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Abstract   10 

Computational prediction of protein structure from amino acid sequences alone has been 11 

achieved with unprecedented accuracy, yet the prediction of protein-protein interactions 12 

(PPIs) remains an outstanding challenge. Here we assess the ability of protein language 13 

models (PLMs), routinely applied to protein folding, to be retrained for PPI prediction. 14 

Existing PPI prediction models that exploit PLMs use a pre-trained PLM feature set, 15 

ignoring that the proteins are physically interacting. Our novel method, PLM-interact, goes 16 

beyond a single protein, jointly encoding protein pairs to learn their relationships, analogous 17 

to the next-sentence prediction task from natural language processing. This approach 18 

provides a significant improvement in performance: Trained on human-human PPIs, PLM-19 

interact predicts mouse, fly, worm, E. coli and yeast PPIs, with 16-28% improvements in 20 

AUPR compared with state-of-the-art PPI models. Additionally, it can detect changes that 21 

disrupt or cause PPIs and be applied to virus-host PPI prediction. Our work demonstrates 22 

that large language models can be extended to learn the intricate relationships among 23 

biomolecules from their sequences alone.  24 

Introduction 25 

Proteins are the main structural components of cells and mediate biological processes by 26 

interacting with other proteins1. Disruption of these protein-protein interactions (PPIs), e.g., 27 

mediated by mutations can underlie human disease2. In virology PPIs are particularly 28 

important as viruses depend entirely on the host cell for replication, achieved mainly through 29 

specific interactions with host proteins. Understanding PPI mechanisms offers the potential 30 
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for developing novel therapy strategies for both human disease and pathogen infections3. 31 

Unfortunately, experimentally identifying PPIs is both costly and time-consuming, such that 32 

interaction datasets remain sparse with only a few species having comprehensive coverage4,5.  33 

 34 

Computational algorithms offer an efficient alternative to the prediction of PPIs at scale. 35 

Existing prediction approaches mainly leverage protein properties such as protein structures, 36 

sequence composition and evolutionary information6,7,8,9. Applying these features to pairs 37 

of proteins, classifiers have been trained using classical machine learning10 and deep 38 

learning approaches11. Recently, protein language models (PLMs) trained on large public 39 

protein sequence databases have been used for encoding sequence composition, 40 

evolutionary and structural features12–14, becoming the method of choice for representing 41 

proteins in state-of-the-art PPI predictors. A typical PPI prediction architecture uses a pre-42 

trained PLM to represent each protein in a pair separately, then a classification head is 43 

trained for a binary task that discriminates interacting pairs from non-interacting pairs13,15 44 

(Figure 1a). Despite this use of PLMs, identifying positive PPIs remains challenging.  45 

 46 

The main issue is PLMs are primarily trained using single protein sequences, i.e., while they 47 

learn to identify contact points within a single protein16, they are not ‘aware’ of interaction 48 

partners. In a conventional PLM-based PPI predictor architecture, a classification head is 49 

used to extrapolate the signals of inter-protein interactions by grouping common patterns of 50 

intra-protein contacts in interacting and non-interacting pairs, respectively (Figure 1a). This 51 

strategy relies on the classification head being generalisable. Unfortunately, with a 52 

feedforward neural network being the dominant option, these classifiers often don't 53 

generalise well. 54 

 55 

To address the lack of inter-protein context in training, we propose a novel PPI prediction 56 

model, PLM-interact, that directly models PPIs by extending and fine-tuning a pre-trained 57 

PLM, ESM-217. PLM-interact (trained on human PPI data) achieves a significant 58 

improvement compared to other predictors when applied to mouse, fly, worm, yeast and E. 59 

coli datasets. We demonstrate that PLM-interact is capable at identifying mutations that 60 

cause and disrupt interactions. We also show PLM-interact's performance in a virus-human 61 

PPI prediction task.  62 
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PLM-interact  63 

To directly model PPIs, two extensions to ESM-2 are introduced (Figure 1b): (1) longer 64 

permissible sequence lengths in paired masked-language training to accommodate amino 65 

acid residues from both proteins; (2) implementation of the “next sentence” prediction task18 66 

to fine-tune ESM-2 where the model is trained with a binary label indicating whether the 67 

protein pair is interacting or not (see Methods for more details). Our training task is, thus, a 68 

mixture of the next sentence prediction and the mask language modelling tasks. This 69 

architecture allows amino acids in a protein to be linked by amino acids from a different 70 

protein through transformer’s attention mechanism.  71 

 72 
Figure 1. A comparison of PLM-interact to the typical existing PPI prediction framework. a. 73 

PPI prediction models that use pre-trained protein language models to extract single protein 74 

embeddings. Then an interaction classifier is trained use these single protein embeddings. b. PLM-75 

interact uses a protein language model with a longer context to handle a pair of protein sequences 76 

directly. Both the mask language modelling task and a binary classification task predicting 77 

interaction status are used to train the model. (see Supplementary Figure 1).   78 

The training of PLM-interact begins with the pre-trained large language model ESM-2. We 79 

fine-tune it for PPIs, by showing it pairs of known interacting and non-interacting proteins. 80 

In contrast to similar training strategies in machine learning18, we find the next sentence 81 

prediction and mask language modelling objectives need to be balanced. We therefore 82 

conducted comprehensive benchmarking for different weighting options, before selecting a 83 

1:10 ratio between classification loss and mask loss, combined with initialisation using the 84 
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ESM-2 (with 650M parameters), as this achieved the best performance (see Methods and 85 

Supplementary Figure 1). 86 

PLM-interact improves prediction performance  87 

To examine the performance of PLM-interact, we benchmark the model against five PPI 88 

prediction approaches: TT3D13, Topsy-Turvy19, D-SCRIPT15, PIPR6 and DeepPPI20. We use 89 

a multi-species dataset created by Sledzieski et al.15. Each model is trained on human protein 90 

interaction data and tested on five other species. The human training dataset in this multi-91 

species dataset includes 421,792 protein pairs (38,344 positive interaction pairs and 383,448 92 

negative pairs), human validation includes 52,725 protein pairs (4,794 positive interaction 93 

pairs and 47,931 negative pairs) and the mouse, worm, fly and yeast test datasets each 94 

includes 55,000 pairs (5,000 positives interaction pairs and 50,000 negative pairs), except 95 

for the E. coli test dataset, which includes 22,000 pairs (2,000 positive interaction pairs and 96 

20,000 negative pairs). The positive PPIs in these datasets are experimentally-derived 97 

physical interactions, while the negative pairs are randomly paired proteins not reported to 98 

interact.   99 

 100 

PLM-interact achieves the highest AUPR (area under the precision-recall curve)23 with the 101 

next best performer, TT3D13, although similar performance to Topsy-Turvy19 (Figure 2b). 102 

Tested on mouse, fly and worm test species datasets, PLM-interact has an improvement of 103 

16%, 21% and 20% AUPR compared to TT3D13, respectively. The predictions for yeast and 104 

E. coli PPIs are more challenging because they are more evolutionarily divergent from the 105 

human proteins used for training than the other species (see Figure 2b): Our model achieved 106 

an AUPR of 0.706 on yeast, a 28% improvement over TT3D’s AUPR of 0.553 and a 19% 107 

improvement on E. coli with an AUPR of 0.722.   108 

 109 

Importantly, the improvement in PLM-interact is due to its ability to correctly identify 110 

positive PPIs: Comparing the prediction interaction probability of PLM-interact with the 111 

second-best predictor TT3D, PLM-interact consistently assigned higher probabilities of 112 

interaction to true positive PPIs. TT3D, in contrast, despite using a broader feature set, 113 

produces a bimodal distribution for interaction probabilities in all held-out species (more 114 

details see Supplementary Figure 2).  115 
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 116 
Figure 2. PLM-interact achieves the highest PPI prediction performance. The benchmarking 117 

results of PLM-interact with state-of-the-art PPI prediction models. a. The data size of training, 118 

validation and test PPIs. b. The taxonomic tree of the training and test species, precision-recall curves 119 
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of each test species and a bar plot of AUPR values on PPI prediction benchmarking. c. Violin plots 120 

of predicted interaction probabilities of PLM-interact and TT3D on positive and negative pairs, 121 

respectively. (see Supplementary Figure 2 for more information). 122 

Next, we showcase five positive PPI instances, one for each test species, for which our model 123 

produces a correct prediction, but TT3D produces an incorrect prediction (Figure 3). These 124 

PPIs are necessary for essential biology processes including ubiquinone biosynthesis, RNA 125 

polymerisation, ATP catalysis, transcriptional activation and protein transportation. We use 126 

Chai-121 and AlphaFold322 to predict and visualise these interacting protein structures 127 

(Figure 3 and Supplementary Figure 3). Notably, both Chai-1 and AlphaFold3 have only 128 

1 out 5 structures with close to high-confidence prediction (ipTM close to 0.8). Both 129 

methods give failed prediction scores (ipTM <0.6) for 4 out 5 structures. PLM-interact gives 130 

correct predictions with high confidence in all cases.   131 

 132 
Figure 3. PPI example for each species that was predicted correctly by PLM-interact but not 133 

by TT3D. Protein-protein structures are predicted by Chai-121 and visualised with ChimeraX23. Both 134 

models’ prediction interaction probabilities range between 0 and 1. A predicted interaction 135 

probability >0.5, is predicted as a positive PPI, while <0.5 is a negative pair. Interacting proteins are 136 
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shown from left (yellow) to right (green), respectively, for mouse: Q8K1Z0 (Ubiquinone 137 

biosynthesis protein COQ9, mitochondrial) and Q8R1S0 (Ubiquinone biosynthesis monooxygenase 138 

COQ6, mitochondrial); Worm: Q21955 (Mediator of RNA polymerase II transcription subunit 15) 139 

and Q9N4F2 (Mediator of RNA polymerase II transcription subunit 19); Fly:  Q9V3J1 (V-type 140 

proton ATPase subunit H) and Q9V7D2 (V-type proton ATPase subunit D 1); Yeast: P22149 (Iron-141 

regulated transcriptional activator AFT1) and P53040 (Transcription initiation factor TFIID subunit 142 

6); and E. coli: A0A454A7G5 (ABC transporter permease protein) and A0A454A7H5 (Possible 143 

ABC-transport protein, ATP-binding component). See Supplementary Figure 3 for AlphaFold322 144 

predicted structures. The ipTMs for both Chai-1 and AlphaFold3 are shown for each structure, where 145 

ipTM <0.6 indicates failed predictions and ipTM >0.8 indicates high confidence predictions. 146 

PLM-interact can identify the impact of mutations on interactions   147 

Here, we demonstrate examples of PLM-interact correctly predicting the consequences of 148 

mutations on PPIs. Canonical protein sequences (ie proteins without mutations) are retrieved 149 

from UniProt24. Amino acid substitutions associated with changes in PPIs are obtained from 150 

InAct25. We obtained predicted interaction probabilities for canonical and mutants from 151 

PLM-interact trained on human data (see Methods). For mutations associated with 152 

interaction gain ‘mutation-causing’ interactions (see Figure 4a), PLM-interact predicted 153 

interaction probabilities of the negative pair are below 0.5, whereas the interaction 154 

probabilities of the mutant PPI exceed 0.5. For mutation-disrupting PPIs (Figure 4b), the 155 

predicted interaction probabilities of the positive PPI exceed 0.5, whereas the interaction 156 

probabilities of the mutant PPI are below 0.5. Examples are presented in Figure 4, where 157 

complex structures are predicted by Chai-121.  158 

 159 

We show two examples of mutations that cause PPIs in Figure 4a, the protein Ataxin-1 and 160 

SOD1 (Superoxide dismutase [Cu-Zn]), which in humans are encoded by the ATXN1 and 161 

SOD1 genes separately. Ataxin-1 interacts with many other proteins and the expansion of a 162 

glutamine(Q)-encoding repeat can affect the function of PPIs and cause the genetic disease 163 

spinocerebellar ataxia type1 (SCA1) and other polyglutamine diseases26. Predictions from 164 

PLM-interact show that prior to mutation, this PPI has a predicted interaction probability of 165 

0.411, correctly indicating non-interaction with E2s (Ubiquitin-conjugating enzyme E2 E3). 166 

Following mutation, PLM-interact increases this score to 0.771, correctly predicting that the 167 

mutation induces interaction. In the second example (Figure 4a), the SOD1 gene encodes 168 

superoxide dismutase enzymes that break down human superoxide radicals. SOD1 is linked 169 

to the nervous system disease amyotrophic lateral sclerosis (ALS)27, with the A4V mutation 170 
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being the most common variant in North America28. PLM-interact predicts 0.465 and 0.851 171 

before and after the mutation, correctly capturing the change in interaction with CDK4 172 

(Cyclin-dependent kinase 4).   173 

 174 
Figure 4. Demonstration of PLM-interact detecting changes in human PPIs associated with 175 

mutations. a shows two mutation-causing interaction examples, while b shows two mutation-176 

disrupting PPI examples. These PPI structures are predicted using Chai-121 and visualised with 177 

ChimeraX23; here, the mutated amino acids are highlighted in purple. Prediction interaction 178 
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probabilities exceeding 0.5 indicate the proteins interact, while below 0.5 indicate non-interact. Chai-179 

1's ipTM scores give the structure prediction confidence where <0.6 indicates failed predictions. 180 

Interacting protein structures are shown from left (yellow) to right (green): a. Residue 225 Glutamine 181 

(Q) of P54253 (Ataxin-1) is mutated to 50 Q, causing interaction with Q969T4 (Ubiquitin-182 

conjugating enzyme E2 E3)29; Residue 5 Alanine (A) of P00441 (Superoxide dismutase [Cu-Zn]) is 183 

mutated to Valine (V), causing interaction with P11802 (Cyclin-dependent kinase 4)30. b. Residue 184 

86 Arginine(R) of P62993 (Growth factor receptor-bound protein 2) is mutated to Lysine (K), 185 

disrupting its interaction with Q5SXH7-1 (Pleckstrin homology domain-containing family S 186 

member 1)31; Residue 732 Tyrosine (Y) of Q96PD2 (Discoidin, CUB and LCCL domain-containing 187 

protein 2) is mutated to Phenylalanine (F), disrupting its interaction with P46109 (Crk-like protein)32. 188 

See Supplementary Figure 4 for AlphaFold322 predicted structures. 189 

Next, we show two examples of mutations that disrupt PPIs (Figure 4b). First, GRB2 190 

(growth factor receptor bound protein 2) is associated with signal transduction. GRB2 191 

mutations are associated with multiple cancers, including breast cancer33 and leukaemia34. 192 

The canonical protein interacts with PLEKHS1 (Pleckstrin homology domain-containing 193 

family S member 1). PLM-interact predicts that the missense mutation R86K reduces the 194 

interaction probability from 0.503 to 0.477. Second, CLCP1 is a transmembrane protein that 195 

regulates cell growth and this protein is identified as a cancer marker, exhibiting up-196 

regulated expression in lung cancer35. Again, PLM-interact predicts that the missense 197 

mutation Y732F reduces the interaction probability from 0.873 to 0.425. 198 

Improved virus-human PPI prediction 199 

To study virus-host PPI prediction, we train PLM-interact on a virus-human PPIs dataset 200 

from Tsukiyama et al.11. The dataset is derived from the Host-Pathogen Interaction Database 201 

(HPIDB) 3.036, comprising a total of 22,383 PPIs, which include 5,882 human and 996 virus 202 

proteins. We compare our model with three recent virus-human PPI models: PLM-based 203 

approach STEP14 and the protein embeddings-based approaches LSTM-PHV11 and 204 

InterSPPI37. STEP is similar to existing PPI models benchmarked previously in our study; 205 

it leverages protein sequence embedding extracted by the pre-trained PLM ProtBERT38. The 206 

results show that PLM-interact outperforms the other models. For the STEP comparison this 207 

corresponds to improvements in AUPR, F1 and MCC scores of 5.7%, 10.9% and 11.9%, 208 

respectively (Figure 5a). The length of virus, human proteins and the combined length of 209 

virus-human PPIs are shown in Figure 5b. To further analyse our model’s performance, we 210 

select three pairs of virus-human PPIs from our test data, all with corresponding 211 

experimental virus-human complex structures available in the HVIDB39. We then use 212 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.05.622169doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.05.622169
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

ChimeraX23 to visualise these structures and present PLM-interact’s predicted interaction 213 

probability for each example (see Figure 5c). 214 

215 

Figure 5. a. Comparison of AUPR, F1 and MCC metrics of PLM-interact against recent virus-human 216 

PPI models. b. The distribution of the length of virus proteins, human proteins and virus-human 217 

protein pairs. c. The virus-human PPIs are correctly predicted by our model and the 3D complex 218 

structures of virus-human PPIs are experimentally verified structures collected from the human-virus 219 

PPI database (HVIDB39). From left (green) to right (yellow), these interacting protein structures are: 220 

Tumour necrosis factor receptor superfamily member 14 (Human protein: Q92956) with Envelope 221 

glycoprotein D (human herpes simplex virus 1: P57083), Ephrin-B2 (human protein: P52799) with 222 

Glycoprotein G (Nipah virus protein: Q9IH62) and Retinoblastoma-associated protein (human 223 

protein: P06400) with Large T antigen (Simian virus 40: P03070). Note: The metrics results of the 224 

other three models in panel a are taken from STEP14 paper. 225 

Discussion 226 

In this study we have developed a novel PPI prediction method, PLM-interact, that extends 227 

single protein-focused PLMs to their interacting protein partner. We report significant 228 

improvements in held-out species comparisons and highlight successful examples of 229 

predicting mutational effects on protein interactions. We further demonstrate PLM-interact's 230 
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performance in a virus-human PPI prediction task, showing a significant improvement over 231 

state-of-the-art prediction approaches.  232 

Underlying the benefit of PLM-interact is the improved capability of correctly predicting 233 

positive PPIs in the held-out species. However, positive PPIs are challenging to predict due 234 

to a lack of high-quality PPI data for training. Our improved performance relative to TT3D 235 

is particularly impressive given that we only use sequences. TT3D13 includes explicit 236 

structural information, the per-residual structural alphabet in Foldseek40, to improve its 237 

prediction over Topsy-Turvy, which incorporated network data.  238 

Furthermore, our results show the potential of predicting mutational effects on PPIs from 239 

sequence alone. This could lead to a new generation of interaction aware in-silico variant 240 

effect predictors where methods rely on PLMs of the single proteins41–43. However, current 241 

training data remains limited. The number of high-quality structures of mutant proteins and 242 

their interaction partners are low. Algorithmically, models with long and multimodal 243 

context44–46 that include multiple proteins, structures and nucleotides could be specialised 244 

for interaction tasks.    245 

Finally, effective sequence-based virus-host PPI predictors could provide the much-needed 246 

molecular detail to conventional virus-host species prediction tools, which tend to rely on 247 

genome composition signals ignoring host molecules that are interacting physically with 248 

viral molecules47–50. In those approaches, the host species only act as labels. Recent progress 249 

within SARS-CoV-2 PPI studies mapped out a complex interaction landscape between the 250 

virus and human proteome51,52. Other viruses are likely to have similarly complex 251 

interactions with human and animal hosts. Leveraging these interactions could lead to tools 252 

that are better at predicting zoonotic events and the potential for emergence of novel viruses. 253 

While PLM-interact has demonstrated significant improvements there is much to do in terms 254 

of generating reliable predictions, in particular the need for high-quality virus-host 255 

experimental PPI data for training. What is clear is attention applied to longer-range 256 

sequence interactions is enhancing our understanding of protein interactions, the 257 

fundamental ‘language’ of molecules.  258 
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Methods 259 

Datasets 260 

The benchmarking human PPI dataset, from Sledzieski et al.15, comprises human training 261 

and validation data and test data from five other species: mouse, Mus musculus; fly, 262 

Drosophila melanogaster; worm, Caenorhabditis elegans; yeast, Saccharomyces cerevisiae; 263 

and E. coli, Escherichia coli), all retrieved from STRING V1153. We train and validate our 264 

model on human PPIs and then conduct inference on PPIs from five other species. All 265 

training, validation and test datasets maintain a 1:10 ratio of positive to negative pairs, 266 

reflecting the fact that positive PPIs are significantly fewer than negative pairs in the actual 267 

host PPI networks. The length of protein sequences ranges from 50 to 800 and PPIs are 268 

clustered at 40% identity using CD-HIT54 to remove the redundant PPIs. The human training 269 

dataset includes 38,344 positive PPIs, whereas the validation set includes 4,794 positive 270 

PPIs. Each of the five species includes 5,000 positive interactions, except for 𝐸. 𝑐𝑜𝑙𝑖, which 271 

only has 2,000 positive interactions due to the fewer positive PPIs in the STRING dataset 272 

used15. 273 

 274 

The benchmarking dataset of 22,383 virus-human PPIs includes 5,882 human and 996 virus 275 

proteins. This dataset was obtained from Tsukiyama et al.11, sourced from the HPIDB 3.0 276 

database36; the ratio of positive to negative pairs is 1:10 and negative pairs are chosen based 277 

on sequence dissimilarities. The length of protein sequences ranges from 30 to 1,000 and the 278 

redundant PPIs are filtered based on a threshold of 95% identity using CD-HIT54. 279 

 280 

In addition, we provide models trained on human PPIs from STRING V1255. The positive 281 

PPIs are selected by collecting physical links with positive experimental scores, while 282 

excluding PPIs with positive homology scores and confidence scores below 400. Previous 283 

studies have typically limited the maximum length of protein sequences to 800 or 1000 due 284 

to GPU memory limitations. We process the length of protein sequences up to 2000, with a 285 

combined length threshold for PPIs of nearly 2500. This human dataset includes 60,308 286 

positive PPIs for training and 15,124 positive PPIs for testing. Furthermore, protein 287 

sequences are clustered at 40% identity using MMSeq256 and only PPIs from the distinct 288 

clusters are chosen to eliminate redundant PPIs. Again, the positive-to-negative protein pair 289 

ratio is 1:10, consistent with the aforementioned two benchmarking datasets. 290 
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Model architecture   291 

We use ESM-2 as the base model in PLM-interact. ESM-2 is an encoder transformer model 292 

with a parameter size range from 8 million to 15 billion. The results presented are PLM-293 

interact based on ESM-2 with 650M parameters. We also provided PLM-interact models 294 

with ESM-2 35M on our GitHub repository to help with quick testing. The input 295 

representation contains amino acid token representations from two proteins. This setup is 296 

similar to the original BERT model57, also known as the cross-encoder which 297 

simultaneously encodes a pair of query and answer sentences.  298 

A standard input sequence of PLM-interact, 𝑥, can be shown as the following: 299 

𝑥 = [𝐶𝐿𝑆, 𝑃1, 𝐸𝑂𝑆, 𝑃2, 𝐸𝑂𝑆], (1) 300 

where 𝐶𝐿𝑆 is the classification token, 𝑃1  contains amino acid tokens of protein 1, 301 

𝑃2 contains amino acid tokens of protein 2, and 𝐸𝑂𝑆 is the end-of-sentence token. The first 302 

EOS token marks the end of the amino acid sequence in protein 1. This setting allows us to 303 

use the original ESM-2 tokenizer to generate embedding vectors 𝑒, and pass them to the 304 

transformer encoder of the ESM-2: 305 

ℎ = 𝑓(𝑒), (2) 306 

where 𝑓  is ESM-2, 𝑒  contains the token embeddings of 𝑥 , and ℎ  contains the output 307 

embeddings of all input tokens. ℎ can be presented as: 308 

ℎ = {ℎ𝑐𝑙𝑠, ℎ𝑎1
, … ℎ𝐸𝑂𝑆 , … ℎ𝑎𝑛

, … ℎ𝐸𝑂𝑆}, (3) 309 

where ℎ𝑎1
 and ℎ𝑎𝑛

 represent amino acid tokens in proteins 1 and 2. Then, we use the 𝐶𝐿𝑆 310 

token embedding to aggregate the representation of the entire sequence pair and as the 311 

features for a linear classification function 𝜑, and parameterised as a single feed forward 312 

layer with a ReLU activation function. The output of the FF layer is converted by the sigmoid 313 

function 𝜎 to obtain the predicted interaction probability 𝑔, 314 

𝑔 = 𝜎(𝜑(ℎ𝑐𝑙𝑠)). (4) 315 
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Model Training  316 

PLM-interact is trained with two tasks: 1) a mask language modelling (MLM) task 317 

predicting randomly masked amino acids and 2) a binary classification task predicting the 318 

interaction label of a pair of proteins. PLM-interact is trained for 10 epochs using a batch 319 

size of 128 on both benchmarking datasets of human PPIs and virus-human PPIs. For all 320 

training runs, the input protein pairs are trained on both orders as the interaction between 321 

protein 1 and protein 2 is the same as the protein 2 and protein 1, which leads to double the 322 

size of the training set. The validation and testing sets are not subject to the same data 323 

argumentation. The learning rate is 2e-5, weight decay is 0.01, warm up is 2000 steps, and 324 

the schedular is WarmupLinear which linearly increasing the learning rate over the warmup 325 

steps. During training, we evaluate the model’s performance at every 2000 steps on the 326 

validation set. For every evaluation, a set of 128 protein pairs are randomly sampled from 327 

the validation set and the results are averaged over 100 times to ensure metric reliability. 328 

Here, we use both masking and classification losses to optimize our model, the loss function 329 

for each data point 𝑙 can be represented as: 330 

𝑙 = 𝛼𝑙𝑚𝑙𝑚 + 𝛽𝑙𝑐𝑒 , (5) 331 

where 𝑙mlm and 𝑙𝑐𝑒  are separately represent the MLM loss and classification (ie cross 332 

entropy) loss. 𝑙 can be written as: 333 

𝑙 = −
𝛼

𝑀
∑ 𝑙𝑛 𝑝(𝑥𝑖|𝑥−𝑖)

𝑀

𝑖=1

− 𝛽(𝑦𝑙𝑛(𝑔) + (1 − 𝑦) 𝑙𝑛(1 − 𝑔)), (6) 334 

where 𝑀  is the number of the masked tokens, 𝑥𝑖  is the true token at position 𝑖 ,  335 

𝑝(𝑥𝑖|𝑥−𝑖) is the probability of the true token 𝑥𝑖 given the unmasked amino acid 𝑥−𝑖.  𝑦 336 

is the label of the interaction and 𝑔 is the predicted probability for 𝑦 = 1, obtained from 337 

equation 4. 𝛼 and 𝛽 are weights for the MLM and classification losses.  338 

All of the models are trained on the DiRAC Extreme Scaling GPU cluster Tursa. A typical 339 

10-epoch training run of the model with ESM-2 (650M) with human PPIs takes 31.1 hours 340 

on 16 A100-80 GPUs. A typical 10-epoch training run of the model with ESM-2 (650M) 341 

trained on virus-human PPIs takes 30.5 hours on 8 A100-80 GPUs.  The model with ESM-342 

2 (650M) trained on STRING V12 human PPIs used 16 A100-80 GPUs for 86.4 hours. For 343 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 27, 2024. ; https://doi.org/10.1101/2024.11.05.622169doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.05.622169
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

model training time with different ratios and model sizes, see the following section 344 

optimisation experiment and Supplementary Table 1. 345 

We provide model checkpoints that include human PPI models trained on Sledzieski et al.’s 346 

benchmarking datasets retrieved from STRING V1153, the virus-human PPIs model trained 347 

on the benchmarking virus-human PPIs created by Tsukiyama et al.11, sourced from HPIDB 348 

3.036, as well as human PPIs collected by us from STRING V1253. 349 

PLM-interact optimisation experiments 350 

To find the optimal value of 𝛼 and 𝛽 in equation (6), we benchmark a range of different 351 

options between mask loss and classification loss on human benchmarking data. For each 352 

ESM-2-35M and ESM-2-650M model, we train five models with different setting of ratios 353 

𝛼 : 𝛽 between mask loss and classification loss. The ratios are 𝛼 : 𝛽  = 1:1, 1:5, 1:10, 0:1 354 

(with mask), and 0:1 (without mask, denoted as classification).  (Supplementary Figure 1 355 

b, c). We used the human validation set for each model to identify the optimal epoch 356 

checkpoint achieving the best AUPR. Next, the final model is selected based on testing on 357 

five other host PPIs.  358 

For ESM-2-650M, the 1:10 ratio is the optimal choice (McNemar test, the greatest counts 359 

of p-values less than 0.05) compared to other options (Supplementary Figure 1 d). The 360 

model with a 1:5 ratio of mask to classification loss based on ESM-2-35M achieved the 361 

highest number of significant improvements (McNemar test, the greatest counts of p-values 362 

less than 0.05) compared to other models (Supplementary Figure 1 e). According to these 363 

results, we select a loss ratio of 1:10 for ESM-2-650M and 1:5 for ESM-2-35M. The ratio 364 

setting is implemented in both benchmarking of human PPI training and virus-human PPI 365 

training, as well as human PPI training using the STRING V12 database.  366 

 367 

Baselines 368 

We compute the prediction interaction probabilities based on checkpoints of TT3D13, Topsy-369 

Turvy19 and D-SCRIPT15 to generate precision-recall (PR) curves in Figure 2b. Due to the 370 

absence of publicly available checkpoints for DeepPPI20 and PIPR6, these methods are 371 

excluded from the PR curve comparison. The AUPR values for DeepPPI and Topsy-Turvy 372 

are sourced from the Topsy-Turvy paper19, those for D-SCRIPT and PIPR are from the D-373 
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SCRIPT paper15, and the AUPR value of TT3D is obtained through email communication. 374 

A complete list of the main features, architectures, reference, and code link of each baseline 375 

method can be found in Supplementary Table 2. 376 

MMseq2 377 

We used MMseq2 to obtain the protein sequence-based alignment results between each pair 378 

of proteins; the parameters setting is: 379 

--threads 128 --min-seq-id 0.4 --alignment-mode 3 --cov-mode 1. 380 

Chai-1 381 

Chai-121 is a state-of-the-art model for molecular structure prediction, available at  382 

https://lab.chaidiscovery.com/. We use Chai-1 with the “specify restraints” option to predict 383 

protein-protein structure complexes and visualise predicted PPI structures using the 384 

molecular visualisation program ChimeraX23. 385 

AlphaFold3 386 

AlphaFold3 is a tool to predict the biomolecular interactions including protein, DNA, small 387 

molecules, ions and modified residues22, available at https://alphafoldserver.com/. We use 388 

AlphaFold3 in its PPI mode to predict protein structure complexes. The results are visualised 389 

with the molecular visualisation program ChimeraX23. 390 

McNemar’s test 391 

McNemar’s Chi-Square test58 is a statistical test that determines if there are significant 392 

differences between paired nominal data.  393 

𝑀𝑐𝑁𝑒𝑚𝑎𝑟′𝑠𝑡𝑒𝑠𝑡 =

(
𝑚𝑜𝑑𝑒𝑙1𝑡𝑟𝑢𝑒

𝑚𝑜𝑑𝑒𝑙2𝑓𝑎𝑙𝑠𝑒
−

𝑚𝑜𝑑𝑒𝑙1𝑓𝑎𝑠𝑙𝑒

𝑚𝑜𝑑𝑒𝑙2𝑡𝑟𝑢𝑒
)2

(
𝑚𝑜𝑑𝑒𝑙1𝑡𝑟𝑢𝑒

𝑚𝑜𝑑𝑒𝑙2𝑓𝑎𝑙𝑠𝑒
+

𝑚𝑜𝑑𝑒𝑙1𝑓𝑎𝑠𝑙𝑒

𝑚𝑜𝑑𝑒𝑙2𝑡𝑟𝑢𝑒
)

(7) 394 

Here,  𝑚𝑜𝑑𝑒𝑙1𝑡𝑟𝑢𝑒 and 𝑚𝑜𝑑𝑒𝑙2𝑡𝑟𝑢𝑒  separately represent the count of correct prediction 395 

obtained by 𝑚𝑜𝑑𝑒𝑙1 or 𝑚𝑜𝑑𝑒𝑙2, while 𝑚𝑜𝑑𝑒𝑙1𝑓𝑎𝑠𝑙𝑒  and 𝑚𝑜𝑑𝑒𝑙2𝑓𝑎𝑙𝑠𝑒 separately represent 396 

the count of incorrect prediction obtained by 𝑚𝑜𝑑𝑒𝑙1 and 𝑚𝑜𝑑𝑒𝑙2. 397 
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To investigate if our models with varying ratios of mask-to-classification loss perform 398 

significant differences, we conducted a McNemar’s test for any pairs of models in 399 

optimisation experiments. This test is based on the number of correct and incorrect between 400 

two models. Predicted interaction probabilities from each model are used to get predicted 401 

labels, which are used to obtain the counts of correct and incorrect predictions. A 402 

McNemar’s test p-value ≤ 0.05 indicates a significant difference between the predictive 403 

performance of two models. The model with more correct predictions is considered superior 404 

to the other.  405 

Data availability 406 

Sledzieski et al.’s benchmarking PPI data is available at  https://d-407 

script.readthedocs.io/en/stable/data.html 408 

Tsukiyama et al.’s virus-human benchmarking PPIs dataset is available at: 409 

http://kurata35.bio.kyutech.ac.jp/LSTM-PHV/download_page 410 

STRING V12 PPIs database:  https://stringdb-411 

downloads.org/download/protein.physical.links.v12.0.txt.gz 412 

The mutations that cause or disrupt PPIs are from IntAct25 Database; the link is 413 

https://ftp.ebi.ac.uk/pub/databases/intact/current/various/mutations.tsv 414 

UniProt: https://www.uniprot.org/ 415 

HVIDB: http://zzdlab.com/hvidb/download.php 416 

Code availability 417 

The code and trained models are available at https://github.com/liudan111/PLM-interact 418 
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Supplementary Figures  433 

 434 
Supplementary Figure 1. The benchmarking of different ratios of mask to classification loss on 435 

five species PPI prediction. a. The bar plot to show the ratio between mask loss and classification 436 

loss. b and c respectively represent the performance of our model with the different ratios between 437 

mask and classification loss on 650M and 35M of ESM-2 models. The left is aligned with taxonomy 438 

tree of the hosts that are used for evaluating our human PPI model. d and e show the better model 439 

with significant improvements than the other, p-value < 0.05 with McNemar’s Test. 440 
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 441 
Supplementary Figure 2.The distribution of prediction scores of positive and negative protein 442 

pairs of PLM-interact, TT3D, TT and D-SCRIPT. PLM-interact outperforms other models by 443 

identifying the most true positive pairs (predicted interaction probability > 0.5) and true negative 444 

pairs (predicted interaction probability < 0.5), demonstrating that PLM-interact achieves the best 445 

performance, except for negative pairs of E. coli. 446 
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 447 
Supplementary Figure 3. PPI example for each species that was predicted correctly by PLM-448 

interact but not by TT3D. Protein-protein structures are predicted by AlphaFold322. and visualised 449 

with ChimeraX23. Both models’ prediction interaction probabilities range between 0 and 1. A 450 

predicted interaction probability >0.5, is predicted as a positive PPI, while <0.5 is a negative pair. 451 

Interacting proteins are shown from left (yellow) to right (green), respectively. For information about 452 

these PPIs, see Figure 3. 453 
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 454 
Supplementary Figure 4. Demonstration of PLM-interact detecting changes in human PPIs 455 

associated with mutations. a shows two mutation-causing interaction examples, while b shows two 456 

mutation-disrupting PPI examples. These PPI structures are predicted using AlphaFold322 and 457 
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visualised with ChimeraX23; here, the mutated amino acids are highlighted in purple. Prediction 458 

interaction probabilities exceeding 0.5 indicate the proteins interact, while below 0.5 indicate non-459 

interact. AlphaFold3’s ipTM scores give the structure prediction confidence where <0.6 indicates 460 

failed predictions. Interacting protein structures are shown from left (yellow) to right (green). See 461 

Figure 4 for information about these protein pairs. 462 

Supplementary Tables  463 

Supplementary Table 1. This table shows the GPU hours (GPUhs) of different models.  464 

PLM-interact has the two kinds of training strategies: masking language modelling and 465 

binary classification, binary classification only. The ratios in this table present the different 466 

weights between mask loss and classification loss, binary indicates the binary classification 467 

task. 468 

Models/GPUhs 650M 35M 

0:1 522.4 238.2 

1:1 514.3 299.1 

1:5 508.4 238.1 

1:10 496.9 240.4 

Binary 355.8 130.9 

 469 
Supplementary Table 2. This table described the features of state-of-the-art models in this 470 

paper. 471 

  Protein features Model architecture Source Tool 

TT3D 
Pre-trained Bepler & Berger 
PLM Embeddings and one-hot 
encoding of the Foldseek 3Di 

Convolutional neural 
network  

Sledzies
ki, S. et 
al. 2023 

https://github
.com/samsle
dje/D-
SCRIPT  

D-
SCRIPT 

Pre-trained Bepler & Berger 
PLM embeddings 

Convolutional neural 
network  

Sledzies
ki, S. et 
al. 2021 

http://dscript
.csail.mit.ed
u 

Topsy-
Turvy 

Pre-trained Bepler & Berger 
PLM embeddings and network 
structure  

Intergrade D-SCRIPT 
and a network-based 
model GLIDE 

Singh, R. 
et al. 
2022 

https://topsyt
urvy.csail.mit
.edu 

PIPR 
Pre-trained amino acid 
embeddings using Skip-Gram 
model 

Siamese residual 
RCNN 

Chen, M. 
et al. 
2019 

https://github
.com/muhao
chen/seq_ppi 

DeepPPI One hot encoding amino acids 
Fully connected 
model architecture 

Richoux 
et al., 
2019 

https://gitlab.
univ-
nantes.fr/rich
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oux-
f/DeepPPI  

STEP 
Pre-trained PLM ProtBERT 
embeddings 

Siamese neural 
network 

Madan, 
S. et al. 
2022 

https://github
.com/SCAI-
BIO/STEP/tre
e/main 

LSTM-
PHV 

word2vec 
LSTM and Siamese 
model 

Tsukiya
ma et 
al.2021 

http://kurata
35.bio.kyutec
h.ac.jp/LSTM
-PHV. 

InterSPPI doc2vec 
Random Forest 
classifier  

Yang et 
al. 2020 

http://zzdlab.
com/InterSP
PI/ 

  472 
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