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Abstract: Immune checkpoint inhibitors have become a mainstay of treatment in many solid
organ malignancies. Alongside this has been the rapid development in the identification
and targeting of oncogenic drivers. The presence of alterations in oncogenic drivers not
only predicts response to target therapy but can modulate the immune microenvironment
and influence response to immunotherapy. Combining immune checkpoint inhibitors
with targeted agents is an attractive therapeutic option but overlapping toxicity profiles
may limit the clinical use of some combinations. In addition, there is growing evidence of
shared resistance mechanisms that alter the response to immunotherapy when it is used
after targeted therapy. Understanding this complex interaction between oncogenic drivers,
targeted therapy and response to immune checkpoint inhibitors is vital for selecting the
right treatment, at the right time for the right patient. In this review, we summarise the
preclinical and clinical evidence of the influence of four common oncogenic alterations on
immune checkpoint inhibitor response, combination therapies, and the presence of shared
resistance mechanisms. We highlight the common resistance mechanisms and the need for
more randomised trials investigating both combination and sequential therapy.
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1. Introduction
Following the introduction of the anti-cytotoxic T-lymphocyte associated protein

4 (CTLA-4) inhibitor, ipilimumab, in 2011, immunotherapy in the form of immune check-
point inhibitors (ICIs) has transformed the treatment of solid cancers. The key benefit
of immunotherapy over cytotoxic chemotherapy or targeted therapy is the long-term re-
sponses seen well after completion of therapy, even in patients with advanced disease [1].
As a result, the use of ICI has expanded across multiple tumour types, both as monotherapy
and in combination with alternative ICIs, cytotoxic chemotherapy or targeted therapies.
For example, the anti-programmed cell death protein 1 (PD-1) inhibitor, pembrolizumab,
has licenced indications in 18 different cancer types alone [2].

Alongside the development of ICIs, the recognition and targeting of common onco-
genic driver mutations are changing the landscape of cancer therapeutics. Improvements
in the understanding of kinase function and design of small molecule inhibitors have led
to the development of targeted therapy blocking aberrant signalling due to mutations
that were previously considered “undruggable” [3]. There is growing evidence that the
presence of alterations in oncogenic drivers not only predicts response to targeted agents
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but influences response or resistance to other therapies, such as ICIs [4]. A major effect of
the activation of many oncogenic pathways is immune modulation and the generation of
an immunosuppressive microenvironment. As a result, combining targeted therapies with
ICI has become an attractive therapeutic option. However, overlapping toxicity profiles
have limited the clinical use of some of these combinations [5].

2. Mechanisms of Immune Checkpoint Inhibitor Resistance
To explore the mechanisms of ICI resistance, we need to understand how an immune

response develops. An effective immune response requires components of both innate and
adaptive immunity. The innate immune response involves the recognition of cancer cells
by dendritic cells through both neoantigen-dependent and independent mechanisms [6].
Mature dendritic cells migrate to lymphoid tissue and engage the adaptive immune re-
sponse [6]. In addition, dendritic cells release pro-inflammatory cytokines, resulting in the
infiltration of immune cells and cancer cell death through macrophage and natural killer
cell-mediated mechanisms. Although the research on ICI resistance has focused on the T
cell response, there is increasing recognition of the importance of effective innate immunity
on ICI response [7].

The adaptive immune response is triggered by the presentation of tumour neoanti-
gens by dendritic cells and other antigen-presenting cells within lymphoid tissues. These
bind to the T cell receptor (TCR) on naïve T lymphocytes. Full activation of T lympho-
cytes occurs with the addition of costimulatory signals, such as CD28–CD80/CD86 [8].
Activated tumour-specific T lymphocytes undergo clonal expansion and are trafficked
to the tumour. Tumour-specific cytotoxic CD8+ T cells recognise tumour cells through
the presentation of neoantigens displayed by human leukocyte antigen (HLA) proteins.
Cytotoxic CD8+ T cells trigger tumour cell death through the release of cytolytic molecules
such as granzyme A/B, perforin and cathepsin C [9]. A subset of activated T lymphocytes
differentiates into memory T cells and produces an effective response on rechallenge of the
antigen. However, in addition to costimulatory pathways that amplify T cell activation,
inhibitory pathways, such as CTLA-4/CD80, programmed death ligand1 (PD-L1)/PD-1
and lymphocyte-activation gene 3 (LAG-3) prevent excessive immune response. Upregu-
lation of these inhibitory pathways is one way that tumours evade immune surveillance.
ICIs block these inhibitory pathways leading to amplification of T cell activation and an
effective immune response.

Even in highly immunogenic tumours such as melanoma, where long-term response
rates can be as high as 60%, ~25% of patients have primary ICI resistance [1]. This is defined
as progression within 6 months of starting ICI treatment [10]. The remaining patients who
do not experience long-term response develop acquired resistance or progression after
an initial response of >6 months [10]. Several factors influence the initial response to ICI.
Genomic alterations such as tumour mutational burden (TMB), microsatellite instability
(MSI) or mismatch repair (MMR) deficiencies are associated with improved response to
ICI [11–13]. These genomic alterations result in neoantigen formation leading to T-cell
activation. In addition, the expression of immune checkpoints, such as PD-L1, and the
pattern of T cell infiltration are also associated with improved response to ICI [14–16]. Many
of the underlying mechanisms of primary and acquired resistance are shared. Several
reviews have categorised these mechanisms, including into tumour cell intrinsic and
extrinsic mechanisms [17–21].

2.1. Tumour Cell Intrinsic Mechanisms

Intrinsic factors affecting ICI response are defined as alterations in specific pathways
within tumour cells that lead to resistance [20]. A diminished number of neoantigens is the
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key mechanism of primary resistance [17]. This can be a result of the reduced production
of neoantigen, such as low TMB, or through deficient antigen presentation mechanisms.
Alterations in β-2-microglobulin (B2M) have been found in clinical samples from melanoma
patients treated with ICI [22,23], and this finding has also been validated in other pan-
cancer studies. B2M is a component of major histocompatibility complex (MHC) class I
proteins and is involved in antigen presentation. Loss of heterozygosity is enriched in
non-responders compared to responders [23,24].

Genomic alterations can also affect immune cell trafficking and infiltration. Tumour
cell WNT/β-catenin signalling results in T cell exclusion due to the reduced expression of
chemokine ligands 4 (CCL4) and impaired recruitment of CD103+ dendritic cells, which are
involved in T cell activation [25]. Phosphatase and tensin homologue (PTEN) loss, which
leads to increased phosphoinositide 3-kinases (PI3K) signalling, reduces T cell infiltration
through the expression of immunosuppressive cytokines such as vascular endothelial
growth factor (VEGF) [26]. Upregulation of the mitogen-activated protein kinase (MAPK)
pathway also results in increased PI3K signalling and expression [27]. Mutations in the
Janus kinase (JAK) signal transducer and activator of the transcription (STAT) pathway
lead to a reduction in the response to interferon-γ signalling, which is critical to antigen
presentation and immune cell recruitment [28,29].

2.2. Tumour Cell Extrinsic Mechanisms

Alongside the tumour cell intrinsic factors, environmental factors and supporting cells
within the tumour microenvironment (TME) play a key role in resistance to immunotherapy.
Regulatory T cells (Tregs) suppress the immune response through the secretion of immune
suppressive cytokines and direct contact with effector T cells [30,31]. However, the role
of Tregs in ICI resistance is complex. Infiltration of Tregs, and specifically the ratio of
CD8+/Treg, is associated with immunosuppressive TME and poor prognosis in several
cancers [32,33]. CTLA-4 is constitutively expressed on Tregs and is, therefore, a key target
of anti-CTLA-4 inhibitors such as ipilimumab. Within murine models, the response to
anti-CTLA-4 inhibitors may be associated with depletion of Tregs and reversal of the
CD8+/Treg ratio [34]. In contrast, within human tumours, anti-CTLA-4 inhibitors do not
deplete Treg cells but they abrogate Treg suppressive function [35]. In addition, high
baseline FOXP3+ Tregs infiltration may be associated with clinical response to anti-CTLA-4
inhibition [36]. However, in patients with hyper-progression after anti-PD-1 therapy, an
increase in proliferative PD-1+ Tregs within the tumour and circulation has been observed.
In summary, Tregs infiltration of Tregs is a potential mechanism of ICI resistance but it is
likely to be tumour and Treg subtype-specific.

Myeloid-derived suppressor cells (MDSCs) are immature cells of myeloid lineage
which have an immunosuppressive effect within the TME. They are derived from
the bone marrow and consist of monocytic (CD14+CD15−HLA-DRlo/–) or polynuclear
(CD11b+CD14−CD15+/CD66b+) subtypes [37]. Multiple trials have shown that the pres-
ence of circulating MDSCs is associated with poor response to immune checkpoint inhibi-
tion [38–40]. The mechanisms that underly the function of MDSCs within cancer are broad
and summarised by Lasser S et al. [41]. Briefly, they can promote the infiltration of Tregs and
interact with tumour-associated macrophages (TAMs) to promote an immunosuppressive
TME [42,43]. In addition, MDSCs express high levels of ARG1 that metabolise l-arginine
to urea and ornithine. L-arginine is required for T cell activation and proliferation; there-
fore, depletion of l-arginine by MDSC-derived ARG1 can reduce T cell activation [44,45].
MDSCs also contribute to oxidative stress within the TME, which impairs T cell effector
functions [46,47].
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Similar to MDSCs, TAMs are an abundant myeloid cell type within the TME. TAMs
can be defined as either antitumour (M1) or pro-tumorigenic (M2) subtypes; however,
this reflects a continuum between the two states rather than distinct subtypes [48]. TAMs
suppress T cell function through expression of PD-L1 [49]. Cytokines secreted by TAMs,
such as TGF-β1 and chemokine (C-C motif) ligand 22 (CCL22), stimulate and recruit Tregs
to the TME [50,51]. In addition, TAMs can also affect ICI pharmacokinetics and lead to
resistance through binding of the Fc domain of the antibody to their Fcγ receptor [52].

The physical properties of the TME also influence the immune response. The extracel-
lular matrix (ECM) is a collagen-rich scaffold predominantly produced by cancer-associated
fibroblasts (CAFs) in the TME. Increased ECM stiffness reduces T-cell migration and re-
sponse to ICI [53]. In addition to the effect on Tregs, TGFβ stimulates the formation of
CAFs which leads to the production of a desmoplastic stroma and T-cell exclusion [54].
Preventing CAF differentiation through inhibition of NOX4 can overcome the resistance to
anti-PD-1 therapy in murine models [55].

Although resistance mechanisms can be classified into tumour cell intrinsic and extrin-
sic mechanisms, they do not exist in isolation. Indeed, there is significant crosstalk between
mechanisms that together promote an immunosuppressive TME. For example, activation of
PI3K or MAPK pathways results in the altered expression of inflammatory cytokines, such
as VEGF, that can influence immune cell infiltration and CAF activation [26,56,57]. CAFs
in turn, secrete C-X-C motif chemokine 5 (CXCL5), which binds to c-x-c motif chemokine
receptor 2 (CXCR2) on cancer cells, resulting in PI3K pathway activation and downregu-
lation of PD-L1 [58]. This complex crosstalk between tumour cell intrinsic and extrinsic
resistance mechanisms suggests that inhibition of a single pathway will be insufficient to
overcome immunotherapy resistance.

In summary, the mechanisms that lead to ICI resistance are diverse; connecting a
variety of intrinsic cell pathways to components of the tumour microenvironment, which
ultimately leads to immunosuppression.

3. Oncogenic Drivers
3.1. RAS/RAF/MAPK Pathway

Components of the mitogen-activated protein kinase (MAPK) pathway are frequently
altered in human cancer. Approximately 20% harbour a Rat sarcoma virus (RAS) mutation,
7% harbour BRAF mutations and <1% harbour mitogen-activated protein kinase kinase 1
(MEK) mutations [59,60]. RAS proteins are GTPases, which act as a primary switch that
can activate several downstream signalling cascades, including RAF/MAPK/ERK and
PI3K pathways. Out of the three RAS isoforms (KRAS, NRAS, HRAS), KRAS is the most
commonly mutated in approximately 95% of pancreatic cancers, 50% of colorectal cancers
and 30% of lung cancers [61–63]. The majority are found in codons 12 or 13 and specific
point mutations are associated with different tumour types. KRAS G12C mutations are
commonly found in lung adenocarcinomas, and G12D mutations are more commonly
found in pancreatic and colorectal cancers. NRAS mutations are present in approximately
11% of all cancers and are commonly found in 15% of melanomas [64,65]. HRAS mutations
are much rarer, affecting only 4% of cancers [64].

RAF kinases are a collection of serine/threonine kinases that transduce the signalling
cascade from RAS towards MEK protein. Activating mutations in BRAF are the most
common alterations and are found in approximately 50% of metastatic melanoma [53].
Over 90% of these occur in codon 600 [66,67]. BRAF mutations are separated into three
classes [68]. Class I mutation confers BRAF activity as monomers and this class includes
BRAF V600E. Class II mutations require dimerisation for constitutive BRAF activity [69].
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Finally, class III mutations result in impaired kinase function and require alternative RAS
activation for activity [69].

3.1.1. Effect of RAS/RAF/MAPK Pathway Alteration on Immunotherapy Response

The effect of the RAS/RAF/MAPK pathway on tumour immune response has been
extensively researched. KRAS mutation results in the higher expression of C-X-C motif
chemokine receptor 2 (CXCR2) ligands, which recruits immunosuppressive neutrophils
and monocytes [56]. KRAS mutations also increase CD47 expression, which is a myeloid
checkpoint preventing phagocytosis by antitumour macrophages [70]. One downstream
effect of MAPK signalling is the stabilisation of PD-L1 mRNA resulting in increased expres-
sion of PD-L1 [71,72]. However, KRAS and BRAF mutation may have contrasting effects on
immune infiltration. Within colorectal cancer, BRAF mutant tumours have higher levels of
immune infiltration compared to BRAF wild type [73]. In contrast, KRAS mutant tumours
had lower immune cell infiltration compared to KRAS wild type. This observation may
be a result of a high proportion of BRAF mutations in microsatellite instable (MSI-high)
colorectal cancers, particularly in the older, non-hereditary MSI-high cancers [74]. In addi-
tion, it may represent the differences in the alternative pathways activated in KRAS mutant
cancers, such as PI3K, compared to the BRAF mutant MAPK pathway activation.

Clinically, the presence of KRAS or BRAF mutations on ICI response has not been
fully established and varies across tumour types. Within advanced unresected melanoma,
NRAS or BRAF mutation has little effect on ICI response. Combination ipilimumab and
nivolumab resulted in progression-free survival (PFS) of 11.2 months in patients with
BRAF mutant melanoma compared to 11.7 months in BRAF wild-type tumours [1]. No
difference in PFS and overall survival (OS) to monotherapy or combination immunotherapy
was found between NRAS mutant and wild type in a prospective multicentre study [75].
However, a meta-analysis assessing the overall response rate (ORR) in NRAS mutant and
NRAS wild-type patients indicated that NRAS mutant tumours have a better response rate
to ICI [76]. This study only looked at ORR and there was evidence of the disproportionate
influence of a single study on the pooled analysis.

Within lung cancer, the retrospective IMMUNOTARGET registry showed that KRAS
mutations were associated with improved response to ICI compared to other oncogenic
mutations [4]. However, due to differences in PD-L1 testing across centres, the authors
were not able to determine if this was due to the higher PD-L1 expression previously
reported in KRAS mutant tumours [71]. In addition, the study did not include a control
cohort without the presence of targetable oncogenic mutations; therefore, it is not possible
to compare the response rate to the whole non-small cell lung cancer (NSCLC) population
and previous trials.

ICIs are limited to MSI-H tumours in colorectal cancers. However, there is a higher
incidence of sporadic MSI in BRAF mutant colorectal cancer. The presence of BRAF or KRAS
mutation had no significant effect on PFS and OS in the Keynote 177 trial of pembrolizumab
compared to chemotherapy in MSI-H advanced colorectal cancer [77,78].

3.1.2. Combination Immune Checkpoint Inhibition with RAS/RAF/MAPK
Targeted Therapy

Preclinical studies have shown a clear rationale for combining targeted therapy for
RAS and RAF mutations with ICI. BRAF inhibition (BRAFi) with or without MEK inhibitors
increased neoantigen expression and CD8+ T cell infiltration and reduced immunosup-
pressive cytokine production [27,79]. Clinical trials of combination BRAF/MEKi and ICI
have shown mixed results. Keynote022 in patients with melanoma showed an improved
PFS of triplet pembrolizumab with dabrafenib and trametinib in comparison to dabrafenib
and trametinib alone (median PFS was 16.9 months vs. 10.7 months) [80]. However, the
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COMBI-I trial of triplet spartalizumab with dabrafenib and trametinib showed no benefit
in PFS or ORR [5]. In addition, the rate of grade 3–5 toxicities with triplet therapy is high
and has prevented combination therapy from being adopted into routine clinical practice.

Preclinical studies have shown that KRAS inhibitors produce a pro-inflammatory
microenvironment and have synergistic effects in combination immunotherapy. Sotorasib,
a KRAS G12C inhibitor, increased CD8+ T cell infiltration and the recruitment of CD103+

dendritic cells required for T cell priming [81]. In combination with anti-PD-1 therapy,
sotorasib significantly improved the response rate and duration of response in the CT-26
KRASG12C colorectal murine model, compared to sotorasib or anti-PD-1 monotherapy [81].

The codebreak 100/101 trial is assessing the safety and efficacy of combination so-
torasib and either pembrolizumab or atezolizumab in advanced KRAS G12C mutant
NSCLC [82]. The response rates across all cohorts are approximately 30%; however, this in-
cludes patients previously treated with ICI and all dose escalation cohorts where the patient
may have received subtherapeutic doses. However, similar to combination BRAF/MEKi
and immunotherapy, there are significant rates of G3-4 hepatotoxicity that may limit clinical
use. The KRAS G12C inhibitor, MK-1084 is explored in phase 3 clinical trials in combination
with pembrolizumab [83]. Phase 1 trial data shows a promising response rate of 47%;
however, this was in untreated patients [84]. A combination of targeted therapy and ICI
could be a valuable therapeutic strategy if the toxicity profile can be improved. Specifically,
it may delay the onset of resistance to targeted therapy.

3.1.3. Shared Resistance Mechanisms with RAS/RAF/MAPK Targeted Therapy

BRAF/MEK inhibitors are the first targeted therapy to show a clear effect on response
to subsequent ICI therapy [85,86]. The exclusion of effector T cells is a key feature of
shared resistance, which can result from both tumour cell intrinsic and extrinsic resistance
mechanisms. Tumour cell intrinsic resistance mechanisms include the activation of alter-
native oncogenic signalling pathways, such as increased WNT5A expression leading to
WNT/β-catenin upregulation [87]. WNT signalling is associated with T-cell exclusion and
an immunosuppressive environment [25]. In addition, the upregulation of PI3K signalling
leads to reduced effector T-cell recruitment through increased VEGF secretion [26]. Tumour
cell extrinsic resistance mechanisms include the promotion of CAF formation and ECM re-
modelling resulting from increased TGF-β expression BRAFi-resistant melanoma cells [88].
BRAFi resistance is also associated with infiltration of immunosuppressive TAMs, which
support tumour growth and immune escape [89].

The clinical effect of these shared resistance mechanisms was demonstrated in the
DREAMSeq and SECOMBIT trials assessing the sequencing of BRAF/ MEKi and ICI in
metastatic melanoma [85,86]. In both trials, BRAF/MEK inhibition until progression fol-
lowed by ICI resulted in worse OS compared to an ICI-first therapeutic strategy. However,
upfront immunotherapy was inferior to BRAF/MEKi in the first year of treatment, which is
likely due to the longer time-to-response seen with ICI. Short-term BRAF/MEKi followed
by ICI (‘sandwich approach’) may preserve responsiveness before resistance emerges [85].

Clinical data on the effect of resistance to KRAS inhibitors on response to subsequent
immunotherapy is not yet available. However, several studies have shown similar re-
sistance mechanisms to BRAF/MEKi that may influence the immune microenvironment.
Mutation in the downstream components of KRAS, such as BRAF, MEK and PI3K, results
in the activation of alternative signalling and KRAS inhibitor resistance and potentially
reduces T cell recruitment [26,90,91]. In addition to the gain in function mutations, loss of
function mutations in PTEN have also been found in clinical samples taken at the progres-
sion of disease during KRAS inhibition [92]. PTEN loss is associated with immunotherapy
resistance through activation of the PI3K/AKT pathway and alterations in the antiviral
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interferon network [93]. KRAS inhibitors can also stimulate aerobic glycolysis, leading to
an acidic tumour microenvironment through the secretion of lactate [94]. This can inhibit
the function of immune cells within the tumour microenvironment.

3.1.4. Summary of RAS/RAF/MAPK Pathway

Alterations in the RAS/RAF/MAPK pathway contribute to an immunosuppressive
tumour microenvironment; however, there is no clear association with poor response to ICI.
Preclinical studies and early trial data have shown a rationale for combined therapy that
may prolong responses, particularly to KRAS inhibitors. However, overlapping toxicity
profiles may limit combination approaches with targeted therapies such as BRAF/MEK
inhibitors. Emerging resistance mechanisms to targeted treatment may influence response
to subsequent ICI, particularly in BRAF mutant melanoma. If combination therapy is not
possible, an ICI-first approach may be preferable to elicit a durable tumour regression,
preserving the targeted treatment for the timepoint of immunotherapy resistance when
swift rescue may be required.

3.2. FGFR Pathway

The fibroblast growth factor receptor (FGFR) is a receptor tyrosine kinase family of
four transmembrane receptors [95]. Aberrations in these receptors are detected in 5–10% of
human cancers; however, there is a higher frequency in urothelial cancer and intrahepatic
cholangiocarcinoma (32% and 15%, respectively) [96,97].

3.2.1. Effect of FGFR Alterations on Immunotherapy Response

Fibroblast growth factor (FGF)/FGFR signalling pathways are involved in the devel-
opment and differentiation of cells, as well as in angiogenesis and carcinogenesis [95]. The
downstream effects of FGF pathway activation have a diverse impact on immunotherapy re-
sponse. Potential FGFR signalling-induced tumour cell intrinsic ICI resistance mechanisms
include deficiencies in antigen presentation. FGFR signalling can influence neoantigen
presentation via MAPK pathway-mediated inhibition of MHC I and II expression, as
well as reducing B2M expression through inhibition of INF-γ stimulated JAK/STAT sig-
nalling [98,99]. FGFR1 signalling led to the increased expression of PD-L1 and resistance
to anti-PD-1 therapy in the LL2 lung carcinoma mouse model, via MAPK pathway activa-
tion [100]. In addition, FGFR1-mediated YAP upregulation initiates PD-L1 transcription in
squamous cell lung cancer [101]. FGF2 amplification rather than FGFR1 amplification may
be the predominant mechanism for increased FGFR1 signalling as it correlated with higher
PD-L1 expression in human lung squamous cell carcinoma and urothelial cancers [101,102].
However, not all FGF receptors have the same effect. Activating mutations in FGFR3
are associated with the reduced expression of PD-L1 in urothelial cancers in a real-world
patient cohort [103]. FGFR3 has been shown to activate the E3 ubiquitin ligase, NEDD4,
which polyubiquitinates PD-L1, leading to its degradation [104].

In addition to contributing to tumour cell intrinsic ICI resistance, FGF/FGFR pathway
alterations may also be involved in tumour cell extrinsic ICI resistance. Analysis of a FGFR-
mutant genetically engineered mouse model (GEMMs) of lung cancer revealed a TME with
low T cell infiltration [105]. Increases in CD8+, CD4+ T cells and M1 macrophage infiltration
have been demonstrated in FGFR1 knockout models [101]. This is consistent with clinical
data on triple-negative breast cancer, where FGFR expression is associated with decreased
CD8+ T cell infiltration and increases in immunosuppressive M2 macrophages [106]. Upon
FGFR1 activation in mouse mammary epithelial cells, macrophage recruitment has been
demonstrated via the induction of CX3CL1, an inflammatory chemokine [107]. However,
the effect of FGFR1 expression may not be consistent across tumour types. The expression
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of FGFR1 positively correlates with CD8+, CD4+ and macrophages in human gastric
cancer [108].

The clinical data of what effect alterations in the FGF/FGFR pathway have on response
to ICI is largely from retrospective cohort data and small series rather than prospective trials.
A study examining four ICI-treatment studies concluded that FGFR-mutant melanoma
conferred a better objective response rate compared to patients with FGFR-wild-type
melanoma [109]. The incidence of FGFR mutations in this cohort was 22% (n = 119/529),
with FGFR2 being the most prevalent mutation (10%). In contrast, a study of ICI-treated
patients that included melanoma, lung, colorectal and breast cancer patients from the TCGA
database, identified that amplifications in the FGFR ligand, FGF2, are associated with
immunotherapy resistance [110]. This is in agreement with a small cohort of four patients
with hyper-progression, where amplifications in FGF2, FGF4 or FGF19 were identified in
three patients (75%) [111]. One possible mechanism for this is interferon-γ driven activation
of the FGF2—pyruvate kinase M2 (PKM2)—β catenin pathway, which is associated with
hyper-progression following ICI [112]. Finally, immunotherapy response in urothelial
cancers is poorest in the luminal-papillary subtypes [113]. Luminal-papillary tumours are
enriched in FGFR3 alterations and are associated with T cell deplete phenotype [114–116].

3.2.2. Combination Immune Checkpoint Inhibition with FGFR Inhibitors

There are currently three FDA-approved selective small-molecule inhibitors of FGFR:
erdafitinib, futibatinib, and pemigatinib [117–119]. In addition, there are several multi-
targeted TKIs that variably inhibit FGF receptors. These include sorafenib, lenvatinib,
sunitinib, and pazopanib [120]. These multi-target TKIs may affect ICI response through
several pathways; therefore, deciphering the specific role of FGFR inhibition in this setting is
challenging. However, the preclinical literature supports the use of both selective and multi-
target TKI FGFRi-ICI combination therapy, with a particular emphasis on the enhancement
of the immune-depleted TME in FGFR-mutated cancers [105,115,121]. FGFR blockade
using erdafitinib in a mouse model of triple-negative breast cancer led to increased T cell
infiltration via MAPK/ERK downregulation [106]. Anti-PD-1 therapy in combination with
lenvatinib yielded improved T cell function in the tumour microenvironment in HCC tissue
samples subjected to RNA-sequencing [121]. Increased CD4+ helper and CD8+ effector
T cell infiltration, reduced Tregs and downregulated PD-L1 expression on cancer cells
have been reported in FGFR2- and p53-mutated lung cancer mouse models treated with
erdafitinib in combination with anti-PD-1 therapy [105].

Clinical data for selective FGFR inhibitors in combination with ICIs is currently imma-
ture, with only preliminary results from phase I/II trials available. The phase II Norse study
investigated combination erdafitinib and an anti-PD-1 monoclonal antibody, cetrelimab,
with erdafitinib monotherapy in FGFR-altered urothelial cancer [122]. ORR in the combi-
nation was higher in the combination arm compared to monotherapy (54.5% vs. 44.2%)
and higher 12-month OS (68% vs. 56%) [122]. For multi-target TKI drugs, combination
therapies with ICI are already in clinical use. Lenvatinib is approved in combination with
pembrolizumab in renal cell cancer and endometrial cancer [123,124]. The dual treatment
rationale is two-fold: the anti-angiogenic effects of combined VEGFR1–3 and FGFR1–4 in-
hibition, and cytotoxic T cell-mediated increase in IFN-γ [125–127]. In the Keynote-775
trial of advanced endometrial cancer, lenvatinib in combination with pembrolizumab was
compared to investigator’s choice of chemotherapy [124]. Combination therapy resulted
in a longer median PFS (6.6 months vs. 3.8 months) and higher ORR (31.9% vs. 14.7%)
compared to chemotherapy. However, due to the comparator arm being chemotherapy, the
benefit of combination therapy compared to monotherapy ICI or lenvatinib is unclear.
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The CLEAR-trial in advanced renal cancer compared lenvatinib plus pembrolizumab
to lenvatinib plus everolimus or sunitinib monotherapy [123]. The trial showed a longer
median PFS in the lenvatinib plus pembrolizumab (23.9 months, 95% CI 20.8–27.7 months)
compared to lenvatinib plus everolimus (14.7 months, 95% CI 11.1–16.7 months). However,
the trial was designed to compare to sunitinib monotherapy and not identify differences in
lenvatinib combinations [123].

In the LEAP-002 trial in advanced HCC, lenvantinib in combination with pem-
brolizumab was compared to lenvatinib with placebo [128]. However, the trial failed
to meet the primary endpoints of significant difference in OS and PFS, suggesting no
additional benefit of pembrolizumab to standard lenvatinib monotherapy in this setting.
Importantly, the addition of pembrolizumab to lenvatinib and everolimus did not sig-
nificantly increase toxicity, with similar incidence of grade 3–4 toxicities to lenvatinib
monotherapy, lenvatinib plus everolimus, or sunitinib [123,128]. The combination Lenva-
tinib plus Pembrolizumab had higher rates of grade 3–4 toxicities than chemotherapy in
Keynote-755 (88.9% vs. 72.7%) [124].

3.2.3. Shared Resistance Mechanisms with FGFR Inhibitors

A common resistance mechanism to FGFR inhibition is mutations in the FGFR kinase
domain, which limits the access of the TKI to the hydrophobic binding pocket [129].
However, retrospective analysis of a small series of patients with longitudinal ctDNA
testing revealed new alterations in the MAPK pathway as an additional emerging resistance
mechanism to FGFR inhibitors [130]. As discussed above, MAPK pathway activation
can contribute to ICI resistance. In vitro studies of FGFRi-resistant lung cancer cell lines
confirmed MAPK activation as a potential biomarker of resistance and also identified
the overexpression of AXL [131]. AXL is a part of the TAM receptor family and can
activate a variety of downstream signalling pathways, including RAS/RAF/MAPK. AXL
signalling may contribute to ICI resistance as observations indicate that AXL overexpression
is associated with an immunosuppressive microenvironment [132]. In addition, AXL
inhibition improves response to ICI in preclinical models [133].

Clinical evidence of sequential therapy is limited to the use of TKIs after the pro-
gression on ICI. Erdafitinib has been used in combination with ICI, yielding encouraging
objective rates in the phase II BLC2001 trial with subsequent FDA approval [117]. Twenty-
two patients (total cohort n = 99) had previously received ICI. Within this subgroup,
13 (59%) achieved a response to erdafitinib. Interestingly, only one patient in this subgroup
responded to their prior course of ICI. This is consistent with phase II trial data, discussed
above, which indicates that FGFR alterations in urothelial cancer are associated with poor
response to ICI [113]. In addition, these data suggest that prior ICI does not alter the
response to subsequent FGFR inhibition.

Phase 2 LEAP-004 trial assessed the combination of pembrolizumab and multi-target
TKI, lenvatinib, in patients with melanoma who were ICI-resistant [134]. Most patients had
primary resistance to ICI (70.9%), indicating an extremely poor prognosis cohort. ORR to
combination lenvatinib and pembrolizumab was 28.2%, as determined by iRECIST, and a
median duration of response (DOR) of 12 months. Patients who received the combination
treatments were afforded a median PFS of 4.2 months and an OS of 14 months. These data
indicate that combination multi-target TKI and ICI may be a valuable treatment strategy in
ICI resistance; however, the specific role of FGFR inhibition in the mechanisms is not clear.

Although there is preclinical evidence to suggest a potential shared resistance mecha-
nism that would affect ICI response after progression on FGFR targeted therapy, to the best
of our knowledge, there have been no clinical trials assessing response rates to this form of
sequential therapy.
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3.2.4. Summary of FGFR Pathway

Alterations in the FGF/FGFR pathway are associated with an immunosuppressive
microenvironment; however, the effect on ICI response may be tumour-type specific. The
blockade of FGFR-activated pathways may mediate remodelling of the T-cell-depleted
phenotype (110,111), thus enhancing the co-action of immune checkpoint inhibition. Com-
bination therapy with lenvatinib and pembrolizumab has demonstrated clinical activity
and is entering clinical practice, with further trials of specific FGFRi and ICI currently
ongoing (see Table 1). Early evidence suggests ICIs do not significantly impact subse-
quent FGFRi response, consistent with the findings with BRAF/MEKi in BRAF mutant
melanoma. Further studies are required to determine if the FGFRi-first strategy may
influence long-term outcomes.

Table 1. Summary of ongoing clinical trials investigating immune checkpoint and targeted therapy
combinations. Trials were identified through clinicaltrials.gov (accessed on 10 January 2025).

Names Target Targeted Agent Immune Checkpoint
Inhibitor Phase Tumour

Type Status

RAS/RAF/MAPK Pathway

NCT03600883 KRAS G12C Sotorasib Pembrolizumab/Atezolizumab I/II NSCLC Active, not
recruiting

NCT04185883 KRAS G12C Sororasib Pembrolizumab/Atezolizumab IB NS Recruiting
NCT05920356 KRAS G12C Sotorasib Durvalumab (PD-L1) II NSCLC Recruiting
NCT04613596 KRAS G12C Adagrasib Pembrolizumab/Atezolizumab II/III NSCLC Recruiting
NCT05789082 KRAS G12C Divarasib Pembrolizumab IB/II NSCLC Recruiting
NCT04449874 KRAS G12C Divarasib Atezolizumab IA/IB NS Recruiting

NCT03235245 BRAF/MEK Encorafenib/Binimetinib Ipilumumab/Nivolumab II Melanoma Active, not
recruiting

NCT04238624 BRAF/MEK Dabrafenib/Trametinib Cemiplimab I Thyroid Active, not
recruiting

NCT04061980 BRAF/MEK Encorafenib/Binimetinib Nivolumab II Thyroid Active, not
recruiting

NCT05926960 BRAK/MEK Encorafenib/Binimetinib Pembrolizumab/Ipilumab/Nivolumab II Melanoma Active, not
recruiting

FGFR Pathway
NCT06511648 FGFR Erdafitinib Cetrelimab II Bladder Recruiting
NCT05036681 FGFR Futibatinib Pembrolizumab II Endometrial Recruiting

NCT04601857 FGFR Futibatinib Pembrolizumab II Urothelial Active, not
recruiting

NCT04828486 FGFR Futibatinib Pembrolizumab II HCC Active, not
recruiting

NCT05945823 FGFR Futibatinib Pembrolizumab II NS Recruiting
NCT06263153 FGFR Futibatinib Durvalumab (PD-L1) II Bladder Recruiting
NCT05004974 FGFR Pemigatinib Sintilimab II NSCLC Recruiting
NCT06389799 FGFR Pemigatinib Retifanlimab II Liposarcoma Recruiting

PI3K Pathway
NCT06545682 PI3K Alpelsib Pembrolizumab IB Breast Recruiting

NCT04975958 PI3K Buparlisib Atezolizumab IA NS Active, not
recruiting

HER2/ERBB2 Alterations

NCT04740918 HER2 Trastuzumab
emtansine Atezolizumab III Breast Terminated

NCT03414658 HER2 Trastuzumab
emtansine Atezolizumab III Breast Active, not

recruiting

NCT04448886 HER2 Sacituzumab
Govitecan Pembrolizumab II Breast Active, not

recruiting

NCT03747120 HER2 Trastuzumab/Pertuzumab Pembrolizumab II Breast Active, not
recruiting

NCT03125928 HER2 Trastuzumab/Pertuzumab Atezolizumab II Breast Active, not
recruiting

NCT04759248 HER2 Trastuzumab Atezolizumab II Breast Recruiting

NCT03417544 HER2 Trastuzumab Atezolizumab II Breast Active, not
recruiting

NCT04873362 HER2 Trastuzumab
emtansine Atezolizumab III Breast Active, not

recruiting

Not specified (NS), non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC).

3.3. PI3K

Phosphoinositide 3-kinases (PI3K) are an enzymatic group of three classes [135].
The alpha isoform (p110α) of phosphatidylinositol 3-kinase (PI3K) is encoded by the
PIK3CA gene and is the most frequently mutated in human cancers [136,137]. PI3K has

clinicaltrials.gov
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a role in cell growth, migration and apoptosis, as well as carcinogenesis [138–140]. PI3K
overactivation results in elevated AKT, an oncogenic signalling protein. Abnormal cell
cycle progression follows PI3K/AKT constitutively active signalling [141]. AKT activation
also leads to phosphorylation of mTOR and subsequent cancer progression through signals
of proliferation [135].

Aberrant PI3K signalling can be attributed to somatic loss of PTEN [142]. PTEN
loss results in elevated phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) and up-
regulation of the PI3K-AKT-mammalian target of the rapamycin (mTOR) pathway [143].
Additionally, PI3K point mutations have been identified in solid organ cancers [144].
PIK3CA mutations are common in solid organ cancers [144]. Breast cancer (12.5–41.1%),
endometrial cancer (20–34%), colorectal cancer (13–18%) and NSCLC (3.7–19%) have the
highest prevalence of PI3K mutations [145–150].

PI3K mutational status confers a poorer prognosis in metastatic breast cancer [151]. It
is also predictive of PI3K inhibitor response in patients with oestrogen receptor-positive
breast cancer and head and neck squamous cell cancers [152,153]. A similarly negative
effect on prognosis is observed in PI3K-mutated endometrial cancer [154]. However, in
colorectal cancer and NSCLC, PI3K is not associated with adverse survival [155,156].

3.3.1. Effect of PI3K Mutations on Immune Checkpoint Inhibitor Response

As discussed above, PI3K activation is a recognised mechanism of acquired resis-
tance to ICI [26]. PI3K signalling is central to several tumour cell intrinsic ICI resistance
mechanisms due to crosstalk between MAPK, NF-κB and Wnt/β-catenin pathways [135].
PI3K pathway activation alters the secretion of cytokines, such as VEGF and CCL2, thus
promoting an immunosuppressive TME [26,157].

Pre-existing activating mutations in PIK3 can also lead to an immunosuppressive
microenvironment through tumour cell intrinsic mechanisms. For example, mRNA and
PD-L1 protein levels are associated with PI3K mutations in cervical cancer [158]. Of the
250 patients studied, those who were PD-L1 positive were more likely to have a PIK3CA
mutation (79% vs. 53.4%, p = 0.019). Similarly, PI3K/AKT signalling has also been shown
to promote PD-L1 expression in breast cancer [159]. The authors examined the effect of
recombinant high-mobility group box 1 (rHMB1) through receptors for advanced glycation
end products (RAGE) on cell migration in human breast cancer cell lines, concluding that
after down-regulating AKT, the subsequent PI3K inhibition dephosphorylated AKT, and
prevented PD-L1 expression [159].

In addition to tumour cell intrinsic mechanisms, PI3K mutations can lead to im-
munotherapy resistance through tumour cell extrinsic mechanisms. PIK3CA-H1047R muta-
tions, a potent driver of carcinogenesis, result in a reduction in CD8+ T cell infiltration and
an increase in myelosuppressive myeloid populations [160,161]. This leads to an attenuated
response to anti-PD-1 therapy, which could be rescued by the pharmacological inhibition
of PI3K [161]. Moreover, patients with wild-type PIK3CA had a greater percentage of CD8+

in tissues compared with those with a PIK3CA-E545K mutation [158]. The upregulation
of PI3K-mTOR signalling has been shown to inhibit the activation and differentiation of T
cells [162].

In contrast to the immunosuppressive effects of PI3K pathway activation, PI3K muta-
tions can be associated with higher tumour mutational burden and immune cell infiltration
in certain cancer types [153,163]. The analysis of patients with head and neck squamous
cell carcinoma treated with immunotherapy from the MSKCC-2019 cohort found that PI3K
pathway mutations were associated with longer OS [153]. The mechanisms behind this
contrasting effect of PI3K mutations have not been identified.
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3.3.2. Combination Immune Checkpoint Inhibitors with PI3K Inhibition

PI3K pathway influences immune checkpoint expression [164]. As such, combination
treatment with ICIs and PI3K/AKT/mTOR inhibitors has attracted research interest. In a
BRAF mutant, PTEN-null mouse model of melanoma, combination inhibition with anti-
PI3Kβ inhibitor and anti-PD-1 antibody improved response and survival compared to either
monotherapy [26]. Combination therapy significantly increased the infiltration of CD4+

and CD8+ T cells [26]. This is consistent with the novel pan-PI3K inhibitor, KTC1101, which
also results in increased CD4+ and CD8+ T cell infiltration and improved response to anti-
PD-1 therapy [165]. KTC1101 acts directly on immune cells to modulate T cell populations
but also stimulates cancer cells to produce inflammatory cytokines, such as chemokine
ligand 5 (CCL5) and C-X-C motif chemokine ligand 10 (CXCL10), which promotes CD8+

T cell chemotaxis [165]. Dual PI3K and immune checkpoint inhibition has been shown to
decrease Tregs and optimise memory CD8+ T cells in immunotherapy resistance models
in vivo and in vitro [166]. The pan-class I PI3K inhibitor, buparlisib, in combination with
anti-PD-1 therapy, significantly inhibited tumour growth in the PyMT mammary tumour
murine model compared to buparlisib or anti-PD-1 monotherapy alone [167].

Alpelisib, a PI3K inhibitor that targets the p110α subunit, is currently the only FDA-
approved PI3K inhibitor in advanced breast cancer [168]. Clinical evidence of combination
alpelisib with ICI is lacking. However, in a two-patient case series of PIK3CA mutated
metastatic squamous cell cancer of head and neck cancer, the addition of alpelisib to
pembrolizumab or nivolumab resulted in sustained clinical response [169]. The limitation
of this series is that treatment was not conducted within a clinical trial, which raises
doubts about the validity of the data and lack of standardised response assessment. A
phase II trial of the pan-PI3K inhibitor, copanlisib, showed response rates of up to 27%
in combination with nivolumab, even in patients pretreated with ICIs [170]. This study
was a biomarker-driven study selecting patients with PIK3CA mutations or PTEN loss.
In an unselected population, combination copanlisib and nivolumab has an ORR of 18%
in a phase Ia study [171]. Several studies are currently investigating combination PI3K
inhibition with ICI (summarised in Table 1).

3.3.3. Shared Resistance Mechanisms with PI3K Inhibitors

The predominant mechanism for PI3K inhibitor resistance is the reactivation of the
PI3K/AKT pathway either through PI3K mutation, its upstream or downstream signalling
components, or positive feedback mechanisms [172]. As a result of crosstalk between
numerous oncogenic pathways, as described above, activation of the MAPK pathway has
also been identified in PI3K inhibitor-resistant PDX models of triple-negative breast can-
cer [173]. However, to the best of our knowledge, there are no clinical studies investigating
the immunological effect of PI3K inhibitor resistance or its influence on ICI response.

3.3.4. Summary of PI3K Targeted Therapy

PI3K mutations have a potential role as a predictive biomarker of immunotherapy
response. Preclinical evidence provides a rationale for combining PI3K inhibitors with
ICI, providing an exciting option for patients with PI3K pathway mutations or PTEN
loss. However, clinical data on the safety and effectiveness of this strategy is immature.
Resistance mechanisms, such as reactivation of the PI3K/AKT pathway, or activation of
the MAPK pathway, may influence response to subsequent immunotherapy.

3.4. HER2/ERBB2 Alterations

The v-erb-b2 avian erythroblastic leukaemia viral oncogene homolog 2 (ERBB2) gene,
also known as the human epidermal growth factor receptor 2 (HER2) gene, encodes a
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member of the epidermal growth factor receptor family of receptor tyrosine kinases. HER2
alterations can be broadly classified as amplification, overexpression and mutations [174].
HER2 gene amplification and the resultant overexpression of HER2 protein is associated
with cell transformation and oncogenesis, and HER2-directed therapy has demonstrated
success in some HER2 overexpressing (i.e., HER2-positive) cancer types such as breast and
gastro-oesophageal cancers. Around 20% of breast cancers have HER2 gene amplification,
with 15–20% overexpressing the HER2 protein [175]. In 1998, Trastuzumab was the first
HER2 targeted treatment to be approved for HER2-positive metastatic breast cancer and
since then its use has expanded to treat all stages of breast cancer and many novel anti-HER2
therapies have followed [174].

Oncogenic HER2 activation through somatic gene mutation has been studied and
the majority of these HER2 mutations are not linked to HER2 gene amplification [176].
Mutations are found across all exons of the HER2 gene and mutations affecting the extra-
cellular domain, transmembrane domain, or tyrosine kinase domain may activate HER2
signalling pathways, which promote cell cycle progression and proliferation. Exon 20 inser-
tions (ex20ins) affecting the kinase domain are the most common HER2 mutations. The
Cancer Genome Atlas (TCGA) dataset shows that mutations occur in a variety of cancers;
bladder cancer has the highest prevalence of HER2 mutations (9–18%), followed by uterine
cervix (6%), colorectal (5.8%), lung (4%) and breast (4%) [177]. Pahuja et al. analysed over
100,000 tumours and detected HER2 mutations in 3.5% of them [178].

3.4.1. Effect of HER2 Alterations on Immunotherapy Response

Recent data suggest that HER2 status (i.e., the amount of HER2 protein in HER2 over-
expressing tumours) may influence the tumour immune microenvironment, and response
to HER2-targeted therapies can be predicted by immune cell compositions [179]. Tumour
infiltrating lymphocytes (TILs) provide antitumour immunity, and higher levels of TILs are
associated with improved distant disease-free survival in breast cancer patients following
Trastuzumab treatment [180]. It is thought that PD-L1 is associated with HER2-status
and agents targeting the HER2 pathway may relieve inhibition of antitumour immunity.
Koung Jin Suh et al. used gastric cancer cell lines and resected gastric tumour samples
to study the effect of EGFR/HER2 signal blockade on the tumour immune microenviron-
ment of tumours overexpressing HER2 [181]. The authors concluded that inhibition of
the EGFR/HER2 signalling pathway suppressed PD-L1 and released immunosuppressive
cytokines, suggesting that EGFR/HER2 inhibition may create a more favourable milieu
for tumour immunotherapy [181]. On the contrary, somatic HER2 mutations in solid tu-
mours may improve the tumour microenvironment to favour immunotherapy. Wang et al.
analysed patient data from eight studies to investigate the effects of HER2 mutations on
immune checkpoint inhibitor outcomes [176]. Objective response rates were higher in those
with HER2 mutations compared to those with HER2 wild type (44.4% vs. 25.7%, p = 0.081)
and patients carrying the mutation also had better overall survival [176].

HER2 alterations are present in 7–27% of de novo NSCLC and may serve as a resis-
tance mechanism in up to 10% of EGFR-mutated NSCLC [182]. Activating HER2 mutations
are rare in NSCLC, with a prevalence of 2–4%, but they are successfully targeted with
trastuzumab or trastuzumab deruxtecan (T-DXd) [183]. T-DXd is approved as a second-line
treatment for patients with HER2-mutant NSCLC. Several cohort studies have found that
NSCLC patients with HER2 ex20ins have higher tumour mutational burden but low PD-L1
expression compared to those with HER2 non-ex20ins [183–185]. Furthermore, a recent
meta-analysis found that patients with non-ex20ins had better progression-free survival
[13.0 vs. 3.6 months] and overall survival (27.5 vs. 8.1 months) following ICI compared
to ex20ins patients, consistent with findings of the META-ICI cohort [183]. The authors
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also reviewed immune characteristics and found that the TME was generally immunosup-
pressed in HER2-mutated NSCLC [183]. Interestingly, immune signatures revealed that
non-ex20ins patients might be enriched with resting CD4+ memory T cells, which requires
further investigation in a larger cohort [183]. Furthermore, the IMMUNOTARGET registry,
which identified HER-2 alterations in 5% (n = 27) of patients with NSCLC, also linked
HER-2 perturbations to immunotherapy resistance, with a poor objective response rate to
ICI monotherapy (7%) [4]. Due to the low incidence of HER2 alterations in NSCLC, all the
cohorts in these studies are small and this hinders the validity of the findings. A larger
prospective study of NSCLC with HER-2 aberrations would add more statistical power to
the true predictive effect of HER2 alterations on ICI response or resistance.

3.4.2. Combination Immune Checkpoint Inhibition with HER2 Targeted Therapy

Preclinical data has shown promising results supporting the use of ICI in combination
with HER2-directed therapies in HER2-positive breast cancer. Trastuzumab emtansine (T-
DM1) in combination with anti-PD-1 antibody and anti-CTLA-4 antibody has been shown to
improve the efficacy of ICI in mouse models by synergistically activating CD8+ T cells [186].
Anti-PD-1 therapy in combination with trastuzumab has also shown improved antitumour
effects in preclinical models [187]. T-DXd promotes an antitumour immune response
through an increase in MHC I expression and dendritic cell markers [188]. In addition,
combination T-DXd with anti-PD-1 improved response rates in an immunocompetent
CT26.WT-hHER2 mouse model [188].

The success in preclinical studies has resulted in several clinical trials of combina-
tion therapies. The PANACEA trial tested the combination of pembrolizumab (anti-PD-1)
and trastuzumab in pretreated HER2-positive metastatic breast cancer patients [189]. The
combination was effective for patients with tumours resistant to trastuzumab-based ther-
apies and positive for PD-L1 biomarker, with a partial ORR of 15%, but not in patients
with PD-L1-negative tumours [189]. This led to the DIAmOND clinical trial, which is cur-
rently investigating the use of dual immunotherapy (durvalumab and tremelimumab) with
trastuzumab in patients with advanced HER2-positive breast cancers [190]. Atezolizumab,
an anti-PD-L1 antibody, is being tested in combination with T-DM1 (NCT04740918) in
patients with trastuzumab-resistant PD-L1-positive HER2-positive advanced breast can-
cer; the results of this trial are awaited. Avelumab, another anti-PD-L1 antibody is being
trialled in combination with trastuzumab and vinorelbine (NCT03414658) in progressing
HER2-positive breast cancer.

Despite the promising preclinical evidence, the benefit of adding ICI to anti-HER2
therapy may not be universal for all HER2-altered cancers. The Keynote-811 trial assessed
the addition of pembrolizumab to trastuzumab and chemotherapy in locally advanced
or metastatic HER2-positive gastric or gastro-oesophageal cancer, [191]. At the third
interim analysis, there was a trend towards improved PFS and OS with the addition of
pembrolizumab compared to placebo, but this did not reach statistical significance. The
combination was tolerable with only a small increase in the incidence of grade 3 or higher
adverse effects (58% vs. 51%) [191].

3.4.3. Shared Resistance Mechanisms with HER2 Targeted Therapy

Similarly to resistance mechanisms emerging after other targeted therapies, activation
of downstream signalling, or activation of an alternative oncogenic pathway associated
with ICI resistance, have been identified in treatment resistance following anti-HER2
therapy [192]. Activation of PI3K and PTEN loss is associated with trastuzumab resis-
tance [193,194].
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In addition to the PANACEA trial described above, the KATE2 trial assessed the role
of the ICI, atezolizumab, in HER2-positive breast cancer following disease progression
on trastuzumab [195]. The combination of atezolizumab with trastuzumab emtansine
demonstrated a trend towards longer PFS compared to trastuzumab emtansine and placebo
(8·2 months vs. 6·8 months) but did not reach statistical significance (p = 0.33). In addition,
the objective response rates were similar between groups (45% in atezolizumab arm, 43%
in the placebo arm) [195]. Interestingly, PD-L1 status, as assessed by PD-L1 gene expression
but not IHC, was associated with improved response to atezolizumab in subgroup analysis.
Both the results of PANACEA and KATE2 suggest that although responses are possible after
progression on anti-HER2 therapy, ICI is not sufficient to overcome anti-HER2 resistance,
and PD-L1 status may be a useful biomarker.

3.4.4. Summary of HER2 Targeted Therapy

The presence of HER2 alterations is associated with improved response to immunother-
apy in breast cancer. Preclinical data supports the use of combination HER2-directed
therapy and ICI. However, clinical trials of combination therapy have not shown statistical
benefit in all cancer types and all patients. PD-L1 status may be a useful biomarker for
combination therapies, particularly in breast cancer. HER2-alterations in NSCLC are rare
and although T-DXd is licensed for HER2 mutant NSCLC, further studies are required to
assess it in combination with ICI. Mechanisms of resistance to HER2-directed therapy share
the hallmarks of other targeted therapies that may influence response to ICI. These include
the upregulation of alternative pathways, such as PI3K pathway activation. The lack of
benefit with the addition of atezolizumab to trastuzumab emtansine in patients resistant
to trastuzumab may indicate the resistance to ICI after HER2-directed therapy. However,
further trials are required to investigate this.

4. Discussion
As sequencing technology improves, tumour genomic profiling will become more

common in routine clinical practice. The challenge for clinicians and researchers is to
understand how to utilise this information to personalise treatment approaches for individ-
ual patients. As summarised in this review, the presence of oncogenic driver alterations
influences the immune microenvironment and response to immunotherapy (see Figure 1).
However, the effects are complex and vary across tumour types. Combining ICI with
targeted therapy has the potential to overcome the early acquired resistance often seen with
targeted therapies and improve immune response. Balancing improved efficacy with high
rates of grade 3/4 toxicity will be challenging.

Overlapping toxicity profiles has been a major factor that has hindered the introduction
of combination therapies with the incidences of grade 3 toxicities as high as 82% [196].
Alternative approaches, such as lead-in dosing strategies where monotherapy-targeted
agents are administered prior to combination therapy, may reduce high toxicity rates [82].
However, further work is needed to determine the effect on long-term toxicities and efficacy.

In many tumour types, targeted therapy and ICI will be used sequentially. BRAF
mutant metastatic melanoma is the only setting where we have dedicated randomised
trials to assess the sequencing of targeted therapy and ICI. This is in part due to the
early introduction of ICI in metastatic melanoma resulting in long-term clinical data.
In addition, BRAF inhibitors and ICI were both approved by the FDA for metastatic
melanoma in 2011. Therefore, both treatments were valid first-line treatment options for
BRAF mutant metastatic melanoma. The SECOMBIT and DREAMseq trials clearly show
that shared resistance mechanisms influence response, and the choice of sequential therapy
is important [85,86]. Many of the resistance mechanisms discussed in this review are shared
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across different targeted therapies (summarised in Table 2). This may suggest that the
clinical benefit of ICI before targeted therapy, seen in BRAF mutant melanoma, may be
replicated in other tumour types or oncogenic drivers. However, it would be speculation to
define the optimal sequencing of therapy in other pathways or cancer types at present due
to the lack of specific clinical trial evidence. Nevertheless, we need to consider the potential
for shared resistance when introducing new therapies and determine where they may be
most effective from the outset. Therefore, we propose a framework for how this clinical
question may be approached as new evidence emerges (Figure 2).
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growth factor family (FGF), or mutations in receptor tyrosine kinases trigger activation of downstream
signalling pathways. These include the RAS/RAF/MAPK pathway and PI3K pathways. Activation
of these pathways induces expression of immunosuppressive cytokines, such as CXCR2 and VEGF,
that inhibit CD8+ T cell recruitment and activation. In addition, RAS/RAF/MAPK and PI3K pathways
regulate the expression of checkpoint proteins such as PD-L1 and CD47. Effect of combination therapy.
A summary of the rationale of combining targeted therapy with immunotherapy using inhibition of
the RAS/RAF/MAPK pathway as an example. Inhibition of the RAS/RAF/MAPK pathway leads to
a reduction in immunosuppressive cytokines and recruitment of CD103+ dendritic cells required for
CD8+ T cell activation. In addition, BRAFi increases neoantigen expression. Combining these effects
with ICI results in T-cell activation, resulting in an immune response and tumour regression. In addi-
tion, the formation of memory T cells promotes durable responses. Shared resistance mechanisms.
A summary of the three types of shared resistance mechanisms. Inhibition of one pathway, in this
example BRAF inhibition with encorafenib, results in upregulation of alternative pathways such as
PI3K. Altered expression of key cytokines, such as CCL2, results in the recruitment of immunosup-
pressive cell populations, including myeloid-derived suppressor cells (MDSCs). MDSCs can suppress
T cell function by a reduction in metabolites required for activation, such as L-arginine, and increase
oxidative stress. Other cytokines, such as transforming growth factor-β (TGFB), promote cancer-
associated fibroblast (CAF) activation, which inhibits T cell infiltration through increased extracellular
matrix (ECM) stiffness. Created in BioRender. Cartwright, D. (2025) https://BioRender.com/i02o781
(accessed on 18 March 2025).

Table 2. Summary of interactions between targeted therapy and ICI exploring synergistic mechanisms
of combination therapy, tumour cell intrinsic mechanisms and tumour cell extrinsic mechanisms.
MHC = major histocompatibility complex, Tregs = regulatory T cells, CAF = cancer-associated
fibroblast, TAM = tumour-associated macrophage, TME = tumour microenvironment. Light blue
colour indicates there is evidence of synergistic mechanisms of action of the targeted therapy and ICI.
Dark blue indicates that there is evidence that resistance to the targeted therapy results in tumour cell
intrinsic ICI resistance. Light green colour indicates that there is evidence of tumour cell extrinsic
ICI resistance.

Targeted Therapy
KRAS BRAF MEK FGFR PI3K HER2

Synergistic mechanism of action with ICI
Increased CD8+ T cell infiltration
Increased CD4+ T cell infiltration

Dendritic cell infiltration
Increased neoantigen expression
Increase MHC class I expression

Downregulation of Tregs
Downregulation of PD-L1

Reduced Immunosuppressive cytokine
secretion

Intrinsic resistance mechanisms
PTEN loss/PI3K activation

Alternative MAPK pathway activation
WNT/β Catenin signalling

Extrinsic resistance mechanisms
CAF activation

TAM infiltration
Acidic TME through aerobic glycolysis

https://BioRender.com/i02o781
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mour cell intrinsic ICI resistance. Light green colour indicates that there is evidence of tumour cell 
extrinsic ICI resistance.  

 Targeted Therapy  
 KRAS BRAF MEK FGFR PI3K HER2 

Synergistic mechanism of action with ICI      

Increased CD8+ T cell infiltration        

Increased CD4+ T cell infiltration        

Dendritic cell infiltration        

Increased neoantigen expression        

Increase MHC class I expression        

Downregulation of Tregs       

Downregulation of PD-L1       

Reduced Immunosuppressive cytokine secretion        

Intrinsic resistance mechanisms      

PTEN loss/PI3K activation        

Alternative MAPK pathway activation        

WNT/β Catenin signalling        

Extrinsic resistance mechanisms      

CAF activation        

TAM infiltration        

Acidic TME through aerobic glycolysis        
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Figure 2. Framework for determining the optimal utilisation of ICI and targeted therapy. For
combination therapy there needs to be evidence of a synergistic mechanism of action, the combination
is safe and tolerable, and an objective benefit in randomised clinical trials. The measure used to assess
the benefit of combination therapy could be improved response rate (RR), overall survival (OS), or
progression-free survival (PFS), but may include other endpoints that might be relevant in specific
clinical scenarios. If combination therapy is not appropriate, then we must look for evidence of
shared resistance mechanisms. If none exist then the choice of sequencing of therapy is determined by
patient factors (e.g. comorbidities, concomitant medications etc.), practical implications of delivering
treatment, and the licensing and reimbursement of the treatment in the individual healthcare service.
If there is evidence of shared resistance mechanisms, then a randomised trial of sequential therapy is
required to determine the optimal sequential therapy. In the absence of randomised clinical trials,
retrospective cohort studies and real-world data may influence the sequential therapy treatment
decision if both treatments were appropriate options for the patient (* considering licencing, approvals
and patient factors). Treatment decisions cannot be based purely on preclinical evidence; however,
it can inform the priorities for retrospective studies, clinical trial design and translation research.
Alongside all these questions are the overarching priorities to identify biomarkers that can select
which patients may benefit most, how we identify the emerging resistance in patients, and how we
can overcome it.

4.1. Future Perspectives and Challenges

Biomarkers that either predict the resistance or identify the emergence of resistance
are going to be a key part of precision oncology. New technologies, such as monitoring of
circulating tumour DNA (ctDNA), can identify the development of new mutations that
confer resistance to targeted therapies [197]. These may also help to identify activating
mutations in pathways associated with ICI resistance. ctDNA analysis provides a practical
and clinically acceptable method for serial molecular profiling throughout a treatment
course. However, not all tumours shed ctDNA and nearly a quarter of genomic alterations
detected by tissue methods are not identified on ctDNA analysis [198]. Alterations with
low variant allele frequency (VAF) suggest low clonality [199]. VAF can be predictive of
response to therapy; however, due to the variations in assays, there are no agreed standards
for the assessment of VAF or the clinical significance of low VAF alterations.

Tissue samples provide a more direct assessment of the oncogenic drivers present
within a tumour and are easier to interpret. Next-generation sequencing (NGS) has been
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widely adopted in clinical trial design and is beginning to be adopted into routine clinical
practice. However, the turnaround time for the NGS of tumour samples remains approxi-
mately 30 days even in well-resourced tertiary centres [200]. This timeframe is too long for
some patients with rapidly progressing diseases to wait for treatment decisions. Sequencing
costs are falling but the interpretation of NGS results remains complex and often requires
the input of an expert molecular tumour board. This limits its utility in resource-poor
settings. Therefore, a broad approach not requiring tumour profiling and targeting both
intrinsic and extrinsic mechanisms may provide the best clinical utility.

Tissue-based NGS and ctDNA can predominantly identify tumour intrinsic ICI re-
sistance mechanisms through the detection of new mutations. As a result, the majority
of the shared resistance mechanisms discussed above are tumour cell intrinsic. To de-
tect tumour cell extrinsic mechanisms, spatial profiling is required to characterise the
infiltration of specific immune cell populations and the composition of the TME. Spatial
technologies, such as multiplex immunofluorescence, spatial transcriptomics, proteomics
and metabolomics, have been used in preclinical research to identify the mechanisms of
resistance to ICI [201,202]. However, these technologies are currently not clinically applica-
ble. Currently, spatial technologies are costly and often low throughput, limiting their use
to small cohorts [203]. Tissue microarrays are often used to overcome this limitation but
are inherently flawed due to intra-tumour heterogeneity.

In this review, we have not examined the role of novel immunotherapies as the
data on these therapies, particularly in relation to specific driver mutations, is limited.
Novel immunotherapies, such as TIL cell therapy, are effective treatment strategies for ICI
resistance [204]. However, these treatments are currently limited by high cost, complex
manufacturing processes and long lag times for producing individual patient treatments,
which limits their widespread adoption.

4.2. Conclusions

The presence of oncogenic drivers has a significant impact on the TME and response
to ICI. Many targeted therapies have a synergistic effect with ICI and can improve response
rates if tolerable combinations are found. In therapies where combination therapy is
ineffective or intolerable, shared resistance mechanisms can be influential. To maximise
tumour response and disease control from each line of therapy, large clinical trials focusing
on the sequencing of treatment options may be proven valuable.
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