microbial dysbiosis as a result of endemic fluorosis exhibits a structure that is associated with risk of 
metabolic deregulation and is implicated in various diseases. Our results may form the development of novel 
interventions and may have utility in diagnosis and monitoring.

1. Introduction

Fluoride occurrence in the biosphere is inevitable and groundwater 
fluoride exposure is an environmental hazard that poses risks to human 
health. People are severely affected around the globe where the problem 
is endemic and are unable to substitute the high fluoride containing 

groundwater source. Naturally occurring fluoride (F-) minerals in soil 
and aquifer sediments among other hydrogeochemical factors, cause 
fluoride to accumulate in groundwater. The groundwater fluoride haz-
ard map’s machine learning tools have identified hotspots in numerous 
regions of Africa and Asia, as well as parts of eastern Brazil, western 
North America and central Australia. The majority of the 180 million 
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people who are impacted globally live in Asia (51–59 % of total popu-
lation) and Africa (37–46 % of total population) (Podgorski and Berg, 
2022). Geographical location, geological structure and climatic factors 
of regions contribute towards distribution of fluoride in contaminated 
water sources. The countries severely impacted by fluoride contamina-
tion of groundwaters are Kenya, Libya, Ghana, Sudan, Burundi, 
Tanzania, Ethiopia, Algeria, China, India, Sri Lanka, Iran, Pakistan, 
Argentina, Germany, Chile, Jordan and Türkiye (Shaji et al., 2024). 
Pakistan, being located on the Tethyan Mobile belt (belt 3 of the 5 global 
fluoride belts), is facing the geogenic fluoride levels in groundwater and 
maximum fluoride concentration equal to 30 mg/L has been reported 
(Chowdhury et al., 2019; Rafique et al., 2009). As such fluoride is one 
water contaminant that the WHO believes (fluoride concentration in 
drinking water is allowed up to 1 mg/L for temperate climate regions) it 
has potential to impact the human health in an unfavorable way (Ahmad 
et al., 2022). Chronic fluoride exposure produces the recognized adverse 
effect of dental fluorosis (Buzalaf, 2018) while much excessive F- con-
sumption over an extended period of time can damage both skeletal and 
soft tissues by disrupting cellular metabolism and ionic transport 
(Barbier et al., 2010). Water fluoride levels raised above 1 mg/L are 
known to cause a linear decline in IQ. However, dose-response meta--
analysis has indicated that even at low exposure levels, fluoride had a 
negative impact on children’s IQ (Veneri et al., 2023). After a certain 
threshold of exposure (around 2.5 mg/L F-), drinking water with high 
fluoride content appears to have a non-linear effect on thyroid function, 
increase TSH release in children and raise the risk of several thyroid 
diseases (Iamandii et al., 2024). According to a recent study, 6 % of the 
Pakistani population (13 million people) is susceptible to groundwater 
fluorosis (Ling et al., 2022). Chronic fluoride toxicity subjects the human 
body under physiological stress and it is anticipated that it would also 
affect the human gut microbiome. According to previous studies, the 
ingested fluoride has altered the intestinal symptomatology and mi-
crobial communities of the several tested animal models (Dionizio et al., 
2021; Li et al., 2021; Melo et al., 2017; Miao et al., 2020). High fluoride 
concentration was demonstrated to be detrimental by reducing some of 
the beneficial bacteria while enhancing some of the harmful bacteria in 
an in vitro fecal fermentation model (Chen et al., 2021). It has been 
discovered that the existence of acidogenic oral microbiota, that pro-
motes the development of caries, is a substantial factor in dental fluo-
rosis (Wang et al., 2021). Another study uncovered the significant 
impact of fecal microbiota depleted carbohydrate metabolism pathways 
on the risk of dental fluorosis in children (Zhou et al., 2023).

Bacteria predominantly make up the current knowledge of gut 
microbiota. Among humans, more than 1000 species and more than 500 
distinct genera have been identified, demonstrating high diversity at 
lower taxonomic levels (Falony et al., 2016; Huttenhower et al., 2012; 
Qin et al., 2010). The specific gut environmental factors (such as acidity, 
substrate concentration, molecular oxygen etc.) influence the microbial 
communities differently at distinct gastro-intestinal (GI) compartments 
(Costello et al., 2009; Ding and Schloss, 2014). Diet, lifestyle and the 
host’s DNA impact the gut microbiota since birth. Gut microbiota in-
teracts by regulating the host metabolic pathways, forming a network of 
metabolic, signalling and immune-inflammatory axes that physiologi-
cally link the gut with other organs, such as the brain and liver. A greater 
understanding of these axes is essential to define therapeutic options to 
manage the gut microbiota in an effort to avoid disease and improve 
health (Nicholson et al., 2012). Focusing on the functional capabilities of 
the microbiome could be more informative rather than just its taxo-
nomic makeup. The functional capacity of the microbiome is more 
consistent across different people than the specific microbial taxa they 
host (Visconti et al., 2019). Moreover, the metabolic activities of the 
microbiome have a more extensive and stronger influence on the me-
tabolites present in both blood and feces compared to the influence of 
specific microbial species. This highlights the importance of microbial 
metabolic pathways in shaping the metabolic landscape of the human 
body.

Under unwanted conditions, the microbiota is susceptible to varia-
tions in its composition and in its interactions with the host. Conse-
quently, the altered microbiota lends itself to the emergence of 
metabolic disorders and influences the process of a disease development 
(Berg et al., 2020). Such dysbiosis refers to the loss of good bacteria and 
increase of potentially bad bacteria when compared to eubiosis 
(Aldars-García et al., 2021). SCFAs, being the final byproduct of mi-
crobial fermentation, perform immunomodulatory and metabolic reg-
ulatory roles within the human host. Variations in the concentration of 
these SCFAs produced in the gut can have adverse consequences on the 
human physiology (O’Reilly et al., 2023). Finding associations between 
the gut microbes and the host health factors is considered a robust 
strategy to comprehend health and illness, and can help with the design 
of a clinical study (Manor et al., 2020). The gut flora acts as the mediator 
by producing the host stress response and related outcomes. Charac-
terizing the human gut microbiota in relation to high fluoride exposure 
is in its inception stage. There is currently insufficient knowledge on the 
theory that fluoride exposure may disrupt the homeostasis between the 
gut microbiota and the human host. Moreover, the patterns of SCFAs 
profiles are defined here for the healthy controls and the fluorosis sub-
jects. Together with the gut microbial metabolic pathways, these find-
ings have implications in the aetiology of fluorosis.

2. Materials and methods

2.1. Recruitment of study subjects

This case-control study followed certain criteria. The inclusion 
criteria were that the exposed participants lived in the fluorosis endemic 
regions (with atleast past 6 months exposure to groundwater fluoride) 
and had dental fluorosis. The exclusion criteria were to avoid people 
with chronic pathologies like diabetes, cardiovascular disease, liver 
dysfunction, neurological and gastrointestinal disorder, pregnancy or 
cancer etc. Fluoride endemic areas were identified according to the re-
ports: Draban (District D.I.Khan); Lalmato, Thor Sheikhan, Zaggi Village 
and Sher Bridge (District Mullagori); Sailab Colony, Wanda Baharawala, 
Wanda Bopanwala, Ali Khel Wanda and Wanda Gul Khan Khel (District 
Mianwali) (Bibi et al., 2023). The residents of these areas used 
groundwater for drinking purpose (having fluoride concentration 
˃1 mg/L) and were physically examined for dental and skeletal fluorosis 
manifestations. Skeletal fluorosis was not observed, however, some 
subjects complained of its early symptoms. Several sectors of Islamabad 
(non-endemic regions) were visited for control subjects’ recruitment. 
Control subjects drank bottled water (containing no detectable fluoride) 
and did not exhibit any symptoms of fluorosis seen in endemic areas. The 
chronically groundwater fluoride exposed (n=70) and healthy controls 
(n=30) voluntarily participated in the study. The participants were aged 
between 17 and 60 years. Anthropometrics, blood pressure and blood 
glucose were recorded. All participants followed an omnivorous diet. 
The history of GI illnesses, other chronic pathologies and use of any 
medication in the three months prior to sampling was not reported.

2.2. Samples collection and processing

Drinking water samples, venous blood, urine and fecal samples were 
taken from all the participants of the study. Water samples were ob-
tained from the different water sources like handpump, water bore, 
tubewell and bottle. Venous blood (5 mL) was drawn once from all 
participants, separated using different tubes with and without anti- 
coagulants for the plasma and serum fractions. The aliquoted samples 
were kept at − 80 ◦C for subsequent biochemical profiling. Urine 
collected was filtered through 0.22 µm pore size syringe filters and kept 
frozen till analysis. Intact fecal samples were collected in clean specimen 
containers, homogenized, weighed and separated for DNA extraction 
(150 mg) and SCFAs quantification (1 g). The aliquot for DNA isolation 
was placed at − 80 ◦C till further processing. The 1 mL of NaOH (1 M) 
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was used to homogenize the 1 g of the fecal sample (for SCFA), freeze- 
dried for 36 hrs. and kept at room temperature.

2.3. Determination of host biochemical parameters

Hemoglobin was determined as cyanmethemoglobin. Plasma was 
used to test butyrylcholinesterase (BChE) activity whereas erythrocyte- 
acetylcholinesterase (E-AChE) activity was determined using whole 
blood dilutions (Worek et al., 1999). Modified procedures were followed 
for serum malondialdehyde (MDA), reduced glutathione (GSH), super-
oxide dismutase (SOD) and catalase (CAT) quantification respectively 
(Boutin et al., 1989; Ellman, 1959; Misra and Fridovich, 1977; Wilbur 
et al., 1949). ELISA techniques were used to assess serum interleukin-1β 
(IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and 
C-reactive protein (CRP) levels. Serum total cholesterol (TC), tri-
glycerides (TG), high-density lipoprotein (HDL) and low-density lipo-
protein (LDL) were detected by their specific colorimetric assay kits. The 
atherogenic-index of plasma was calculated (AIP = Log (TG/HDL). 
Serum amylase, lipase and insulin were measured with their specific 
commercial kits and HOMA-IR was calculated (HOMA-IR = Fas-
tingInsulin * FastingGlucose/22.5). Enzymatic activities for serum 
aspartate transaminase (AST), alanine transaminase (ALT), lactate de-
hydrogenase (LDH), alkaline phosphatase (ALP) and 
gamma-glutamyltransferase (ϒ-GT) activities were confirmed by their 
reagent kits. Serum creatinine and urea were quantified using kinetic 
method and colorimetric method kits respectively. Blood urea nitrogen 
(BUN) and estimated glomerular filtration rate (eGFR) calculated by 
Chronic Kidney Disease Epidemiology for Pakistan (eGFR CKD EPI PK) 
were computed (Ahmed et al., 2017). Fluoride ion concentration was 
quantified based on SPADNS colorimetric method in water and urine 
samples. The details of the instruments and reagent kits used are pro-
vided in the supplementary information.

2.4. Quantification of Fecal SCFAs concentrations

Freeze dried fecal sample (100 mg) was weighed in 15 mL poly-
propylene centrifugation tubes. Then the sample was mixed with 300 μl 
distilled water, 100 μl of internal standard solution (73.25 mM; 2-Ethyl-
butyric acid) and 100 μl of orthophosphoric acid (OPA) until complete 
homogenization. Diethyl ether (1.5 mL) was poured into the sample and 
mixed with it using an IKA (VXR Vibrax, Germany) orbital shaker at 
1200 rpm for 1 minute. The diethyl ether containing SCFAs was recov-
ered three times and collected in a sterile tube. This pooled extract was 
put in a clean glass vial, crimped tightly to avoid evaporation and loaded 
onto the GC autosampler. One microliter of each sample was injected 
into the GC-FID (Agilent 7820 A, USA), using an Agilent DB-Wax Ultra 
Inert (15 m, 0.53 mm, 1.00μm) capillary column. Nitrogen was the 
carrier gas. The GC was programmed with the following parameters: 
hold at 80◦C for one minute, increase by 15◦C per minute until 
maximum temperature of 210◦C, held for 1 minute. To determine the 
concentration of each fatty acid, the area under the curve (AUC) of each 
fatty acid was computed and integrated against the calibration curve in 
relation to the AUC of the internal standard. Results are presented as 
percentages of the total SCFA as well as per mass of wet and dry fecal 
material (μmol/g).

2.5. Fecal DNA isolation

DNA extraction from 150 mg of well homogenized fecal sample was 
carried out with DNeasy PowerSoil Pro kit (QIAGEN, Hilden, Germany). 
After extraction, DNA purity and concentration were measured with 
Invitrogen Qubit 2.0 Fluorometer (Life Technologies Corporation, 5791 
Van Allen Way, Carlsbad, California).

2.6. 16S rRNA gene amplicon library and sequencing

The DNA samples were processed using the Glasgow Polyomics 
standard 16S rRNA protocol which encompasses a two-step amplifica-
tion process to produce libraries encompassing the V3 and V4 regions of 
the bacterial 16S ribosomal subunit. The first amplification used 
degenerate primers to well conserved areas, the second included the 
addition of barcodes and sequencing adapters. Sequencing of the li-
braries were performed using V3 chemistry with 2×300 bp on the 
MiSeq.

2.7. Bioinformatics

A total of 10,261,693 paired end reads were obtained from 100 
samples. We then constructed the Operational Taxonomic Units (OTUs) 
at 99 % similarity using the methods described previously (Ijaz et al., 
2018), with minor alterations: a) taxonomic assignment using SILVA 
SSU Ref NR database release v.138 (Quast et al., 2013) was performed; 
and b) phylogenetic tree and other post-processing were made within 
the QIIME2 framework (Bolyen et al., 2019). To obtain predictive 
metabolic potential of the microbial communities, PICRUSt2 (Douglas 
et al., 2020) was utilised within the QIIME environment to give the 
corresponding KEGG enzymes (10,543 enzymes for 100 samples) and 
MetaCyc pathways (488 enzymes for 100 samples) table. As per authors’ 
recommendation (Douglas, 2022), we had used the standard parameters 
–p-hsp-method pic –p-max-nsti 2 in the pipeline: qiime pic-
rust2 full-pipeline. Once the abundance table and taxonomy 
were obtained, QIIME2 was used to consolidate both tables in a single 
BIOM file (summary statistics of reads/sample as follows: [Min: 37,728; 
1st Quartile: 59,263; Median: 65,128; Mean: 65,480; 3rd Quartile: 70, 
480; Max: 107,212]). The BIOM file along with the phylogenetic tree, 
and the associated meta data were then subjected to statistical analyses 
using the hypotheses considered in this study.

2.8. Statistical analyses

For the biochemical features, the non-parametric Kruskal-Wallis test 
was used. Before applying the test, we auto scaled the data, and after 
adjusting the p-values (using Benjamini Hochberg method for multiple 
comparisons) returning from Kruskal-Wallis test, we fitted a random 
forest classifier on the selected features using fluoride exposure groups.

As a pre-processing step, contaminants such as Mitochondria and 
Chloroplasts, along with unassigned OTUs at all levels were removed, 
following the same strategy as given in https://docs.qiime2.or 
g/2022.8/tutorials/filtering/. This gave a final table of n=100 sam-
ples x P=17,971 OTUs on which we applied different multivariate sta-
tistical algorithms.

The R’s vegan package (Dixon, 2003) was used for computing 
community-level metrics including alpha (Shannon entropy, rarefied 
richness, and Simpson index) and beta diversity analyses. To facilitate 
the pair-wise analysis of variance (ANOVA), R’s aov()function was 
used to calculate p-values, which were later incorporated in the alpha 
diversity figures.

The beta diversity distances of OTU abundance table were used in the 
Principal Coordinate Analysis (PCoA) to compare samples. Three type of 
distances were used: (i) Bray-Curtis distance to facilitate analysis of 
compositional changes; (ii) Unweighted UniFrac distance estimated using 
R’s Phyloseq package (McMurdie and Holmes, 2013) to facilitate 
phylogenetic changes between samples; and (iii) Hierarchical Meta--
Storms (HMS), a beta diversity distance specifically targeting KEGG 
Orthologs (KOs) and computes functional changes by considering 
multi-level pathway hierarchy these KOs are part of (Zhang et al., 
2021a). Using adonis() function from Vegan package, PERMANOVA 
analysis was performed to establish percentage variability in micro-
biome structure with different sources of variation. In addition to the 
above-mentioned beta diversity distances, weighted UniFrac distance 
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using the Phyloseq package was also incorporated in the PERMANOVA 
analysis.

To report on the fraction of the microbiome that prevails in most of 
the samples (the core microbiome), a minimum of 85 % prevalence in all 
samples was used as a cut-off. For this purpose, R’s microbiome package 
(Lahti et al., 2017) was utilised.

To find genera that were at 2 log2 fold different (p < 0.05) between 
multiple cohorts in this study, DESeqDataSetFromMatrix() function 
from the DESeq2 package (Love et al., 2014) was used. The reported 
p-values were adjusted for multiple comparisons internally by the 
procedure.

To find a minimal subset of genera that had changed with respect to 
continuous predictors considered in this study, CODA LASSO regression 
using the coda_glmnet() function from R’s coda4microbiome pack-
age (Calle et al., 2023) was used. The fitted regression was of the form yi 

= β0 +β1log(x1i)+…+βjlog
(
xji
)
+ϵi (for i-th sample and j-th feature, 

with xji being the abundance of feature), and where the outcome yi was a 
continuous outcome variable. The model used two constraints: a) all 
β-coefficients summed up to zero, that gave two sets of features: those 
that were positively associated with continuous outcome, and those that 
were otherwise; and b) the optimization function incorporated a LASSO 
shrinkage that forced some of the beta coefficients to go to zero, 
particularly those that were statistically insignificant in relation to the 
outcome. We had employed CODA LASSO on the top 100 most abundant 
genera (OTUs collated at genus level using taxonomy recovered from the 
SILVA SSU Ref NR database release v.138, and then with the MetaCyc 
pathways table recovered from the PICRUSt2 software.

To explore if certain genera existed within a narrow range of 
continuous covariates, we had utilised R’s Specificity Package (Darcy 
et al., 2022). The Rao’s Quadratic Entropy (RQE) as RQE =
∑s− 1

i=1
∑s

j=i+1Dijpipj was calculated where genus abundance pipj was the 
multiplication of the abundances of a specific genus in samples i and j, 
respectively, and was weighted by the difference in the continuous co-
variate value Dij. A null modelling procedure using 999 random per-
mutations was used for the RQE values. Deviation of the original RQE 
from the average of RQEs of these random permutations gave a “Spec” 
number, ranging from − 1 to +1, with 0 as the null hypothesis that the 
genus weights were randomly ordered with regard to sample identity, 
with perfect specificity when Spec approached − 1 and perfect cosmo-
politanism when spec approached +1. The null modelling procedure 
provided additional p-values for significance. For visualization purposes, 
the plotting was restricted to the lowest 25th quartile (i.e., those genera 
that were specific). Furthermore, we had used the algorithm twice, once 
for biochemical parameters (including water, urine and blood parame-
ters), and once for SCFAs.

We then applied DIABLO algorithm (Rohart et al., 2017) to integrate 
M = 3 datasets denoted by X(1)(N × P1), X(2)(N × P2), X(3)(N × P3), 
where X(1) represented the TSS+CLR (Total Sum Scaling + Centralised 
Log Ratio) normalised OTUs abundance table collated at genus level, 
X(2) represented the autoscaled SCFA table (whether Dry, Wet or % 
SCFAs), and X(3) denoted the dummified (i.e., binary representation of 
labelling such as Control and High Exposure). The DIABLO algorithm then 
factorized the datasets into scores and loading vectors in such a way that 
the covariance between the scores of these datasets was maximized, i.e., 
for q = 1, 2,…,Q, DIABLO solved for each component h = 1,…,H: 

argmax
a(1)

h ,…, a(Q)

h

∑Q

q,j=1,q∕=j
cq,jcov

(
X(q)

h a(q)
h ,X(j)

h a(j)
h

)
s.t.

⃦
⃦
⃦a(q)

h

⃦
⃦
⃦

2

= 1and
⃦
⃦
⃦a(q)

h

⃦
⃦
⃦

1
≤ λ(q)

Where a(q)
h for component h was the loading vector associated with the 

matrix X(q)
h of the data set X(q), and C =

{
cq,j

}

q,j was the design matrix. 

With additional l1 penalty 
⃦
⃦
⃦a(q)

h

⃦
⃦
⃦

1
≤ λ(q) (where λ(q) being the penali-

zation parameter), we were ensuring some of the loading components 
(acting as weighting for each microbial genus) to go to zero filtering out 

genera that were insignificant. The other constraint 
⃦
⃦
⃦a(q)

h

⃦
⃦
⃦

2
= 1 ensured 

the loading vector to have unit magnitude. C was a Q × Q design matrix 
where we had used a full weighted design with cq,j = 0.1 between data 
matrices (X(1) and X(2)) and cq,j = 1 where the outcome was involved 
(X(1) and X(3); X(2) and X(3)). These were based on the recommendations 
by the mixOmics package to suggest a reasonable trade-off between 
maximizing correlation across datasets and maximizing the discrimi-
nation across different groups coded in the outcome X(3).

To predict the number of principle components, associated loading 
vectors, and the number of discriminants features in DIABLO algorithm, 
block.splsda() and tune.block.splsda() functions were used. 
The optimisation process involved a) we fine-tuned the model using 
leave-one-out cross-validation by splitting the data into training and the 
testing sets, and then identified the number of loading components that 
maximised the class separation using any of the distance measures; and 
b) we found the non-zero coefficients for each of the loading compo-
nents. For dry SCFAs, we had used ncomp=2 components and dis-
t=”max.dist”, for wet SCFAs, we used ncomp=2 components and 
dist=”centroids.dist”, and for %SCFAs, we had used ncomp=2 and dis-
t=”centroids.dist” in tune.block.splsda() function, respectively.

3. Results

3.1. Characteristics of the study subjects

The target population was grouped by drinking-water fluoride 
exposure status which was confirmed by the presence of dental fluorosis 
(“severe” according to Dean’s modified index based on full-mouth 
scoring) as clinical outcome. Table S1 shows the different properties 
of sampling areas. Fluoride exposed cases were recruited from fluorosis 
endemic areas whereas controls were chosen from non-endemic areas. 
Table 1 displays the baseline characteristics for the two groups i.e. high 
fluoride exposure and healthy control groups. Additionally, coupling 
Kruskal Wallis with the importance measures from the classifier, we 
were able to rank which parameters had an altered response in the high 
fluoride exposed group (Figs. S1, S2 and S3). The control subjects had 
higher BMI, RFM index, HDL, triglycerides, catalase activity, eGFR CKD 
EPI PK and fecal valeric acid (C5) percentage (1.785 %), iso-valeric acid 
(IC5) percentage (1.557 %), caproic acid (C6) percentage (0.366 %) and 
heptanoic acid (C7) percentage (0.046 %) values. The high fluoride 
exposed group had elevated blood pressure variability, oxidative stress 
rendered by the MDA levels, E-AChE and BChE activities, BUN to 
creatinine ratio, ALP, γGT and lipase activities. The pro-inflammatory 
cytokines (TNF-α, IL-1β and IL-6) and CRP were significantly deregu-
lated for the high fluoride exposed individuals. The calculated HOMA-IR 
and AI-P values depicted the high fluoride exposed individuals to mostly 
have significant insulin resistance and risk of dyslipidemia. The fluoride 
exposed individuals had increased urine fluoride concentrations than 
controls. Acetic acid, butyric acid and iso-caproic acid in dry fecal 
matter were quantified significantly between the two groups with high 
fluoride exposure group revealing high levels of these SCFAs as 
compared to the control group.

3.2. Microbial diversity measures segregate control and high fluoride 
exposed samples

For the OTUs, alpha diversity analyses (Fig. 1A) indicated higher 
mean richness in controls than fluoride exposed samples. Though the 
Shannon and Simpson indices were slightly higher for the fluoride 
exposed samples, these were not significant. For KEGG orthologs (KOs) 
(Fig. 1B), alpha diversity was predominantly (p<0.05) elevated in the 
control gut samples than high fluoride exposed samples. For the recov-
ered MetaCyc Pathways (Fig. 1C), the richness metric was significantly 
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(p<0.05) higher for the control group samples. These results elucidate 
that the high fluoride exposure is possibly linked to modulation of the 
gut microbiome to the occurrence of decremented bacterial KOs and 
metabolic pathways. By comparing the samples between the two groups 
(Fig. 1D, E and F), the OTUs from control samples were markedly 
differed from that in high fluoride exposed samples based on Bray-Curtis 
(R2=0.03192, p=0.001), UniFrac (R2= 0.02704, p=0.001) and HMS 
(R2=0.02352, p=0.029) distances.

The Table S2 summarizes the overall difference between the two 
microbial communities’ structure in relation to factors/covariates of 
interest. Among these variables, the SCFA values (except Butyric acid 
percentage and Caproic acid dried), BChE activity, dental fluorosis, 
study group, sex, lipase activity, fecal water percentage, residence, RFM 
index, urine fluoride concentration and water fluoride concentration 
notably (p<0.05) varied the composition, phylogeny and function of gut 
microbial communities simultaneously.

3.3. Key representative genera of high fluoride exposed samples

While looking at the topmost abundant genera present across both 
cohorts, controls and high fluoride exposed samples (Fig. 2), the im-
mediate observation was that the sample profiles looked quite similar 
with Bifidobacterium, Lactobacillus and Enterococcus being the top 3 most 
dominant genera. This seemed to suggest that the dysbiosis or changes 
were subtle and were then further explored using the core microbiome 
analyses (Fig. 3) where we looked at genera that persisted in at least 
85 % of the samples. Amongst the core microbiome, the unique genera 
found in the control samples were Escherichia− Shigella, Terrisporobacter 
and Ruminococcaceae;uncultured and those that were unique to the high 
fluoride exposed samples were Catenibacterium, Erysipelotrichaceae;un-
cultured, Prevotella and Eggerthellaceae;Slackia. Finally, we wanted to see 

which genera were differentially abundant between the control and the 
high fluoride exposed group. We assumed two approaches: a) where we 
had explicit labeling of the samples available as high fluoride exposed 
group (>1 mg/L fluoride content), and used DESeq2 analysis to find 
genera that were at least 2 log2 fold different, and b) not assuming 
discrete labeling of the samples, and incorporating the quantitative 
value of fluoride concentration in a regression model (CODA-LASSO) to 
find two subsets of genera (those that increased in abundance as fluoride 
concentration increased, and those that decreased). DESeq2 suggested 
Sarcina, [Eubacterium]_ruminantium_group, Peptococcus, [Eubacterium] 
_xylanophylum_group, Lachnospiraceae_NK4A136_group, Lachnospira 
ceae_UCG-003, Enterorhabdus and Solobacterium were more abundant 
in high fluoride exposure group while Pediococcus, Ruminococcaceae_-
CAG_352, Dialister, Bacteroides, Fusicatenibacter and Erysipelo-
trichaceae_UCG_003 were highly abundant in controls (Fig. 4). On the 
other hand, CODA-LASSO suggested that increase in fluoride concen-
tration led to increase in abundance of Collinsella, Lachnospir-
aceae_FCS020_group, [Eubacterium]_siraeum_group, Subdoligranulum, 
Corynebacterium, Slackia, Marvinbryantia, Lactobacillus, Holdemanella, 
Peptoniphilus, Lachnospiraceae_UCG_003, Negativicoccus, Lachnospir-
aceae_NK4A136_group, Actinomyces, Catenibacterium, Gordonibacter, 
Rothia, Peptococcus and Clostridium_sensu_stricto_1 whereas increasing 
fluoride concentration caused decrease in abundance of Dorea, Dialister, 
Ruminococcaceae_UBA1819, Pediococcus, Escherichia− Shigella, Chris-
tensenellaceae_R7_group, Butyricicoccus, Intestinibacter, Family_-
XIII_AD3011_group, Fusicatenibacter, Coriobacteriaceae_UCG_003, 
Butyrivibrio, Sellimonas, Akkermansia, Coprobacillus, Libanicoccus and 
Ruminococcaceae_CAG_352 (Fig. 5A). The common genera between both 
approaches in association of fluoride exposure were given as additional 
annotation (*) and were Peptococcus, Lachnospiraceae_NK4A136_group 
and Lachnospiraceae_UCG_003.

Table 1 
Summary statistics of the subjects analyzed. A total of 100 subjects were assigned to two groups: High Fluoride Exposure and Healthy Controls. Summary statistics are 
given, including the median and interquartile range (IQR) of continuous variables such as age and height.

Variables High Fluoride 
Exposure

Healthy 
Controls

Variables High Fluoride 
Exposure

Healthy 
Controls

(n=70) (n=30) (n=70) (n=30)

1 Sex Male 34 13 16 TNF-α 
(ng/L)

Median 20.32 6.62
Female 36 17 IQR 12.05 6.24

2 Age 
(Years)

Median 27.5 28.5 17 IL- 6 
(ng/L)

Median 16.93 8.49
IQR 17 10.75 IQR 13.87 5.97

3 Dental Fluorosis Yes 70 0 18 IL− 1β (ng/L) Median 11.16 8.23
No 0 30 IQR 5.4 2.37

4 Height 
(m)

Median 1.68 1.67 19 Hemoglobin (µmol/L) Median 28.38 41.69
IQR 0.18 0.1 IQR 9.12 12.6

5 RFM Index Median 25.55 31.38 20 E-AChE Activity Median 0.44 0.16
IQR 9.23 12.89 (mU/µmol Hb) IQR 0.25 0.05

6 Systolic BP 
(mm Hg)

Median 131 118.5 21 BChE Activity Median 0.05 0.03
IQR 15.5 18 (µmol/L/min) IQR 0.02 0.01

7 Diastolic BP 
(mm Hg)

Median 79.5 76 22 BUN 
(mmol/L)

Median 10.27 5.82
IQR 12.75 11 IQR 5.51 1.07

8 Blood Glucose 
(mg/dL)

Median 115.9 94.76 23 eGFR CKD EPI PK Median 95.75 114.5
IQR 26.23 11.3 (mL/min/1.73 m2) IQR 37.75 9.43

9 Serum Insulin 
(µIU/mL)

Median 16.14 6.47 24 Alkaline Phosphatase 
(IU/L)

Median 327.5 42.5
IQR 10.37 2.93 IQR 117.75 233

10 HOMA IR Median 4.69 1.58 25 γ-glutamyltransferase Median 28.3 41
IQR 3.15 0.71 (IU/L) IQR 32.83 10.25

11 Total Cholesterol (mg/ 
dL)

Median 203.13 194.8 26 Lactate dehydrogenase (IU/ 
L)

Median 261 241.5
IQR 80.1 12.06 IQR 66.5 91.5

12 HDL 
(mg/dL)

Median 43.48 61 27 Urine Fluoride 
Concentration

Median 1.84 0.06

IQR 11.35 15.48 (mg/L) IQR 0.55 0.06
13 Atherogenic Index 

Plasma
Median 0.39 0.29 28 Water Fluoride 

Concentration
Median 2.3 0

IQR 0.21 0.05 (mg/L) IQR 0.7 0
14 Catalase 

(U/mg protein)
Median 0.41 0.55 29 Water pH Median 8.43 8.52

IQR 0.21 0.17 IQR 0.41 0.96
15 MDA 

(nmol/mg protein)
Median 2.07 0.99 30 Water ORP 

(mV)
Median 72 62

IQR 1.14 0.37 IQR 17 28
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Fig. 1. Microbiota (Bacterial) Diversity Metrics for Control and High Fluoride Exposure Groups. Alpha diversity described at three levels (A) OTUs (B) KEGG Orthologs and (C) MetaCyc Pathways. The three indices used 
for alpha diversity are Richness (Observed taxa), Shannon index (richness and evenness) and Simpson index (taxa dominance). Lines connect two categories where the differences were significant (ANOVA) with *p <
0.05, **p < 0.01, or ***p < 0.001. Distances between groups’ samples were determined via Principal Coordinates Analysis using beta diversity estimates such as (D) Bray-Curtis distance i.e. between-samples 
compositional dissimilarity, (E) UniFrac distance i.e. the fraction of unshared branch lengths between all OTUs in two samples and (F) Hierarchical Meta-Storms distance i.e. the effect of inter-function relations on 
microbiome distances. PERMANOVA multivariate analysis was used to test for significant differences between groups.
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3.4. Key changes in potential metabolic function of microbial communities

Similar to the previous approach, we have also used CODA-LASSO to 
associate MetaCyc pathways recovered using PICRUSt2 approach 
(Fig. 5B). Those that associated positively with increasing concentration 
of water fluoride were PWY− 3001: superpathway of L-isoleucine 
biosynthesis I, HSERMETANA− PWY: L-methionine biosynthesis III, 
PWY− 7242: D-fructuronate degradation, MET− SAM− PWY: super-
pathway of S-adenosyl-L-methionine biosynthesis, RIBOSYN2− PWY: 
flavin biosynthesis I (bacteria and plants), PWY− 6906: chitin de-
rivatives degradation, HOMOSER− METSYN− PWY: L-methionine 
biosynthesis I, PWY− 6397: mycolyl-arabinogalactan-peptidoglycan 
complex biosynthesis and LACTOSECAT− PWY: lactose and galactose 
degradation. MetaCyc pathways that associated negatively with fluoride 
concentration were GLYCOCAT− PWY: glycogen degradation I, 
ARGORNPROST− PWY: L-arginine degradation (Stickland reaction), 
PWY− 5104: L-isoleucine biosynthesis IV, GALLA-
TE− DEGRADATION− II− PWY: gallate degradation I, PWY− 6165: cho-
rismate biosynthesis II (archaea), PWY− 6277: superpathway of 5- 
aminoimidazole ribonucleotide biosynthesis, PWY− 5973: cis-vaccen-
ate biosynthesis, PWY− 6122: 5-aminoimidazole ribonucleotide 
biosynthesis II and PWY− 7446: sulfoquinovose degradation I.

3.5. Taxa and function of microbial communities associated with clinical 
parameters and other sources of variation

CODA-LASSO approach was then used with several other quantita-
tive clinical outcomes, water oxidation reduction potential (ORP) and 
pH as shown in supplementary Figs. S4-S29 respectively. Their signifi-
cance and implications published in scientific literature are presented in 
Table S3 for genera and in Table S4 for metabolic pathways. The top 
most positive genera and pathways signatures for these parameters 
were: for alkaline phosphatase [Lachnospiraceae_FCS020_group, 
PWY− 5676: acetyl-CoA fermentation to butanoate]; for atherogenic 
index plasma [Oscillospiraceae_UCG_005, PWY− 7616: methanol oxida-
tion to carbon dioxide]; for blood glucose [Staphylococcus, PWY− 6148: 
tetrahydromethanopterin biosynthesis]; for blood urea nitrogen [Lach-
nospiraceae_FCS020_group, COLANSYN− PWY: colanic acid building 
blocks biosynthesis]; for catalase [Fournierella, PWY− 5181: toluene 
degradation III (aerobic) (via p-cresol]; for diastolic blood pressure 
[Lachnospiraceae_FCS020_group, PWY− 5743: 3-hydroxypropanoate 
cycle]; for estimated Glomerular Filteration Rate calculated by 
Chronic Kidney Disease Epidemiology for Pakistan [Sellimonas, 
PWY− 6339:syringate degradation]; for erythrocytes 

acetylcholinesterase [Lachnospiraceae_FCS020_group, PWY− 5861: 
superpathway of demethylmenaquinol-8 biosynthesis]; for butyr-
ylcholinesterase [Oscillospiraceae_UCG_005, PWY− 6507: 4-deoxy-L- 
threo-hex-4-enopyranuronate degradation]; for high-density lipopro-
tein [Erysipelotrichaceae_UCG_003, PPGPPMET− PWY: ppGpp meta-
bolism]; for height [Catenibacterium, HISTSYN− PWY:L-histidine 
biosynthesis]; for haemoglobin [Lachnospiraceae_UCG_010, CRNFOR-
CAT− PWY: superpathway of demethylmenaquinol-8 biosynthesis]; for 
Homeostasis Model Assessment for Insulin Resistance [Lachnospir-
aceae_ND3007_group, PWY− 6944: androstenedione degradation I (aer-
obic)]; for Interleukin-1beta [Lachnospiraceae_ND3007_group, 
PWY− 5743:3-hydroxypropanoate cycle]; for Interleukin-6 [Fournierella, 
PWY− 6944: androstenedione degradation I (aerobic)]; for lactate de-
hydrogenase [Romboutsia, PWY− 7295:L-arabinose degradation IV]; for 
whole blood acetylcholinesterase [Lachnospiraceae_FCS020_group, GAL-
ACT− GLUCUROCAT− PWY: superpathway of hexuronide and hex-
uronate degradation]; for malondialdehyde [[Eubacterium] 
_ruminantium_group, P621− PWY: nylon-6 oligomer degradation]; for 
relative fat mass index [[Eubacterium]_hallii_group, METHYL-
GALLATE− DEGRADATION− PWY:methylgallate degradation]; for 
serum insulin [Lachnospiraceae_ND3007_group, PWY− 6944:androstene-
dione degradation I (aerobic)]; for TNF-alpha [Gastranaerophilales, 
PWY− 181:photorespiration]; for total cholesterol [Incertae_Sedis, ORN-
DEG− PWY: superpathway of ornithine degradation]; for urine fluoride 
[Collinsella, P161− PWY: acetylene degradation (anaerobic)]; for systolic 
blood pressure [Lachnospiraceae_FCS020_group, GLUCONEO− PWY: 
gluconeogenesis]; for water oxidation reduction potential [Enterococcus, 
PWY− 5392:reductive TCA cycle II] and for Water pH [Collinsella, 
HEXITOLDEGSUPER− PWY:superpathway of hexitol degradation 
(bacteria)].

3.6. Species specific to a narrow range of observed clinical parameters

Whilst majority of the statistical tests explored associations or cor-
relations (whether positive or negative) between microbial species and 
functions, and the observed clinical outcomes, we also applied a recent 
“Specificity” analysis. This as opposed to previous approaches explored 
if a particular genus existed only inside the narrow range of covariates 
considered. The method used a null modelling procedure to compute a 
“spec” number. The number offered a threshold to determine between 
genera that were Cosmopolitan (>0; existed in full range), or Specific (<0; 
existed in narrow range). The Fig. S30A shows violin plot of “spec” 
values to subject characteristics, biochemical parameters, water, urine 
and fecal properties with width of the violin representing the number of 

Fig. 2. Taxa bars showing the relative abundance of 25 most abundant bacterial genera of gut microbiome of the control (n=30) and high fluoride exposed (n=70) 
samples. The bars with different colours correspond to different genera. The taxa key is arranged according to the genera abundance levels. The top samples profiles 
looked similar between the groups but the relative abundance of the constituents varied.
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genera with those particular value. Pairwise spec correlations are dis-
played in Fig. S30B, along with correlation coefficients (r) for each 
pairwise comparison (i.e., whether those genera that are specific to one 
clinical covariate, are also specific to other clinical covariate). The 
similar analysis is given for short chain fatty acid values in Fig. S31A
and B. As such, the pairwise specificity correlation relationships be-
tween the any two variables in the dataset is shown to spot any patterns 
between the various variables and their complicity with microbiota. 

Overall, this seems like a helpful tool for understanding the interplay of 
clinical parameters and how they may be related to the corresponding 
active microbiota performing roles synergically.

Three genera namely Family_XIII_UCG_001, Lachnospir-
aceae_UCG_003 and Fournierella revealed strong specificity to water 
fluoride content (Fig. 6). Genera like Lachnospiraceae_UCG_001, [Eu-
bacterium]_xylanophilum_group and RF39 were specific to propionic acid 
percent (Fig. S32). Butyric acid percent-specific genera were 

Fig. 3. The core microbiome heatmaps for the control and high fluoride exposed samples; made up of the presence of any genus with a minimum of 85 % prevalence 
in all samples. The y-axis represents the detection thresholds from lower to higher abundance values and color shading shows the prevalence of each taxon among 
samples for each abundance threshold. The prevalence decreases as the detection threshold increases. The highlighted (red) undermentioned genera were unique to 
each group.
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Muribaculaceae, Sellimonas, [Clostridium]_methylpentosum_group and 
Alloscardovia (Fig. S33). The genera showing specificity to valeric acid 
dry were Oscillibacter, Defluviitaleaceae_UCG_011, Fournierella, Lachno-
spiraceae_NK4B4_group, Alloprevotella, Finegoldia, Incertae_Sedis, Gas-
tranaerophilales (Fig. S34) while genera associated with valeric acid 
percent were Defluviitaleaceae_UCG_011, Enterobacter, Fournierella, Aer-
ococcus, CAG_873, Finegoldia, Peptoniphilus and Sarcina (Fig. S35). 
Octanoic acid wet-specific genera were Oscillospiraceae_UCG_005, [Eu-
bacterium]_eligens_group, Clostridia_vadinBB60_group and Gastranaer-
ophilales (Fig. S36). Methanobrevibacter, Megamonas and Varibaculum 
showed specificity to isobutyric acid dry (Fig. S37) while Phascolarcto-
bacterium, Megamonas and Varibaculum showed specificity to isobutyric 
acid percent (Fig. S38). Iso-caproic acid percent-specific genera 
(Fig. S39) were Family_XIII_UCG_001, Defluviitaleaceae_UCG_011 and 
Clostridia_vadnBB60_group while iso-caproic acid wet-specific genera 
were [Clostridium]_innocuum_group and Erysipelotrichaceae_UCG_003 
(Fig. S40). The genera corresponding specificity to iso-caproic acid dry 
were [Clostridium]_innocuum_group, Eubacterium, [Eubacterium]_noda-
tum_group, Erysipelotrichaceae_UCG_003, Defluviitaleaceae_UCG_011 and 
Sellimonas (Fig. S41). Five genera showed specificity to urine fluoride 
content [Ruminococcus]_gnavus_group, Comamonas, Eubacterium, Klebsi-
ella and CAG_873 (Fig. S42). Lachnospiraceae_NK4B4_group and Oscil-
lospiraceae_UCG_003 showed specificity to RFM-index (Fig. S43).

3.7. Identification of coherent patterns between Genera/SCFAs that are 
predictive of high fluoride exposure

The algorithm found two components and showed the reduced order 
representation of samples in the Fig. S44A, B and C. Circos plots for the 
analysis (Fig. 7A, B and C) represented all the features in the DIABLO 
model, and the strong correlations between variables of different data 
types. Loading plots (Fig. S45-S50) displayed discriminating signatures 
for genera and SCFAs by the control and high exposed samples. Propi-
onic acid-dry (C3-Dry) was found in a strong negative correlation with 
Bacteroides, that were highly abundant in control samples. The posi-
tively associated genera with C3-Dry in fluoride exposed outcome were 
Peptoniphilus, Sarcina and Prevotella etc. Iso-caproic acid-wet (IC6-Wet) 
showed potent negative correlations with Escherichia-Shigella, Bacter-
oides, Fusicatenibacter and Erysipelotrichaceae_UCG-003 whose abun-
dance in control samples was markedly high. The positively correlated 
genera with IC6-Wet in fluoride exposed outcome were Lachnospir-
aceae_NK4A136_group, Lachnospiraceae_ND3007_group, [Eubacterium] 
_xylanophilum_group, Enterorhabdus etc. Butyric acid percentage (C4 %) 
exhibited negative correlations with Bacteroides and Erysipelo-
trichaceae_UCG-003 which were abundant in control samples. Genera 
that showed positive correlations with C4 % in fluoride exposed 
outcome were Lachnospiraceae_NK4A136_group, Lachnospir-
aceae_ND3007_group, [Eubacterium]_xylanophilum_group, Enterorhabdus, 

Fig. 4. Differential abundance of bacterial genera between control and high fluoride exposed groups. The plots show the log2 fold changes and base means for genus 
level taxa that were statistically significant at the 0.05 level as implemented in DESeq2. Positive values indicate the log2fold change for taxa over represented in high 
fluoride exposure. Negative values indicate the log2fold change for taxa under-represented in high fluoride exposure. The bar plots show Log2 fold change in 
abundance between groups (dark grey bar) and the mean abundance across all the samples (light grey bar). The starred taxa are common between Figs. 4 and 5.
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Fig. 5. CODA-LASSO plots for Microbial (A) Taxa signature and (B) Pathways signature identification. The bar graphical representations constitute the signature and 
their coefficients. The scatter plots (C and D) show the prediction for classification accuracy i.e. relationship/correlation between the water fluoride concentration 
and microbial taxa/pathways. CODA-LASSO identified the signature with maximum discrimination accuracy between the control and high fluoride exposure groups. 
The signature is defined by the relative abundances of two groups of taxa/pathways where one group is composed of taxa/pathways with positive coefficients (green) 
in the regression model and the other group composed of taxa/pathways with negative coefficients (red).

Fig. 6. The genera identified as “Specific” in Fig. S30A (darker) for Water Fluoride Content i.e. the genera in lowest 25th quartile of Spec values are shown with their 
abundances in the whole range of Water Fluoride Content values. This water fluoride concentration-specific analysis ensured the variations observed at genus level in 
microbiome composition were specific between control and high fluoride exposure groups. In eight out of total genera, there were significant differences in the 
microbial composition of control and fluoride exposed samples.
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Olsenella, [Eubacterium]_ruminantium_group etc.

4. Discussion

The fluoride concentrations in the sampled groundwater of the 
endemic regions have exceeded the WHO guideline. EPA Pakistan fol-
lows the same standard for fluoride in drinking water (i.e. ≤ 1 mg/L for 
health-related priority). In these regions, groundwater chemistry is 
predominantly regulated by geochemical processes such as the inter-
action between rocks and water and the cation exchange. Groundwater 
with high alkalinity, poor calcium content and sodium bicarbonate 
water type facilitates the leaching processes. The arid climate of the 
regions enhance the groundwater residence times resulting increased 
fluoride contamination of groundwater (Ali et al., 2019; Noor et al., 
2022). Groundwater fluoride exposure is known to have long-term ef-
fects, including fluorosis of the teeth and skeleton. The effects of fluo-
rosis on the host’s serum metabolites, metabolic pathways for fatty acid 
oxidation and energy production, protein and purine breakdown and 
ω-6 fatty acid linoleate signatures have recently been assessed (Usman 
et al., 2022). It has been anticipated that chronic exposure of fluoride 
through drinking water causes susceptibility of gut microbiome towards 
unexpected changes that might have health repercussions. Ours is one of 
the first studies reporting the link between the biochemical parameters 
for fluorosis subjects and their associated gut microbiome structure 
profiles. It appears that the exposed group’s increased oxidative stress is 
a result of their excessive fluoride intake. As a consequence, the activity 
of cholinesterases (AChE and BChE) may have increased, which might 
have also diminished the cholinergic anti-inflammatory pathways, 
resulting in low-grade inflammation (Bibi et al., 2023). In addition, 
more deregulated metabolic markers were found in the fluoride-exposed 
group compared to the control group, including significant insulin 
resistance, atherogenic index of plasma, an elevated BUN to creatinine 
ratio, a high alkaline phosphatase level and a lower eGFR. Regarding the 
urinary fluoride concentrations of the control group, it is to be realized 
that food and beverages contribute to exposure though high fluoride 
drinking water is typically responsible for daily fluoride intake. Simi-
larly, a study has linked unhealthy cardiometabolic outcomes in 
school-aged children to dietary fluoride exposures during early and 
mid-childhood. Stronger associations were observed in girls prior to year 
8 than boys posing sex-prone risk (India Aldana et al., 2024). Another 
study found that increased proportion of patients in the high blood 
pressure group had elevated levels of water or plasma fluoride compared 
to the normal blood pressure group (Hung et al., 2023). Regarding mi-
crobial abundance, statistically significant changes were not observed in 
OTUs richness of the control and fluoride-exposed fecal samples but 

there were significant shifts in α-diversity for enzymes and functional 
pathways. It is assumed that high fluoride exposure has somewhat 
reduced the functional properties of the gut microbial communities of 
the exposed group. While fluoride as an environmental factor has the 
ability to bring about functional changes in microbes (Carda-Diéguez 
et al., 2022; Dionizio et al., 2021; Marquis et al., 2003), we can assume 
that with high fluoride exposure, the gut microbiome may exist as an 
adapted ecosystem with less coordination for exchange of nutrients and 
other signals. Comparing the β-diversity metrics revealed considerably 
different microbial profiles across the two groups and further illustrated 
(PERMANOVA) the influential factors shaping the composition and 
metabolism of microbial communities with water fluoride concentra-
tion, sex and residence being the more relevant along the SCFAs values.

The taxonomic output for the top 25 bacterial genera exposed some 
of the ubiquitous inhabitants found in healthy people’s guts, with Bifi-
dobacterium, Lactobacillus and Enterococcus being the most prevalent 
(Derrien et al., 2022; Krawczyk et al., 2021; Rastogi and Singh, 2022). 
Bifidobacterium species are some of the first microorganisms to invade 
the human gut system and are considered to improve the health of their 
host (O’Callaghan and van Sinderen, 2016). Humans and Lactobacilli 
have a mutualistic connection in which Lactobacillus species provide 
assistance in the digestion of specific dietary components and protection 
against infections (Dempsey and Corr, 2022). The Enterococci are 
adaptable species that can endure under challenging conditions, making 
them ideally suited to the medical setting environments (García-Solache 
and Rice, 2019). The core microbiome looked for regularly observed 
taxa in our studied host groups. The persistent genera contributed to-
wards stability of gut microbial community. Ruminococcaceae-uncultured 
(associated with lowering HOMA-IR), Terrisporobacter (commensal) and 
Escherichia− Shigella (pathobiont) existed in control samples only 
(Baltazar-Díaz et al., 2022; Galié et al., 2021; Radwan et al., 2020) while 
Catenibacterium and Prevotella (polysaccharide-degrading genera) and 
Eggerthellaceae-Slackia (roles in lipid and xenobiotic metabolism) were 
found in high fluoride exposed samples solely (Cho et al., 2016; 
Garcia-Mantrana et al., 2018). Importantly, the genera that were 
differentially enhanced in control samples were found to be relevant to 
probiotics, mental health, immune factors meditation, hunger and 
healthy ageing (Gu et al., 2021; Martínez et al., 2013; Rios-Covian et al., 
2017; Singh et al., 2019; Todorov et al., 2023; Yu et al., 2022). On the 
other hand, differentially abundant genera in the high fluoride exposed 
samples exhibited propensity to proliferation of opportunistic patho-
gens, delayed gastric emptying, inflammatory bowel diseases, and 
certain SCFA producers mainly associated with poor health (Amaruddin 
et al., 2020; Barrak et al., 2020; Lam-Himlin et al., 2011; López-Montoya 
et al., 2022; Vacca et al., 2020; Zhang et al., 2021b). The genera that 

Fig. 7. Significant correlations (|r|>0.6) whether positive (red) or negative (blue) between the two datasets i.e. (A) Genera (16SrRNA) and SCFAs (Dry SCFA); (B) 
Genera (16SrRNA) and SCFAs (Wet SCFA); (C) Genera (16SrRNA) and SCFAs (% SCFA) returned from the DIABLO algorithm as the Circos plots. Note that these 
correlations are above a value of 0.6 (cutoff = 0.6). All the interpretations made above are only relevant for features with very strong correlations. Lines along the 
outside of the circle represent the mean “expression” levels. Greater expression levels are in accordance with the line being farther away from the circle. Expression of 
Genera/SCFAs in control and high exposed groups are ranked in terms of significantly differing expression.
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were most positively associated with fluoride exposure markers (such as 
water fluoride and urine fluoride concentrations) also correlated posi-
tively with those host biochemical features that could turn out to be risk 
factors when elevated (alkaline phosphatse, E-AChE, BChE, BUN, blood 
glucose, blood pressure, IL-6, TNF-α, MDA) in relation to high fluoride 
exposure. These genera were listed in the Table S3 and majority of these 
genera showed negative association with host haemoglobin, RFM index 
and eGFR CKD EPI PK noticeably. On the contrary, the genera that were 
negatively associated with fluoride exposure markers showed positive 
association with either host haemoglobin (Dialister, Escherichia_shigella), 
RFM index (Dialister, Fusicatenibacter and Ruminococcaceae-CAG-352) or 
eGFR CKD EPI PK (Escherichia_Shigella). The most common microbial 
metabolic pathways prevailing under fluoride exposure were described 
in the Table S4. These pathways are mainly concerned with the higher 
sugar degradation; biosynthesis of cysteine, phospholipids and poly-
amines; SCFAs production and degradation of xenobiotic compounds; 
mucosal microbiome and systemic inflammation; ulcerative colitis and 
non-alcoholic fatty liver disease. Collinsella, being the top most posi-
tively associated genus with high water fluoride concentration, has been 
implicated in literature with positive association with atherosclerosis, 
altering gut permeability, production of proinflammatory cytokine 
IL-17A, rheumatoid arthritis and nonalcoholic steatohepatitis (Astbury 
et al., 2020). PWY− 3001: superpathway of L-isoleucine biosynthesis I, 
being the strongly associated pathway with high water fluoride con-
centration, has been found in positive correlation with LDL-cholesterol 
and platelet count while in negative correlation with age, hemoglobin 
A1c, insulin, prothrombin time and direct bilirubin (Oh et al., 2020).

We have further identified some bacterial genera that exhibited 
strong specificity towards the covariates in this study. Fluoride levels in 
the water and urine, the RFM index and several SCFAs (propionic acid, 
butyric acid, valeric acid, octanoic acid, iso-butyric acid, iso-caproic 
acid) have been shown to alter the microbial populations in the gut. In 
another study, Family_XIII_UCG_001 and Fournierella had shown positive 
correlation with HbA1c in children with T1DM (Tamahane et al., 2023). 
Numerous studies link Ruminococcus gnavus to Crohn’s disease and CAD 
(Henke et al., 2019; Toya et al., 2020). Comamonas spp., commonly 
considered as having low virulence, have led to health issues in many 
healthy people (Ryan et al., 2022). In the gut, Eubacterium spp. transform 
cholesterol and bile acids (Mukherjee et al., 2020). Certain Klebsiella 
species can act as opportunistic human infections (Ristuccia and Cunha, 
1984). Lachnospiraceae_NK4B4_group are common butyrate producers 
(Bui et al., 2023) while Oscillospiraceae_UCG_003 was negatively corre-
lated with the triglycerides (Portela et al., 2023) and was one of the 
dominant genera prevailing in relation to vegetarian diet (Šik Novak 
et al., 2023). The altered production of SCFAs in fluoride-exposed 
samples indicates a potential disruption in the normal metabolic activ-
ities of gut bacteria. The correlation with specific bacterial genera sug-
gests that certain types of bacteria may be more sensitive or responsive 
to fluoride exposure. The perturbations in bacterial genera associated 
with changes in SCFA production may have implications for the general 
health of the host organism.

Regarding the elevated levels of fecal SCFAs, there is an evidence of 
association of increased SCFAs with gut dysbiosis and permeability, 
hypertension and cardiometabolic risk factors (de la Cuesta-Zuluaga 
et al., 2018). Previous studies on human illnesses have shown that the 
gut bacteria produced significantly large levels of SCFAs with concen-
trations reaching as high as 80±11 mmol/kg in the descending colon 
and 13±6 mmol/kg in the terminal ileum (Cong et al., 2022; Cummings 
et al., 1987). Furthermore, existing literature also corroborates that in-
dividuals with higher butyrate and lower propionate and acetate pro-
duction, are the people that may have low abundance and diversity of 
SCFA-producing bacteria (Murphy et al., 2010; You et al., 2022). At 
the same time, it is important to consider that exposure to butyrate has 
epigenetic effects that are strongly correlated with glucose metabolism 
(Donohoe et al., 2012). Butyrate may block histone deacetylases by 
attaching to the Zn2+ in the catalytic site (Riggs et al., 1977) while the 

multiplication of stem/progenitor cells in the intestinal crypt was like-
wise demonstrated to be inhibited by abundantly produced butyrate 
(Kaiko et al., 2016). Additionally, branched-chain fatty acids (BCFA), 
being markers of colonic protein fermentation, have also been linked to 
the control of lipid and glucose metabolism (Heimann et al., 2016). 
Among the SCFA-specific bacterial genera, many are reported in the 
literature as SCFA-producing genera like Muribaculaceae (Tian et al., 
2021), Clostridium spp. (Guo et al., 2020), Clostridia_vadinBB60_group 
(Wassie et al., 2022), Phascolarctobacterium (Wu et al., 2017), Lachno-
spiraceae (Parada Venegas et al., 2019), Oscillibacter and Erysipelo-
trichaceae spp. (Martin-Gallausiaux et al., 2021).

Although the results look promising, our study has some limitations. 
Our cases and controls were heterogeneous with respect to age and body 
weight. Whilst the study investigates the connection between fluoride 
exposure, the biochemical markers and the gut microbiota, it is difficult 
to fully evaluate the gut-organ axis under fluoride exposure. Identifi-
cation of fecal metabolites was missing that could serve as possible 
diagnostic biomarkers to reveal the relationships between fecal metab-
olites and fluoride toxicity. Furthermore, due to the limitations in the 
reference database for 16S rRNA gene amplicon sequencing, OTUs could 
only be resolved up to the genus level due to high similarity of the gene 
from the closely related species.

5. Conclusion

In conclusion, our study was a preliminary step in prospecting the 
host-microbe interaction in the development of fluorosis. The micro-
biota dynamics investigated in relation to the control and high fluoride 
exposure conditions, had significant discriminatory shifts in the gut 
bacterial community structure. The healthy gut microbiota predicted to 
maintain vital body processes like digestion, immune system regulation, 
metabolism and pathogen resistance. In high fluoride exposure, the 
commensal and opportunistic bacteria could modify the severity of the 
health issues. Our study identified microbial and metabolic pathways’ 
signatures that were positively associated with the host’s variables. The 
changes in the gut microbiota can, in turn, influence metabolic activities 
within the body. Such metabolic disturbances may contribute to the 
development of various diseases. These valuable insights of the rela-
tionship between microbiota and host health can shed light on the un-
derlying mechanisms of fluoride toxicity. This suggests a potential 
mechanism by which fluoride may exert its harmful effects beyond 
dental fluorosis. Such studies may help design strategies for mitigating 
the health risks associated with chronic fluoride exposure and devel-
oping targeted interventions to restore gut microbial balance and 
metabolic homeostasis. It would be useful to explore these findings for a 
larger cohort, and to look at the impact of fluoride on other human 
associated microbiomes. Also, the exposed subjects in this study were 
drinking water that caused dental fluorosis and symptomatic complains 
about excessive fluoride ingestion but skeletal fluorosis was largely 
unseen. A future study looking at severity of fluorosis beyond what we 
have considered will be potentially useful.
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Galié, S., García-Gavilán, J., Camacho-Barcía, L., Atzeni, A., Muralidharan, J., 
Papandreou, C., Arcelin, P., Palau-Galindo, A., Garcia, D., Basora, J., Arias- 
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Weinstock, G.M., Wilson, R.K., White, O., The Human Microbiome Project 
Consortium, 2012. Structure, function and diversity of the healthy human 
microbiome. Nature 486, 207–214. https://doi.org/10.1038/nature11234.

Iamandii, I., De Pasquale, L., Giannone, M.E., Veneri, F., Generali, L., Consolo, U., 
Birnbaum, L.S., Castenmiller, J., Halldorsson, T.I., Filippini, T., Vinceti, M., 2024. 
Does fluoride exposure affect thyroid function? A systematic review and dose- 
response meta-analysis. Environ. Res 242, 117759. https://doi.org/10.1016/j. 
envres.2023.117759.

Ijaz, U.Z., Sivaloganathan, L., McKenna, A., Richmond, A., Kelly, C., Linton, M., 
Stratakos, A.Ch, Lavery, U., Elmi, A., Wren, B.W., Dorrell, N., Corcionivoschi, N., 
Gundogdu, O., 2018. Comprehensive Longitudinal Microbiome Analysis of the 
Chicken Cecum Reveals a Shift From Competitive to Environmental Drivers and a 
Window of Opportunity for Campylobacter. Front. Microbiol. 9.

India Aldana, S., Colicino, E., Cantoral Preciado, A., Tolentino, M., Baccarelli, A.A., 
Wright, R.O., Téllez Rojo, M.M., Valvi, D., 2024. Longitudinal associations between 
early-life fluoride exposures and cardiometabolic outcomes in school-aged children. 
Environ. Int. 183, 108375 https://doi.org/10.1016/j.envint.2023.108375.

Kaiko, G.E., Ryu, S.H., Koues, O.I., Collins, P.L., Solnica-Krezel, L., Pearce, E.J., Pearce, E. 
L., Oltz, E.M., Stappenbeck, T.S., 2016. The Colonic Crypt Protects Stem Cells from 
Microbiota-Derived Metabolites. Cell 165, 1708–1720. https://doi.org/10.1016/j. 
cell.2016.05.018.

Krawczyk, B., Wityk, P., Gałęcka, M., Michalik, M., 2021. The Many Faces of 
Enterococcus spp.—Commensal, Probiotic and Opportunistic Pathogen. 
Microorganisms 9, 1900. https://doi.org/10.3390/microorganisms9091900.

Lahti, L., Shetty, S., Blake, T., Salojarvi, J., 2017. Tools for microbiome analysis in R. 
Version 1, 28.

Lam-Himlin, D., Tsiatis, A.C., Montgomery, E., Pai, R.K., Brown, J.A., Razavi, M., 
Lamps, L., Eshleman, J.R., Bhagavan, B., Anders, R.A., 2011. Sarcina Organisms in 
the Gastrointestinal Tract: A Clinicopathologic and Molecular Study. Am. J. Surg. 
Pathol. 35, 1700–1705. https://doi.org/10.1097/PAS.0b013e31822911e6.

Li, A., Wang, Y., He, Y., Liu, B., Iqbal, M., Mehmood, K., Jamil, T., Chang, Y.-F., Hu, L., 
Li, Y., Guo, J., Pan, J., Tang, Z., Zhang, H., 2021. Environmental fluoride exposure 
disrupts the intestinal structure and gut microbial composition in ducks. 
Chemosphere 277, 130222. https://doi.org/10.1016/j.chemosphere.2021.130222.

Ling, Y., Podgorski, J., Sadiq, M., Rasheed, H., Eqani, S.A.S., Berg, M., 2022. Monitoring 
and prediction of high fluoride concentrations in groundwater in Pakistan. Sci. Total 
Environ. 839, 156058 https://doi.org/10.1016/j.scitotenv.2022.156058.
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